Fibrous Aerogels with Tunable Superwettability for High-Performance Solar-Driven Interfacial Evaporation
Corresponding Author: Meifang Zhu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 64
Abstract
Solar-driven interfacial evaporation is an emerging technology for water desalination. Generally, double-layered structure with separate surface wettability properties is usually employed for evaporator construction. However, creating materials with tunable properties is a great challenge because the wettability of existing materials is usually monotonous. Herein, we report vinyltrimethoxysilane as a single molecular unit to hybrid with bacterial cellulose (BC) fibrous network, which can be built into robust aerogel with entirely distinct wettability through controlling assembly pathways. Siloxane groups or carbon atoms are exposed on the surface of BC nanofibers, resulting in either superhydrophilic or superhydrophobic aerogels. With this special property, single component-modified aerogels could be integrated into a double-layered evaporator for water desalination. Under 1 sun, our evaporator achieves high water evaporation rates of 1.91 and 4.20 kg m−2 h−1 under laboratory and outdoor solar conditions, respectively. Moreover, this aerogel evaporator shows unprecedented lightweight, structural robustness, long-term stability under extreme conditions, and excellent salt-resistance, highlighting the advantages in synthesis of aerogel materials from the single molecular unit.
Highlights:
1 Hybrid fibrous aerogels with tunable wettability from the same molecular unit of vinyltrimethoxysilane are successfully developed.
2 Superhydrophobic and superhydrophilic hybrid aerogels are integrated into a double-layered evaporator, showing robust interfacial networks to withstand repeated and tremendous compression for 1000th cycle.
3 The evaporator delivers high water evaporation rates of 1.91 kg m−2 h−1 under laboratory conditions and 4.20 kg m−2 h−1 under outdoor experiments with the aid of wind (1 sun), enabling efficient salt rejection under continuous operation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.H. Gleick, H. Cooley, Freshwater scarcity. Annu. Rev. Environ. Resour. 46, 319–348 (2021). https://doi.org/10.1146/annurev-environ-012220-101319
- M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv. 2(2), e1500323 (2016). https://doi.org/10.1126/sciadv.1500323
- A.H. Cavusoglu, X. Chen, P. Gentine, O. Sahin, Potential for natural evaporation as a reliable renewable energy resource. Nat. Commun. 8, 617 (2017). https://doi.org/10.1038/s41467-017-00581-w
- C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation. Joule 3, 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
- Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi et al., Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 32(11), 1907061 (2020). https://doi.org/10.1002/adma.201907061
- X. Li, J. Li, J. Lu, N. Xu, C. Chen et al., Enhancement of interfacial solar vapor generation by environmental energy. Joule 2, 1331–1338 (2018). https://doi.org/10.1016/j.joule.2018.04.004
- H. Zhao, J. Zhou, Z. Yu, L. Chen, H. Zhan et al., Lotus-inspired evaporator with Janus wettability and bimodal pores for solar steam generation. Cell Rep. Phys. Sci. 1, 100074 (2020). https://doi.org/10.1016/j.xcrp.2020.100074
- P. Tao, G. Ni, C. Song, W. Shang, J. Wu et al., Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018). https://doi.org/10.1038/s41560-018-0260-7
- F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
- Y. Tian, Y. Li, X. Zhang, J. Jia, X. Yang et al., Breath-figure self-assembled low-cost Janus fabrics for highly efficient and stable solar desalination. Adv. Funct. Mater. 32(33), 2113258 (2022). https://doi.org/10.1002/adfm.202113258
- S. Meng, C. Tang, J. Jia, J. Yang, M. Yang et al., A wave-driven piezoelectric solar evaporator for water purification. Adv. Energy Mater. 12(21), 2200087 (2022). https://doi.org/10.1002/aenm.202200087
- Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14, 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
- Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou et al., Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13, 2087–2095 (2020). https://doi.org/10.1039/D0EE00399A
- Z. Xi, S. Li, L. Yu, H. Yan, M. Chen, All-day freshwater harvesting by selective solar absorption and radiative cooling. ACS Appl. Mater. Interfaces 14(22), 26255–26263 (2022). https://doi.org/10.1021/acsami.2c05409
- N. Li, L. Qiao, J. He, S. Wang, L. Yu et al., Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design. Adv. Funct. Mater. 31(7), 2008681 (2021). https://doi.org/10.1002/adfm.202008681
- Z. Liu, B. Wu, B. Zhu, Z. Chen, M. Zhu et al., Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight. Adv. Funct. Mater. 29(43), 1905485 (2019). https://doi.org/10.1002/adfm.201905485
- S. Gao, X. Dong, J. Huang, J. Dong, F.D. Maggio et al., Bioinspired soot-deposited Janus fabrics for sustainable solar steam generation with salt-rejection. Global Chall. 3, 1800117 (2019). https://doi.org/10.1002/gch2.201800117
- T. Gao, Y. Li, C. Chen, Z. Yang, Y. Kuang et al., Architecting a floatable, durable, and scalable steam generator: hydrophobic/hydrophilic bifunctional structure for solar evaporation enhancement. Small Methods 3, 1800176 (2019). https://doi.org/10.1002/smtd.201800176
- W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li et al., Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8(14), 1702884 (2018). https://doi.org/10.1002/aenm.201702884
- B. Gong, H. Yang, S. Wu, G. Xiong, J. Yan et al., Graphene array-based anti-fouling solar vapour gap membrane distillation with high energy efficiency. Nano Micro Lett. 11, 51 (2019). https://doi.org/10.1007/s40820-019-0281-1
- H. Zhang, H. Xie, W. Han, X. Yan, X. Liu et al., Graphene oxide–reduced graphene oxide Janus membrane for efficient solar generation of water vapor. ACS Appl. Nano Mater. 4(2), 1916–1923 (2021). https://doi.org/10.1021/acsanm.0c02765
- C. Li, D. Jiang, B. Huo, M. Ding, C. Huang et al., Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination. Nano Energy 60, 841–849 (2019). https://doi.org/10.1016/j.nanoen.2019.03.087
- J. Chen, J.L. Yin, B. Li, Z. Ye, D. Liu et al., Janus evaporators with self-recovering hydrophobicity for salt-rejecting interfacial solar desalination. ACS Nano 14(12), 17419–17427 (2020). https://doi.org/10.1021/acsnano.0c07677
- L. Qiao, N. Li, L. Luo, J. He, Y. Lin et al., Design of monolithic closed-cell polymer foams via controlled gas-foaming for high-performance solar-driven interfacial evaporation. J. Mater. Chem. A 9(15), 9692–9705 (2021). https://doi.org/10.1039/D1TA01032H
- X. Han, S. Ding, L. Fan, Y. Zhou, S. Wang, Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators. J. Mater. Chem. A 9(34), 18614–18622 (2021). https://doi.org/10.1039/D1TA04991G
- R. Hu, J. Zhang, Y. Kuang, K. Wang, X. Cai et al., A Janus evaporator with low tortuosity for long-term solar desalination. J. Mater. Chem. A 7(25), 15333–15340 (2019). https://doi.org/10.1039/C9TA01576K
- X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang et al., Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29(5), 1604031 (2017). https://doi.org/10.1002/adma.201604031
- X. Hu, J. Zhu, Tailoring aerogels and related 3D macroporous monoliths for interfacial solar vapor generation. Adv. Funct. Mater. 30(3), 1907234 (2019). https://doi.org/10.1002/adfm.201907234
- C. Xu, J. Zhang, M. Shahriari-Khalaji, M. Gao, X. Yu et al., Fibrous aerogels for solar vapor generation. Front. Chem. 10, 847030 (2022). https://doi.org/10.3389/fchem.2022.843070
- X. Meng, W. Xu, Z. Li, J. Yang, J. Zhao et al., Coupling of hierarchical Al2O3/TiO2 nanofibers into 3D photothermal aerogels toward simultaneous water evaporation and purification. Adv. Fiber Mater. 2, 93–104 (2020). https://doi.org/10.1007/s42765-020-00029-9
- S. Cao, P. Rathi, X. Wu, D. Ghim, Y. Jun et al., Cellulose nanomaterials in interfacial evaporators for desalination: a “natural” choice. Adv. Mater. 33(28), 2000922 (2021). https://doi.org/10.1002/adma.202000922
- T. Li, C. Chen, A.H. Brozena, J.Y. Zhu, L. Xu et al., Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021). https://doi.org/10.1038/s41586-020-03167-7
- M. Luo, M. Wang, H. Pang, R. Zhang, J. Huang et al., Super-assembled highly compressible and flexible cellulose aerogels for methylene blue removal from water. Chin. Chem. Lett. 32, 2091–2096 (2021). https://doi.org/10.1016/j.cclet.2021.03.024
- J. Zhang, S. Meng, W. Chen, Y. Cheng, M. Zhu, Continuous bacterial cellulose aerogel fibers with high strength. Acta Polym. Sin. 52, 69–77 (2021). https://doi.org/10.11777/j.issn1000-3304.2020.20143
- Y. Chen, L. Zhang, Y. Yang, B. Pang, W. Xu et al., Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv. Mater. 33(11), 2005569 (2021). https://doi.org/10.1002/adma.202005569
- S. Tanpichai, A. Boonmahitthisud, N. Soykeabkaew, L. Ongthip, Review of the recent developments in all-cellulose nanocomposites: properties and applications. Carbohydr. Polym. 286, 119192 (2022). https://doi.org/10.1016/j.carbpol.2022.119192
- V. Rahmanian, T. Pirzada, S. Wang, S.A. Khan, Cellulose-based hybrid aerogels: strategies toward design and functionality. Adv. Mater. 33(51), 2102892 (2021). https://doi.org/10.1002/adma.202102892
- K. Hu, Y. Liu, L. Zhou, Z. Xue, B. Peng et al., Delamination-free functional graphene surface by multiscale, conformal wrinkling. Adv. Funct. Mater. 30(34), 2003273 (2020). https://doi.org/10.1002/adfm.202003273
- J. Chen, S.J. Bull, Approaches to investigate delamination and interfacial toughness in coated systems: an overview. J. Phys. D Appl. Phys. 44, 034001 (2010). https://doi.org/10.1088/0022-3727/44/3/034001
- S. Menbari, A. Ashori, H. Rahmani, R. Bahrami, Viscoelastic response and interlaminar delamination resistance of epoxy/glass fiber/functionalized graphene oxide multi-scale composites. Polym. Test. 54, 186–195 (2016). https://doi.org/10.1016/j.polymertesting.2016.07.016
- J. Chen, F.K. Leung, M.C.A. Stuart, T. Kajitani, T. Fukushima et al., Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018). https://doi.org/10.1038/nchem.2887
- C. Shen, Diagnostic Molecular Biology (Academic Press, Salt Lake City UT, 2019), pp.87–116
- J. Zhang, Y. Cheng, C. Xu, M. Gao, M. Zhu et al., Hierarchical interface engineering for advanced nanocellulosic hybrid aerogels with high compressibility and multifunctionality. Adv. Funct. Mater. 31(19), 2009349 (2021). https://doi.org/10.1002/adfm.202009349
- Y. Cai, J. Shen, C. Yang, Y. Wan, H. Tang et al., Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 6(48), eabb5367 (2020). https://doi.org/10.1126/sciadv.abb5367
- J. Zhang, Y. Cheng, M. Tebyetekerwa, S. Meng, M. Zhu et al., “Stiff–soft” binary synergistic aerogels with superflexibility and high thermal insulation performance. Adv. Funct. Mater. 29(15), 1806407 (2019). https://doi.org/10.1002/adfm.201806407
- D.R. Kester, I.W. Duedall, D.N. Connors, R.M. Pytkowicz, Preparation of artificial seawater. Limnol. Oceanogr. 12(1), 176–179 (1967). https://doi.org/10.4319/lo.1967.12.1.0176
- W. Chen, P. Zhang, S. Yu, R. Zang, L. Xu et al., Nacre-inspired underwater superoleophobic films with high transparency and mechanical robustness. Nat. Protoc. 17, 2647–2667 (2022). https://doi.org/10.1038/s41596-022-00725-3
- T. Shimizu, K. Kanamori, A. Maeno, H. Kaji, C.M. Doherty et al., Transparent, highly insulating polyethyl-and polyvinylsilsesquioxane aerogels: mechanical improvements by vulcanization for ambient pressure drying. Chem. Mater. 28(19), 6860–6868 (2016). https://doi.org/10.1021/acs.chemmater.6b01936
- L. Wang, J. Feng, Y. Jiang, S. Zhang, L. Li et al., Facile fabrication of hydrophobic polyvinylpolysilsesquioxane aerogels with improved optical properties. J. Sol Gel Sci. Technol. 94, 88–97 (2020). https://doi.org/10.1007/s10971-019-05148-3
- S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Freezing as a path to build complex composites. Science 311, 515–518 (2006). https://doi.org/10.1126/science.1120937
- M. Liu, S. Wang, L. Jiang, Nature-inspired superwettability systems. Nat. Rev. Mater. 2, 17036 (2017). https://doi.org/10.1038/natrevmats.2017.36
- J. Bico, C. Tordeux, D. Quéré, Rough wetting. Europhys. Lett. 55, 214–220 (2001). https://doi.org/10.1209/epl/i2001-00402-x
- H. Li, A. Li, Z. Zhao, M. Li, Y. Song, Heterogeneous wettability surfaces: principle, construction, and applications. Small Struct. 1, 2000028 (2020). https://doi.org/10.1002/sstr.202000028
- L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009). https://doi.org/10.1002/jcc.21224
- F. Wang, L. Dou, J. Dai, Y. Li, L. Huang et al., In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew. Chem. Int. Ed. 59(21), 8285–8292 (2020). https://doi.org/10.1002/anie.202001679
- Q. Peng, Z. Shuai, Molecular mechanism of aggregation-induced emission. Aggregate 2, e91 (2021). https://doi.org/10.1002/agt2.91
- Y. Yang, S. Zhang, X. Zhang, L. Gao, Y. Wei et al., Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nat. Commun. 10, 3165 (2019). https://doi.org/10.1038/s41467-019-11144-6
- Y. Hu, L. Barbier, Z. Li, X. Ji, H.L. Blay et al., Hydrophilicity-hydrophobicity transformation, thermoresponsive morphomechanics, and crack multifurcation revealed by AIEgens in mechanically strong hydrogels. Adv. Mater. 33(39), 2101500 (2021). https://doi.org/10.1002/adma.202101500
- K. Xue, C. Wang, J. Wang, S. Lv, B. Hao et al., A sensitive and reliable organic fluorescent nanothermometer for noninvasive temperature sensing. J. Am. Chem. Soc. 143(35), 14147–14157 (2021). https://doi.org/10.1021/jacs.1c04597
- F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu et al., Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018). https://doi.org/10.1021/acsami.7b15125
- W. Xu, Y. Xing, J. Liu, H. Wu, Y. Cui et al., Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 13(7), 7930–7938 (2019). https://doi.org/10.1021/acsnano.9b02331
- T. Mei, J. Chen, Q. Zhao, D. Wang, Nanofibrous aerogels with vertically aligned microchannels for efficient solar steam generation. ACS Appl. Mater. Interfaces 12(38), 42686–42695 (2020). https://doi.org/10.1021/acsami.0c09518
- T. Li, H. Liu, X. Zhao, G. Chen, J. Dai et al., Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv. Funct. Mater. 28(16), 1707134 (2018). https://doi.org/10.1002/adfm.201707134
- B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10, 277–283 (2014). https://doi.org/10.1038/nnano.2014.248
- Z. Liu, H. Song, D. Ji, C. Li, A. Cheney et al., Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Global Chall. 1, 1600003 (2017). https://doi.org/10.1002/gch2.201600003
- R. Al-Oweini, H. El-Rassy, Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R’’Si(OR’)3 precursors. J. Mol. Struct. 919, 140–145 (2009). https://doi.org/10.1016/j.molstruc.2008.08.025
- H. Cheng, D. Xiao, Y. Tang, B. Wang, X. Feng et al., Sponges with Janus character from nanocellulose: preparation and applications in the treatment of hemorrhagic wounds. Adv. Healthcare Mater. 9(17), 1901796 (2020). https://doi.org/10.1002/adhm.201901796
- L. Zang, C. Finnerty, S. Zheng, K. Conway, L. Sun et al., Interfacial solar vapor generation for desalination and brine treatment: evaluating current strategies of solving scaling. Water Res. 198, 117135 (2021). https://doi.org/10.1016/j.watres.2021.117135
- Y. Zou, J. Zhao, J. Zhu, X. Guo, P. Chen et al., A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation. ACS Appl. Mater. Interfaces 13(6), 7617–7624 (2021). https://doi.org/10.1021/acsami.0c22584
- M. He, M.K. Alam, H. Liu, M. Zheng, J. Zhao et al., Textile waste derived cellulose based composite aerogel for efficient solar steam generation. Compos. Commun. 28, 100936 (2021). https://doi.org/10.1016/j.coco.2021.100936
- D. Zhang, M. Zhang, S. Chen, Q. Liang, N. Sheng et al., Scalable, self-cleaning and self-floating bi-layered bacterial cellulose biofoam for efficient solar evaporator with photocatalytic purification. Desalination 500, 114899 (2021). https://doi.org/10.1016/j.desal.2020.114899
- Q. Zhang, L. Li, B. Jiang, H. Zhang, N. He et al., Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl. Mater. Interfaces 12(25), 28179–28187 (2020). https://doi.org/10.1021/acsami.0c05806
- X. Wu, G.Y. Chen, W. Zhang, X. Liu, H. Xu, A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv. Sustain. Syst. 1(6), 1700046 (2017). https://doi.org/10.1002/adsu.201700046
- N. Xu, X. Hu, W. Xu, X. Li, L. Zhou et al., Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29(28), 1606762 (2017). https://doi.org/10.1002/adma.201606762
- Y. Liu, H. Liu, J. Xiong, A. Li, R. Wang et al., Bioinspired design of electrospun nanofiber based aerogel for efficient and cost-effective solar vapor generation. Chem. Eng. J. 427, 131539 (2022). https://doi.org/10.1016/j.cej.2021.131539
- C.S. Hu, H.J. Li, J.Y. Wang, A. Haleem, X.C. Li et al., Mushroom-like rGO/PAM hybrid cryogels with efficient solar-heating water evaporation. ACS Appl. Energy Mater. 2(10), 7554–7563 (2019). https://doi.org/10.1021/acsaem.9b01530
- Guidelines for drinking-water quality. (World Health Organization, 2017). https://www.who.int/publications/i/item/9789241549950
- Y.J. Lim, K. Goh, M. Kurihara, R. Wang, Seawater desalination by reverse osmosis: current development and future challenges in membrane fabrication–a review. J. Membr. Sci. 629, 119292 (2021). https://doi.org/10.1016/j.memsci.2021.119292
- Safe drinking-water from desalination. (World Health Organization, 2011). https://www.who.int/publications/i/item/WHO-HSE-WSH-11.03
- W. Zhao, H. Gong, Y. Song, B. Li, N. Xu et al., Hierarchically designed salt-resistant solar evaporator based on donnan effect for stable and high-performance brine treatment. Adv. Funct. Mater. 31(23), 2100025 (2021). https://doi.org/10.1002/adfm.202100025
- N. Xu, H. Zhang, Z. Lin, J. Li, G. Liu et al., A scalable fish-school inspired self-assembled p system for solar-powered water-solute separation. Natl. Sci. Rev. 8, nwab065 (2021). https://doi.org/10.1093/nsr/nwab065
- N. Xu, J. Li, Y. Wang, C. Fang, X. Li et al., A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci. Adv. 5(7), eaaw7013 (2019). https://doi.org/10.1126/sciadv.aaw7013
- X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32(34), 1908269 (2020). https://doi.org/10.1002/adma.201908269
References
P.H. Gleick, H. Cooley, Freshwater scarcity. Annu. Rev. Environ. Resour. 46, 319–348 (2021). https://doi.org/10.1146/annurev-environ-012220-101319
M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv. 2(2), e1500323 (2016). https://doi.org/10.1126/sciadv.1500323
A.H. Cavusoglu, X. Chen, P. Gentine, O. Sahin, Potential for natural evaporation as a reliable renewable energy resource. Nat. Commun. 8, 617 (2017). https://doi.org/10.1038/s41467-017-00581-w
C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation. Joule 3, 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi et al., Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 32(11), 1907061 (2020). https://doi.org/10.1002/adma.201907061
X. Li, J. Li, J. Lu, N. Xu, C. Chen et al., Enhancement of interfacial solar vapor generation by environmental energy. Joule 2, 1331–1338 (2018). https://doi.org/10.1016/j.joule.2018.04.004
H. Zhao, J. Zhou, Z. Yu, L. Chen, H. Zhan et al., Lotus-inspired evaporator with Janus wettability and bimodal pores for solar steam generation. Cell Rep. Phys. Sci. 1, 100074 (2020). https://doi.org/10.1016/j.xcrp.2020.100074
P. Tao, G. Ni, C. Song, W. Shang, J. Wu et al., Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018). https://doi.org/10.1038/s41560-018-0260-7
F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
Y. Tian, Y. Li, X. Zhang, J. Jia, X. Yang et al., Breath-figure self-assembled low-cost Janus fabrics for highly efficient and stable solar desalination. Adv. Funct. Mater. 32(33), 2113258 (2022). https://doi.org/10.1002/adfm.202113258
S. Meng, C. Tang, J. Jia, J. Yang, M. Yang et al., A wave-driven piezoelectric solar evaporator for water purification. Adv. Energy Mater. 12(21), 2200087 (2022). https://doi.org/10.1002/aenm.202200087
Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14, 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou et al., Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13, 2087–2095 (2020). https://doi.org/10.1039/D0EE00399A
Z. Xi, S. Li, L. Yu, H. Yan, M. Chen, All-day freshwater harvesting by selective solar absorption and radiative cooling. ACS Appl. Mater. Interfaces 14(22), 26255–26263 (2022). https://doi.org/10.1021/acsami.2c05409
N. Li, L. Qiao, J. He, S. Wang, L. Yu et al., Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design. Adv. Funct. Mater. 31(7), 2008681 (2021). https://doi.org/10.1002/adfm.202008681
Z. Liu, B. Wu, B. Zhu, Z. Chen, M. Zhu et al., Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight. Adv. Funct. Mater. 29(43), 1905485 (2019). https://doi.org/10.1002/adfm.201905485
S. Gao, X. Dong, J. Huang, J. Dong, F.D. Maggio et al., Bioinspired soot-deposited Janus fabrics for sustainable solar steam generation with salt-rejection. Global Chall. 3, 1800117 (2019). https://doi.org/10.1002/gch2.201800117
T. Gao, Y. Li, C. Chen, Z. Yang, Y. Kuang et al., Architecting a floatable, durable, and scalable steam generator: hydrophobic/hydrophilic bifunctional structure for solar evaporation enhancement. Small Methods 3, 1800176 (2019). https://doi.org/10.1002/smtd.201800176
W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li et al., Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8(14), 1702884 (2018). https://doi.org/10.1002/aenm.201702884
B. Gong, H. Yang, S. Wu, G. Xiong, J. Yan et al., Graphene array-based anti-fouling solar vapour gap membrane distillation with high energy efficiency. Nano Micro Lett. 11, 51 (2019). https://doi.org/10.1007/s40820-019-0281-1
H. Zhang, H. Xie, W. Han, X. Yan, X. Liu et al., Graphene oxide–reduced graphene oxide Janus membrane for efficient solar generation of water vapor. ACS Appl. Nano Mater. 4(2), 1916–1923 (2021). https://doi.org/10.1021/acsanm.0c02765
C. Li, D. Jiang, B. Huo, M. Ding, C. Huang et al., Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination. Nano Energy 60, 841–849 (2019). https://doi.org/10.1016/j.nanoen.2019.03.087
J. Chen, J.L. Yin, B. Li, Z. Ye, D. Liu et al., Janus evaporators with self-recovering hydrophobicity for salt-rejecting interfacial solar desalination. ACS Nano 14(12), 17419–17427 (2020). https://doi.org/10.1021/acsnano.0c07677
L. Qiao, N. Li, L. Luo, J. He, Y. Lin et al., Design of monolithic closed-cell polymer foams via controlled gas-foaming for high-performance solar-driven interfacial evaporation. J. Mater. Chem. A 9(15), 9692–9705 (2021). https://doi.org/10.1039/D1TA01032H
X. Han, S. Ding, L. Fan, Y. Zhou, S. Wang, Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators. J. Mater. Chem. A 9(34), 18614–18622 (2021). https://doi.org/10.1039/D1TA04991G
R. Hu, J. Zhang, Y. Kuang, K. Wang, X. Cai et al., A Janus evaporator with low tortuosity for long-term solar desalination. J. Mater. Chem. A 7(25), 15333–15340 (2019). https://doi.org/10.1039/C9TA01576K
X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang et al., Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29(5), 1604031 (2017). https://doi.org/10.1002/adma.201604031
X. Hu, J. Zhu, Tailoring aerogels and related 3D macroporous monoliths for interfacial solar vapor generation. Adv. Funct. Mater. 30(3), 1907234 (2019). https://doi.org/10.1002/adfm.201907234
C. Xu, J. Zhang, M. Shahriari-Khalaji, M. Gao, X. Yu et al., Fibrous aerogels for solar vapor generation. Front. Chem. 10, 847030 (2022). https://doi.org/10.3389/fchem.2022.843070
X. Meng, W. Xu, Z. Li, J. Yang, J. Zhao et al., Coupling of hierarchical Al2O3/TiO2 nanofibers into 3D photothermal aerogels toward simultaneous water evaporation and purification. Adv. Fiber Mater. 2, 93–104 (2020). https://doi.org/10.1007/s42765-020-00029-9
S. Cao, P. Rathi, X. Wu, D. Ghim, Y. Jun et al., Cellulose nanomaterials in interfacial evaporators for desalination: a “natural” choice. Adv. Mater. 33(28), 2000922 (2021). https://doi.org/10.1002/adma.202000922
T. Li, C. Chen, A.H. Brozena, J.Y. Zhu, L. Xu et al., Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021). https://doi.org/10.1038/s41586-020-03167-7
M. Luo, M. Wang, H. Pang, R. Zhang, J. Huang et al., Super-assembled highly compressible and flexible cellulose aerogels for methylene blue removal from water. Chin. Chem. Lett. 32, 2091–2096 (2021). https://doi.org/10.1016/j.cclet.2021.03.024
J. Zhang, S. Meng, W. Chen, Y. Cheng, M. Zhu, Continuous bacterial cellulose aerogel fibers with high strength. Acta Polym. Sin. 52, 69–77 (2021). https://doi.org/10.11777/j.issn1000-3304.2020.20143
Y. Chen, L. Zhang, Y. Yang, B. Pang, W. Xu et al., Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv. Mater. 33(11), 2005569 (2021). https://doi.org/10.1002/adma.202005569
S. Tanpichai, A. Boonmahitthisud, N. Soykeabkaew, L. Ongthip, Review of the recent developments in all-cellulose nanocomposites: properties and applications. Carbohydr. Polym. 286, 119192 (2022). https://doi.org/10.1016/j.carbpol.2022.119192
V. Rahmanian, T. Pirzada, S. Wang, S.A. Khan, Cellulose-based hybrid aerogels: strategies toward design and functionality. Adv. Mater. 33(51), 2102892 (2021). https://doi.org/10.1002/adma.202102892
K. Hu, Y. Liu, L. Zhou, Z. Xue, B. Peng et al., Delamination-free functional graphene surface by multiscale, conformal wrinkling. Adv. Funct. Mater. 30(34), 2003273 (2020). https://doi.org/10.1002/adfm.202003273
J. Chen, S.J. Bull, Approaches to investigate delamination and interfacial toughness in coated systems: an overview. J. Phys. D Appl. Phys. 44, 034001 (2010). https://doi.org/10.1088/0022-3727/44/3/034001
S. Menbari, A. Ashori, H. Rahmani, R. Bahrami, Viscoelastic response and interlaminar delamination resistance of epoxy/glass fiber/functionalized graphene oxide multi-scale composites. Polym. Test. 54, 186–195 (2016). https://doi.org/10.1016/j.polymertesting.2016.07.016
J. Chen, F.K. Leung, M.C.A. Stuart, T. Kajitani, T. Fukushima et al., Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018). https://doi.org/10.1038/nchem.2887
C. Shen, Diagnostic Molecular Biology (Academic Press, Salt Lake City UT, 2019), pp.87–116
J. Zhang, Y. Cheng, C. Xu, M. Gao, M. Zhu et al., Hierarchical interface engineering for advanced nanocellulosic hybrid aerogels with high compressibility and multifunctionality. Adv. Funct. Mater. 31(19), 2009349 (2021). https://doi.org/10.1002/adfm.202009349
Y. Cai, J. Shen, C. Yang, Y. Wan, H. Tang et al., Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 6(48), eabb5367 (2020). https://doi.org/10.1126/sciadv.abb5367
J. Zhang, Y. Cheng, M. Tebyetekerwa, S. Meng, M. Zhu et al., “Stiff–soft” binary synergistic aerogels with superflexibility and high thermal insulation performance. Adv. Funct. Mater. 29(15), 1806407 (2019). https://doi.org/10.1002/adfm.201806407
D.R. Kester, I.W. Duedall, D.N. Connors, R.M. Pytkowicz, Preparation of artificial seawater. Limnol. Oceanogr. 12(1), 176–179 (1967). https://doi.org/10.4319/lo.1967.12.1.0176
W. Chen, P. Zhang, S. Yu, R. Zang, L. Xu et al., Nacre-inspired underwater superoleophobic films with high transparency and mechanical robustness. Nat. Protoc. 17, 2647–2667 (2022). https://doi.org/10.1038/s41596-022-00725-3
T. Shimizu, K. Kanamori, A. Maeno, H. Kaji, C.M. Doherty et al., Transparent, highly insulating polyethyl-and polyvinylsilsesquioxane aerogels: mechanical improvements by vulcanization for ambient pressure drying. Chem. Mater. 28(19), 6860–6868 (2016). https://doi.org/10.1021/acs.chemmater.6b01936
L. Wang, J. Feng, Y. Jiang, S. Zhang, L. Li et al., Facile fabrication of hydrophobic polyvinylpolysilsesquioxane aerogels with improved optical properties. J. Sol Gel Sci. Technol. 94, 88–97 (2020). https://doi.org/10.1007/s10971-019-05148-3
S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Freezing as a path to build complex composites. Science 311, 515–518 (2006). https://doi.org/10.1126/science.1120937
M. Liu, S. Wang, L. Jiang, Nature-inspired superwettability systems. Nat. Rev. Mater. 2, 17036 (2017). https://doi.org/10.1038/natrevmats.2017.36
J. Bico, C. Tordeux, D. Quéré, Rough wetting. Europhys. Lett. 55, 214–220 (2001). https://doi.org/10.1209/epl/i2001-00402-x
H. Li, A. Li, Z. Zhao, M. Li, Y. Song, Heterogeneous wettability surfaces: principle, construction, and applications. Small Struct. 1, 2000028 (2020). https://doi.org/10.1002/sstr.202000028
L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009). https://doi.org/10.1002/jcc.21224
F. Wang, L. Dou, J. Dai, Y. Li, L. Huang et al., In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew. Chem. Int. Ed. 59(21), 8285–8292 (2020). https://doi.org/10.1002/anie.202001679
Q. Peng, Z. Shuai, Molecular mechanism of aggregation-induced emission. Aggregate 2, e91 (2021). https://doi.org/10.1002/agt2.91
Y. Yang, S. Zhang, X. Zhang, L. Gao, Y. Wei et al., Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nat. Commun. 10, 3165 (2019). https://doi.org/10.1038/s41467-019-11144-6
Y. Hu, L. Barbier, Z. Li, X. Ji, H.L. Blay et al., Hydrophilicity-hydrophobicity transformation, thermoresponsive morphomechanics, and crack multifurcation revealed by AIEgens in mechanically strong hydrogels. Adv. Mater. 33(39), 2101500 (2021). https://doi.org/10.1002/adma.202101500
K. Xue, C. Wang, J. Wang, S. Lv, B. Hao et al., A sensitive and reliable organic fluorescent nanothermometer for noninvasive temperature sensing. J. Am. Chem. Soc. 143(35), 14147–14157 (2021). https://doi.org/10.1021/jacs.1c04597
F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu et al., Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018). https://doi.org/10.1021/acsami.7b15125
W. Xu, Y. Xing, J. Liu, H. Wu, Y. Cui et al., Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 13(7), 7930–7938 (2019). https://doi.org/10.1021/acsnano.9b02331
T. Mei, J. Chen, Q. Zhao, D. Wang, Nanofibrous aerogels with vertically aligned microchannels for efficient solar steam generation. ACS Appl. Mater. Interfaces 12(38), 42686–42695 (2020). https://doi.org/10.1021/acsami.0c09518
T. Li, H. Liu, X. Zhao, G. Chen, J. Dai et al., Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv. Funct. Mater. 28(16), 1707134 (2018). https://doi.org/10.1002/adfm.201707134
B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10, 277–283 (2014). https://doi.org/10.1038/nnano.2014.248
Z. Liu, H. Song, D. Ji, C. Li, A. Cheney et al., Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Global Chall. 1, 1600003 (2017). https://doi.org/10.1002/gch2.201600003
R. Al-Oweini, H. El-Rassy, Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R’’Si(OR’)3 precursors. J. Mol. Struct. 919, 140–145 (2009). https://doi.org/10.1016/j.molstruc.2008.08.025
H. Cheng, D. Xiao, Y. Tang, B. Wang, X. Feng et al., Sponges with Janus character from nanocellulose: preparation and applications in the treatment of hemorrhagic wounds. Adv. Healthcare Mater. 9(17), 1901796 (2020). https://doi.org/10.1002/adhm.201901796
L. Zang, C. Finnerty, S. Zheng, K. Conway, L. Sun et al., Interfacial solar vapor generation for desalination and brine treatment: evaluating current strategies of solving scaling. Water Res. 198, 117135 (2021). https://doi.org/10.1016/j.watres.2021.117135
Y. Zou, J. Zhao, J. Zhu, X. Guo, P. Chen et al., A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation. ACS Appl. Mater. Interfaces 13(6), 7617–7624 (2021). https://doi.org/10.1021/acsami.0c22584
M. He, M.K. Alam, H. Liu, M. Zheng, J. Zhao et al., Textile waste derived cellulose based composite aerogel for efficient solar steam generation. Compos. Commun. 28, 100936 (2021). https://doi.org/10.1016/j.coco.2021.100936
D. Zhang, M. Zhang, S. Chen, Q. Liang, N. Sheng et al., Scalable, self-cleaning and self-floating bi-layered bacterial cellulose biofoam for efficient solar evaporator with photocatalytic purification. Desalination 500, 114899 (2021). https://doi.org/10.1016/j.desal.2020.114899
Q. Zhang, L. Li, B. Jiang, H. Zhang, N. He et al., Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl. Mater. Interfaces 12(25), 28179–28187 (2020). https://doi.org/10.1021/acsami.0c05806
X. Wu, G.Y. Chen, W. Zhang, X. Liu, H. Xu, A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv. Sustain. Syst. 1(6), 1700046 (2017). https://doi.org/10.1002/adsu.201700046
N. Xu, X. Hu, W. Xu, X. Li, L. Zhou et al., Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29(28), 1606762 (2017). https://doi.org/10.1002/adma.201606762
Y. Liu, H. Liu, J. Xiong, A. Li, R. Wang et al., Bioinspired design of electrospun nanofiber based aerogel for efficient and cost-effective solar vapor generation. Chem. Eng. J. 427, 131539 (2022). https://doi.org/10.1016/j.cej.2021.131539
C.S. Hu, H.J. Li, J.Y. Wang, A. Haleem, X.C. Li et al., Mushroom-like rGO/PAM hybrid cryogels with efficient solar-heating water evaporation. ACS Appl. Energy Mater. 2(10), 7554–7563 (2019). https://doi.org/10.1021/acsaem.9b01530
Guidelines for drinking-water quality. (World Health Organization, 2017). https://www.who.int/publications/i/item/9789241549950
Y.J. Lim, K. Goh, M. Kurihara, R. Wang, Seawater desalination by reverse osmosis: current development and future challenges in membrane fabrication–a review. J. Membr. Sci. 629, 119292 (2021). https://doi.org/10.1016/j.memsci.2021.119292
Safe drinking-water from desalination. (World Health Organization, 2011). https://www.who.int/publications/i/item/WHO-HSE-WSH-11.03
W. Zhao, H. Gong, Y. Song, B. Li, N. Xu et al., Hierarchically designed salt-resistant solar evaporator based on donnan effect for stable and high-performance brine treatment. Adv. Funct. Mater. 31(23), 2100025 (2021). https://doi.org/10.1002/adfm.202100025
N. Xu, H. Zhang, Z. Lin, J. Li, G. Liu et al., A scalable fish-school inspired self-assembled p system for solar-powered water-solute separation. Natl. Sci. Rev. 8, nwab065 (2021). https://doi.org/10.1093/nsr/nwab065
N. Xu, J. Li, Y. Wang, C. Fang, X. Li et al., A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci. Adv. 5(7), eaaw7013 (2019). https://doi.org/10.1126/sciadv.aaw7013
X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32(34), 1908269 (2020). https://doi.org/10.1002/adma.201908269