Machine Learning-Enhanced Flexible Mechanical Sensing
Corresponding Author: Zongyou Yin
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 55
Abstract
To realize a hyperconnected smart society with high productivity, advances in flexible sensing technology are highly needed. Nowadays, flexible sensing technology has witnessed improvements in both the hardware performances of sensor devices and the data processing capabilities of the device’s software. Significant research efforts have been devoted to improving materials, sensing mechanism, and configurations of flexible sensing systems in a quest to fulfill the requirements of future technology. Meanwhile, advanced data analysis methods are being developed to extract useful information from increasingly complicated data collected by a single sensor or network of sensors. Machine learning (ML) as an important branch of artificial intelligence can efficiently handle such complex data, which can be multi-dimensional and multi-faceted, thus providing a powerful tool for easy interpretation of sensing data. In this review, the fundamental working mechanisms and common types of flexible mechanical sensors are firstly presented. Then how ML-assisted data interpretation improves the applications of flexible mechanical sensors and other closely-related sensors in various areas is elaborated, which includes health monitoring, human–machine interfaces, object/surface recognition, pressure prediction, and human posture/motion identification. Finally, the advantages, challenges, and future perspectives associated with the fusion of flexible mechanical sensing technology and ML algorithms are discussed. These will give significant insights to enable the advancement of next-generation artificial flexible mechanical sensing.
Highlights:
1 The latest progress on the integration of flexible mechanical sensing platforms with machine learning (ML) is reviewed.
2 The advantages, challenges, and future perspectives of the application of ML to intelligent flexible mechanical sensing technology are discussed.
3 The fundamental working mechanisms and common types of flexible mechanical sensors are reviewed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.X. Zhang, Q.F. Shi, T.Y.Y. He, X.G. Guo, B.W. Dong et al., Artificial intelligence of toilet (ai-toilet) for an integrated health monitoring system (ihms) using smart triboelectric pressure sensors and image sensor. Nano Energy 90, 106517 (2021). https://doi.org/10.1016/j.nanoen.2021.106517
- Z.D. Sun, M.L. Zhu, Z.X. Zhang, Z.C. Chen, Q.F. Shi et al., Artificial intelligence of things (aiot) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator. Adv. Sci. 8(14), 2100230 (2021). https://doi.org/10.1002/advs.202100230
- Q.F. Shi, B.W. Dong, T.Y.Y. He, Z.D. Sun, J.X. Zhu et al., Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things. Infomat 2(6), 1131–1162 (2020). https://doi.org/10.1002/inf2.12122
- Y.P. Zang, F.J. Zhang, C.A. Di, D.B. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2(2), 140–156 (2015). https://doi.org/10.1039/c4mh00147h
- C. Pang, C. Lee, K.Y. Suh, Recent advances in flexible sensors for wearable and implantable devices. J. Appl. Polym. Sci. 130(3), 1429–1441 (2013). https://doi.org/10.1002/app.39461
- J.C. Kenry, C.T. Yeo, Lim, Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst. Nanoeng. 2, 16043 (2016). https://doi.org/10.1038/micronano.2016.43
- D. Choi, S. Jang, J.S. Kim, H.J. Kim, D.H. Kim et al., A highly sensitive tactile sensor using a pyramid-plug structure for detecting pressure, shear force, and torsion. Adv. Mater. Technol. 4(3), 1800284 (2019). https://doi.org/10.1002/admt.201800284
- O.A. Moses, L. Gao, H. Zhao, Z. Wang, M. Lawan Adam et al., 2d materials inks toward smart flexible electronics. Mater. Today 50, 116–148 (2021). https://doi.org/10.1016/j.mattod.2021.08.010
- D. Kim, J. Kwon, J. Jung, K. Kim, H. Lee et al., A transparent and flexible capacitive-force touch pad from high-aspect-ratio copper nanowires with enhanced oxidation resistance for applications in wearable electronics. Small Methods 2(7), 1800077 (2018). https://doi.org/10.1002/smtd.201800077
- K.K. Kim, I. Ha, P. Won, D.G. Seo, K.J. Cho et al., Transparent wearable three-dimensional touch by self-generated multiscale structure. Nat Commun. (2019). https://doi.org/10.1038/s41467-019-10736-6
- P. Won, J.J. Park, T. Lee, I. Ha, S. Han et al., Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett. 19(9), 6087–6096 (2019). https://doi.org/10.1021/acs.nanolett.9b02014
- P. Won, K.K. Kim, H. Kim, J.J. Park, I. Ha et al., Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33(19), 2002397 (2021). https://doi.org/10.1002/adma.202002397
- Y. Chu, J.W. Zhong, H.L. Liu, Y. Ma, N. Liu et al., Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Adv. Funct. Mater. 28(40), 1803413 (2018). https://doi.org/10.1002/adfm.201803413
- Y.S. Fang, Y.J. Zou, J. Xu, G.R. Chen, Y.H. Zhou et al., Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 33(41), 2104178 (2021). https://doi.org/10.1002/adma.202104178
- K.H. Huang, F. Tan, T.D. Wang, Y.J. Yang, A highly sensitive pressure-sensing array for blood pressure estimation assisted by machine-learning techniques. Sensors 19(4), 848 (2019). https://doi.org/10.3390/s19040848
- J. Ramirez, D. Rodriquez, F. Qiao, J. Warchall, J. Rye et al., Metallic nanoislands on graphene for monitoring swallowing activity in head and neck cancer patients. ACS Nano 12(6), 5913–5922 (2018). https://doi.org/10.1021/acsnano.8b02133
- B. Polat, L.L. Becerra, P.Y. Hsu, V. Kaipu, P.P. Mercier et al., Epidermal graphene sensors and machine learning for estimating swallowed volume. ACS Appl. Nano Mater. 4(8), 8126–8134 (2021). https://doi.org/10.1021/acsanm.1c01378
- J.H. Han, K.M. Bae, S.K. Hong, H. Park, J.H. Kwak et al., Machine learning-based self-powered acoustic sensor for speaker recognition. Nano Energy 53, 658–665 (2018). https://doi.org/10.1016/j.nanoen.2018.09.030
- H.S. Wang, S.K. Hong, J.H. Han, Y.H. Jung, H.K. Jeong et al., Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 7(7), eabe5683 (2021). https://doi.org/10.1126/sciadv.abe5683
- Z.W. Lin, G.Q. Zhang, X. Xiao, C. Au, Y.H. Zhou et al., A personalized acoustic interface for wearable human-machine interaction. Adv. Funct. Mater. 32(9), 2109430 (2022). https://doi.org/10.1002/adfm.202109430
- Q.F. Shi, Z.X. Zhang, T.Y.Y. He, Z.D. Sun, B.J. Wang et al., Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun. 11(1), 4609 (2020). https://doi.org/10.1038/s41467-020-18471-z
- H.C. Yao, W.D. Yang, W. Cheng, Y.J. Tan, H.H. See et al., Near-hysteresis-free soft tactile electronic skins for wearables and reliable machine learning. Proc. Natl. Acad. Sci. USA 117(41), 25352–25359 (2020). https://doi.org/10.1073/pnas.2010989117
- Z.H. Zhou, K. Chen, X.S. Li, S.L. Zhang, Y.F. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3(9), 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
- A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti et al., A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4(1), 54–63 (2021). https://doi.org/10.1038/s41928-020-00510-8
- A. Alagumalai, W. Shou, O. Mahian, M. Aghbashlo, M. Tabatabaei et al., Self-powered sensing systems with learning capability. Joule 6(7), 1475–1500 (2022). https://doi.org/10.1016/j.joule.2022.06.001
- M. Wang, T. Wang, Y.F. Luo, K. He, L. Pan et al., Fusing stretchable sensing technology with machine learning for human-machine interfaces. Adv. Funct. Mater. 31(39), 2008807 (2021). https://doi.org/10.1002/adfm.202008807
- Y.H. Jung, S.K. Hong, H.S. Wang, J.H. Han, T.X. Pham et al., Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 32(35), 1904020 (2020). https://doi.org/10.1002/adma.201904020
- S.H. Kwon, L. Dong, Flexible sensors and machine learning for heart monitoring. Nano Energy 102, 107632 (2022). https://doi.org/10.1016/j.nanoen.2022.107632
- M.L. Zhu, T.Y.Y. He, C.K. Lee, Technologies toward next generation human machine interfaces: from machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl. Phys. Rev. 7(3), 031305 (2020). https://doi.org/10.1063/5.0016485
- B. Shih, D. Shah, J.X. Li, T.G. Thuruthel, Y.L. Park et al., Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 5(41), aaz9239 (2020). https://doi.org/10.1126/scirobotics.aaz9239
- S. Gao, C. Zheng, Y. Zhao, Z. Wu, J. Li et al., Comparison of enhancement techniques based on neural networks for attenuated voice signal captured by flexible vibration sensors on throats. Nanotechnol. Precis. Eng. 5(1), 013001 (2022). https://doi.org/10.1063/10.0009187
- H.C. Yao, P.J. Li, W. Cheng, W.D. Yang, Z.J. Yang et al., Environment-resilient graphene vibrotactile sensitive sensors for machine intelligence. ACS Mater. Lett. 2(8), 986–992 (2020). https://doi.org/10.1021/acsmaterialslett.0c00160
- W.D. Li, K. Ke, J. Jia, J.H. Pu, X. Zhao et al., Recent advances in multiresponsive flexible sensors towards e-skin: a delicate design for versatile sensing. Small 18(7), 2103734 (2022). https://doi.org/10.1002/smll.202103734
- S. Sundaram, P. Kellnhofer, Y.Z. Li, J.Y. Zhu, A. Torralba et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 569(7758), 698 (2019). https://doi.org/10.1038/s41586-019-1234-z
- H. Jeong, J.A. Rogers, S. Xu, Continuous on-body sensing for the covid-19 pandemic: gaps and opportunities. Sci. Adv. 6(36), eabd4794 (2020). https://doi.org/10.1126/sciadv.abd4794
- J.H. Lee, J.S. Heo, Y.J. Kim, J. Eom, H.J. Jung et al., A behavior-learned cross-reactive sensor matrix for intelligent skin perception. Adv. Mater. 32(22), 2000969 (2020). https://doi.org/10.1002/adma.202000969
- H. Xu, W. Zheng, Y. Wang, D. Xu, N. Zhao et al., Flexible tensile strain-pressure sensor with an off-axis deformation-insensitivity. Nano Energy 107, 384 (2022). https://doi.org/10.1016/j.nanoen.2022.107384
- A.A. Barlian, W.T. Park, J.R. Mallon, A.J. Rastegar, B.L. Pruitt, Review: semiconductor piezoresistance for microsystems. Proc. IEEE 97(3), 513–552 (2009). https://doi.org/10.1109/Jproc.2009.2013612
- A.S. Fiorillo, C.D. Critello, S.A. Pullano, Theory, technology and applications of piezoresistive sensors: a review. Sensor Actuat. A-Phys. 281, 156–175 (2018). https://doi.org/10.1016/j.sna.2018.07.006
- F. Li, T. Shen, C. Wang, Y. Zhang, J. Qi et al., Recent advances in strain-induced piezoelectric and piezoresistive effect-engineered 2d semiconductors for adaptive electronics and optoelectronics. Nano-Micro Lett. 12(1), 106 (2020). https://doi.org/10.1007/s40820-020-00439-9
- S.C. Kim, K.D. Wise, Temperature sensitivity in silicon piezoresistive pressure transducers. IEEE Trans. Electron. Dev. 30(7), 802–810 (1983). https://doi.org/10.1109/T-Ed.1983.21213
- M. Akbar, M.A. Shanblatt, Temperature compensation of piezoresistive pressure sensors. Sensor Actuat. A-Phys. 33(3), 155–162 (1992). https://doi.org/10.1016/0924-4247(92)80161-U
- J. Oh, J.O. Kim, Y. Kim, H.B. Choi, J.C. Yang et al., Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size. Small 15(33), 1901744 (2019). https://doi.org/10.1002/smll.201901744
- M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26(11), 1678–1698 (2016). https://doi.org/10.1002/adfm.201504755
- D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014). https://doi.org/10.1038/nature14002
- A. de la Vega, J. Sumfleth, H. Wittich, K. Schulte, Time and temperature dependent piezoresistance of carbon nanofiller/polymer composites under dynamic load. J. Mater. Sci. 47(6), 2648–2657 (2012). https://doi.org/10.1007/s10853-011-6090-7
- W.P. Mason, Crystal Physics of Interaction Processes (Academic Press, Cambridge, 1966)
- R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 2008)
- D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, Abingdon-on-Thames, 2018)
- K.K. Kim, S. Hong, H.M. Cho, J. Lee, Y.D. Suh et al., Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 15(8), 5240–5247 (2015). https://doi.org/10.1021/acs.nanolett.5b01505
- H. Jeong, S. Park, J. Lee, P. Won, S.H. Ko et al., Fabrication of transparent conductive film with flexible silver nanowires using roll-to-roll slot-die coating and calendering and its application to resistive touch panel. Adv. Electron. Mater. 4(11), 1800243 (2018). https://doi.org/10.1002/aelm.201800243
- I. Hong, S. Lee, D. Kim, H. Cho, Y. Roh et al., Study on the oxidation of copper nanowire network electrodes for skin mountable flexible, stretchable and wearable electronics applications. Nanotechnology 30(7), 074001 (2019). https://doi.org/10.1088/1361-6528/aaf35c
- Z. Chen, T. Ming, M.M. Goulamaly, H.M. Yao, D. Nezich et al., Enhancing the sensitivity of percolative graphene films for flexible and transparent pressure sensor arrays. Adv. Funct. Mater. 26(28), 5061–5067 (2016). https://doi.org/10.1002/adfm.201503674
- T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296–301 (2011). https://doi.org/10.1038/Nnano.2011.36
- Y. Huang, X.Y. He, L. Gao, Y. Wang, C.X. Liu et al., Pressure-sensitive carbon black/graphene nanoplatelets-silicone rubber hybrid conductive composites based on a three-dimensional polydopamine-modified polyurethane sponge. J. Mater. Sci. Mater. El. 28(13), 9495–9504 (2017). https://doi.org/10.1007/s10854-017-6693-0
- S.H. Munsonmcgee, Estimation of the critical concentration in an anisotropic percolation network. Phys. Rev. B 43(4), 3331–3336 (1991). https://doi.org/10.1103/PhysRevB.43.3331
- D.S. Mclachlan, M. Blaszkiewicz, R.E. Newnham, Electrical-resistivity of composites. J. Am. Ceram. Soc. 73(8), 2187–2203 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb07576.x
- Y. Gao, G.H. Yu, T. Shu, Y.Q. Chen, W.Z. Yang et al., 3d-printed coaxial fibers for integrated wearable sensor skin. Adv. Mater. Technol. 4(10), 1900504 (2019). https://doi.org/10.1002/admt.201900504
- P.D. Feng, Y. Zheng, K. Li, W.W. Zhao, Highly stretchable and sensitive strain sensors with ginkgo-like sandwich architectures. Nanoscale Adv. 4(6), 1681–1693 (2022). https://doi.org/10.1039/d1na00817j
- C.C. Li, B.Z. Zhou, Y.F. Zhou, J.W. Ma, F.L. Zhou et al., Carbon nanotube coated fibrous tubes for highly stretchable strain sensors having high linearity. Nanomaterials 12(14), 2458 (2022). https://doi.org/10.3390/nano12142458
- Y. Gao, T. Xiao, Q. Li, Y. Chen, X.L. Qiu et al., Flexible microstructured pressure sensors: design, fabrication and applications. Nanotechnology 33(32), 322002 (2022). https://doi.org/10.1088/1361-6528/ac6812
- Y. Gao, M.D. Xu, G.H. Yu, J.P. Tan, F.Z. Xuan, Extrusion printing of carbon nanotube-coated elastomer fiber with microstructures for flexible pressure sensors. Sensor Actuat. A-Phys. 299, 111625 (2019). https://doi.org/10.1016/j.sna.2019.111625
- G. Yang, L. Cong, G.H. Yu, S. Jin, J.P. Tan et al., Laser micro-structured pressure sensor with modulated sensitivity for electronic skins. Nanotechnology 30(32), 325502 (2019). https://doi.org/10.1088/1361-6528/ab1a86
- J.A. Greenwood, Constriction resistance and the real area of contact. Br. J. Appl. Phys. 17(12), 1621 (1966). https://doi.org/10.1088/0508-3443/17/12/310
- T.T. Yang, X.M. Li, X. Jiang, S.Y. Lin, J.C. Lao et al., Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing. Mater. Horiz. 3(3), 248–255 (2016). https://doi.org/10.1039/c6mh00027d
- B. Park, J. Kim, D. Kang, C. Jeong, K.S. Kim et al., Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Adv. Mater. 28(37), 8130–8137 (2016). https://doi.org/10.1002/adma.201602425
- J. Lee, S. Kim, J. Lee, D. Yang, B.C. Park et al., A stretchable strain sensor based on a metal nanop thin film for human motion detection. Nanoscale 6(20), 11932–11939 (2014). https://doi.org/10.1039/c4nr03295k
- C.J. Lee, K.H. Park, C.J. Han, M.S. Oh, B. You et al., Crack-induced ag nanowire networks for transparent, stretchable, and highly sensitive strain sensors. Sci. Rep. 7, 7959 (2017). https://doi.org/10.1038/s41598-017-08484-y
- Y.Y. Xin, J. Zhou, X.Z. Xu, G. Lubineau, Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors. Nanoscale 9(30), 10897–10905 (2017). https://doi.org/10.1039/c7nr01626c
- S.J. Chen, R.Y. Wu, P. Li, Q. Li, Y. Gao et al., Acid-interface engineering of carbon nanotube/elastomers with enhanced sensitivity for stretchable strain sensors. ACS Appl. Mater. Interfaces 10(43), 37760–37766 (2018). https://doi.org/10.1021/acsami.8b16591
- Q. Li, K. Wang, Y. Gao, J.P. Tan, R.Y. Wu et al., Highly sensitive wearable strain sensor based on ultra-violet/ozone cracked carbon nanotube/elastomer. Appl. Phys. Lett. 112(26), 263501 (2018). https://doi.org/10.1063/1.5029391
- X.X. Gong, G.T. Fei, W.B. Fu, M. Fang, X.D. Gao et al., Flexible strain sensor with high performance based on pani/pdms films. Org. Electron. 47, 51–56 (2017). https://doi.org/10.1016/j.orgel.2017.05.001
- Y.X. Qin, H.C. Xu, S.Y. Li, D.D. Xu, W.H. Zheng et al., Dual-mode flexible capacitive sensor for proximity-tactile interface and wireless perception. IEEE Sens J. 22(11), 10446–10453 (2022). https://doi.org/10.1109/JSEN.2022.3171218
- H.C. Guo, Y.J. Tan, G. Chen, Z.F. Wang, G.J. Susanto et al., Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-19531-0
- B. Zhang, Z.M. Xiang, S.W. Zhu, Q.Y. Hu, Y.Z. Cao et al., Dual functional transparent film for proximity and pressure sensing. Nano Res. 7(10), 1488–1496 (2014). https://doi.org/10.1007/s12274-014-0510-3
- S.C. Chen, Y.F. Wang, L. Yang, F. Karouta, K. Sun, Electron-induced perpendicular graphene sheets embedded porous carbon film for flexible touch sensors. Nano-Micro Lett. 12(1), 136 (2020). https://doi.org/10.1007/s40820-020-00480-8
- G. Libo, M. Wang, W.D. Wang, H.C. Xu, Y.J. Wang et al., Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett. 13(1), 140 (2021). https://doi.org/10.1007/s40820-021-00664-w
- H.C. Xu, L.B. Gao, H.T. Zhao, H.L. Huang, Y.J. Wang et al., Stretchable and anti-impact iontronic pressure sensor with an ultrabroad linear range for biophysical monitoring and deep learning-aided knee rehabilitation. Microsyst. Nanoeng. 7(1), 92 (2021). https://doi.org/10.1038/s41378-021-00318-2
- B.Q. Nie, S.Y. Xing, J.D. Brandt, T.R. Pan, Droplet-based interfacial capacitive sensing. Lab. Chip 12(6), 1110–1118 (2012). https://doi.org/10.1039/c2lc21168h
- N.N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang et al., Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 11(1), 209 (2020). https://doi.org/10.1038/s41467-019-14054-9
- Q. Liu, Y. Liu, J. Shi, Z. Liu, Q. Wang et al., High-porosity foam-based iontronic pressure sensor with superhigh sensitivity of 9280 kPa−1. Nano-Micro Lett. 14(1), 21 (2022). https://doi.org/10.1007/s40820-021-00770-9
- Y. Chang, L. Wang, R.Y. Li, Z.C. Zhang, Q. Wang et al., First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv. Mater. 33(7), 2003464 (2021). https://doi.org/10.1002/adma.202003464
- Z.J. Zhu, R.Y. Li, T.R. Pan, Imperceptible epidermal-iontronic interface for wearable sensing. Adv. Mater. 30(6), 1705122 (2018). https://doi.org/10.1002/adma.201705122
- G. Zhu, C.F. Pan, W.X. Guo, C.Y. Chen, Y.S. Zhou et al., Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12(9), 4960–4965 (2012). https://doi.org/10.1021/nl302560k
- F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator! Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z
- L. Lin, Y.N. Xie, S.H. Wang, W.Z. Wu, S.M. Niu et al., Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7(9), 8266–8274 (2013). https://doi.org/10.1021/nn4037514
- Y. Wu, Y. Ma, H. Zheng, S.J.M. Ramakrishna, Design Piezoelectric materials for flexible and wearable electronics: a review. Mater. Des. 211, 110164 (2021). https://doi.org/10.1016/j.matdes.2021.110164
- C. Yan, W.L. Deng, L. Jin, T. Yang, Z.X. Wang et al., Epidermis-inspired ultrathin 3d cellular sensor array for self-powered biomedical monitoring. ACS Appl. Mater. Interfaces 10(48), 41070–41075 (2018). https://doi.org/10.1021/acsami.8b14514
- L. Persano, C. Dagdeviren, Y.W. Su, Y.H. Zhang, S. Girardo et al., High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013). https://doi.org/10.1038/ncomms2639
- J. Tao, M. Dong, L. Li, C.F. Wang, J. Li et al., Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsyst. Nanoeng. 6(1), 1–10 (2020). https://doi.org/10.1038/s41378-020-0171-1
- X. Chen, B. Assadsangabi, Y. Hsiang, K. Takahata, Enabling angioplasty-ready “smart” stents to detect in-stent restenosis and occlusion. Adv. Sci. 5(5), 1700560 (2018). https://doi.org/10.1002/advs.201700560
- H.C. Xu, L.B. Gao, Y.J. Wang, K. Cao, X.K. Hu et al., Flexible waterproof piezoresistive pressure sensors with wide linear working range based on conductive fabrics. Nano-Micro Lett. 12(1), 159 (2020). https://doi.org/10.1007/s40820-020-00498-y
- E. Roh, B.U. Hwang, D. Kim, B.Y. Kim, N.E. Lee, Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9(6), 6252–6261 (2015). https://doi.org/10.1021/acsnano.5b01613
- S. Wang, Y.L. Fang, H. He, L. Zhang, C.A. Li et al., Wearable stretchable dry and self-adhesive strain sensors with conformal contact to skin for high-quality motion monitoring. Adv. Funct. Mater. 31(5), 2007495 (2021). https://doi.org/10.1002/adfm.202007495
- Y.H. Liu, J.J.S. Norton, R. Qazi, Z.N. Zou, K.R. Ammann et al., Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci. Adv. 2(11), e1601185 (2016). https://doi.org/10.1126/sciadv.1601185
- S. Lee, J. Kim, I. Yun, G.Y. Bae, D. Kim et al., An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition. Nat. Commun. 10, 2468 (2019). https://doi.org/10.1038/s41467-019-10465-w
- M.L. Liu, Z.H. Zeng, H. Xu, Y.Z. Liao, L.M. Zhou et al., Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring. Ultrasonics 78, 166–174 (2017). https://doi.org/10.1016/j.ultras.2017.03.007
- W.N. Xiong, C. Zhu, D.L. Guo, C. Hou, Z.X. Yang et al., Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano Energy 90, 106550 (2021). https://doi.org/10.1016/j.nanoen.2021.106550
- S.M. Won, H.L. Wang, B.H. Kim, K. Lee, H. Jang et al., Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 13(10), 10972–10979 (2019). https://doi.org/10.1021/acsnano.9b02030
- S. Gong, W. Schwalb, Y.W. Wang, Y. Chen, Y. Tang et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014). https://doi.org/10.1038/ncomms4132
- K.Y. Shin, J.S. Lee, J. Jang, Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring. Nano Energy 22, 95–104 (2016). https://doi.org/10.1016/j.nanoen.2016.02.012
- Y. Gao, G.H. Yu, J.P. Tan, F.Z. Xuan, Sandpaper-molded wearable pressure sensor for electronic skins. Sensor Actuat. A-Phys. 280, 205–209 (2018). https://doi.org/10.1016/j.sna.2018.07.048
- Y. Lee, J. Park, S. Cho, Y.E. Shin, H. Lee et al., Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 12(4), 4045–4054 (2018). https://doi.org/10.1021/acsnano.8b01805
- A.H.A. Razak, A. Zayegh, R.K. Begg, Y. Wahab, Foot plantar pressure measurement system: a review. Sensors 12(7), 9884–9912 (2012). https://doi.org/10.3390/s120709884
- L.J. Pan, A. Chortos, G.H. Yu, Y.Q. Wang, S. Isaacson et al., An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5, 3002 (2014). https://doi.org/10.1038/ncomms4002
- L.B. Gao, Y.J. Wang, X.K. Hu, W.Z. Zhou, K. Cao et al., Cellular carbon-film-based flexible sensor and waterproof supercapacitors. ACS Appl. Mater. Interfaces 11(29), 26288–26297 (2019). https://doi.org/10.1021/acsami.9b09438
- L.B. Gao, K. Cao, X.K. Hu, R. Xiao, B. Gan et al., Nano electromechanical approach for flexible piezoresistive sensor. Appl. Mater. Today 18, 100475 (2020). https://doi.org/10.1016/j.apmt.2019.100475
- L.B. Gao, N.J. Zhao, H.C. Xu, X.K. Hu, D.D. Xu et al., Flexible pressure sensor with wide linear sensing range for human-machine interaction. IEEE Trans. Electron. Dev. 69(7), 3901–3907 (2022). https://doi.org/10.1109/Ted.2022.3173916
- L.B. Gao, Y. Han, J.U. Surjadi, K. Cao, W.Z. Zhou et al., Magnetically induced micropillar arrays for an ultrasensitive flexible sensor with a wireless recharging system. Sci. China Mater. 64(8), 1977–1988 (2021). https://doi.org/10.1007/s40843-020-1637-9
- Y.J. Wang, X. Li, S.F. Fan, X.B. Feng, K. Cao et al., Three-dimensional stretchable microelectronics by projection microstereolithography (PμSL). ACS Appl. Mater. Interfaces 13(7), 8901–8908 (2021). https://doi.org/10.1021/acsami.0c20162
- C.-Z. Hang, X.-F. Zhao, S.-Y. Xi, Y.-H. Shang, K.-P. Yuan et al., Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy 76, 105064 (2020). https://doi.org/10.1016/j.nanoen.2020.105064
- J. Eom, R. Jaisutti, H. Lee, W. Lee, J.S. Heo et al., Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl. Mater. Interfaces 9(11), 10190–10197 (2017). https://doi.org/10.1021/acsami.7b01771
- M. Wang, Z. Yan, T. Wang, P.Q. Cai, S.Y. Gao et al., Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3(9), 563 (2020). https://doi.org/10.1038/s41928-020-0422-z
- H. Zhang, D. Liu, J.H. Lee, H.M. Chen, E. Kim et al., Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors. Nano-Micro Lett. 13(1), 122 (2021). https://doi.org/10.1007/s40820-021-00615-5
- X. Wang, X.H. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13(1), 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
- Z.K. Liu, T.X. Zhu, J.R. Wang, Z.J. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: Pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
- Y. Wang, L. Wang, T.T. Yang, X. Li, X.B. Zang et al., Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24(29), 4666–4670 (2014). https://doi.org/10.1002/adfm.201400379
- S.Q. Liu, R.M. Zheng, S. Chen, Y.H. Wu, H.Z. Liu et al., A compliant, self-adhesive and self-healing wearable hydrogel as epidermal strain sensor. J. Mater. Chem. C 6(15), 4183–4190 (2018). https://doi.org/10.1039/c8tc00157j
- N. Qaiser, F. Al-Modaf, S.M. Khan, S.F. Shaikh, N. El-Atab et al., A robust wearable point-of-care cnt-based strain sensor for wirelessly monitoring throat-related illnesses. Adv. Funct. Mater. 31(29), 2103375 (2021). https://doi.org/10.1002/adfm.202103375
- T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
- C.Y. Yan, J.X. Wang, W.B. Kang, M.Q. Cui, X. Wang et al., Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014). https://doi.org/10.1002/adma.201304742
- M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014). https://doi.org/10.1021/nn501204t
- Z.C. Yan, T.S. Pan, D.K. Wang, J.C. Li, L. Jin et al., Stretchable micromotion sensor with enhanced sensitivity using serpentine layout. Acs Appl Mater Inter. 11(13), 12261–12271 (2019). https://doi.org/10.1021/acsami.8b22613
- Y. Jiang, Z.Y. Liu, N. Matsuhisa, D.P. Qi, W.R. Leow et al., Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv Mater. 30(12), 1706589 (2018). https://doi.org/10.1002/adma.201706589
- J. Rostami, P.W. Tse, M.D. Yuan, Detection of broken wires in elevator wire ropes with ultrasonic guided waves and tone-burst wavelet. Struct. Health Monit. 19(2), 481–494 (2020). https://doi.org/10.1177/1475921719855915
- A. Awwad, M. Yahyia, L. Albasha, M.M. Mortula, T. Ali, Communication network for ultrasonic acoustic water leakage detectors. IEEE Access. 8, 29954–29964 (2020). https://doi.org/10.1109/Access.2020.2972648
- Z.W. Lin, C.C. Sun, G.Q. Zhang, E.D. Fan, Z.H. Zhou et al., Flexible triboelectric nanogenerator toward ultrahigh-frequency vibration sensing. Nano Res. 15, 7484–7491 (2022). https://doi.org/10.1007/s12274-022-4363-x
- X.L. Chen, Q. Zeng, J.Y. Shao, S. Li, X.M. Li et al., Channel-crack-designed suspended sensing membrane as a fully flexible vibration sensor with high sensitivity and dynamic range. ACS Appl. Mater. Interfaces 13(29), 34637–34647 (2021). https://doi.org/10.1021/acsami.1c09963
- Q.L. Wang, P. Xiao, W. Zhou, Y. Liang, G.Q. Yin et al., Bioinspired adaptive, elastic, and conductive graphene structured thin-films achieving high-efficiency underwater detection and vibration perception. Nano-Micro Lett. 14(1), 62 (2022). https://doi.org/10.1007/s40820-022-00799-4
- K. Zhou, C. Zhang, Z.Y. Xiong, H.Y. Chen, T. Li et al., Template-directed growth of hierarchical mof hybrid arrays for tactile sensor. Adv. Funct. Mater. 30(38), 2001296 (2020). https://doi.org/10.1002/adfm.202001296
- Z. Liu, S. Zhang, Y.M. Jin, H. Ouyang, Y. Zou et al., Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring. Semicond. Sci. Tech. 32(6), 064004 (2017). https://doi.org/10.1088/1361-6641/aa68d1
- Z. Zhang, Q.L. Liao, X.Q. Yan, Z.L. Wang, W.D. Wang et al., Functional nanogenerators as vibration sensors enhanced by piezotronic effects. Nano Res. 7(2), 190–198 (2014). https://doi.org/10.1007/s12274-013-0386-7
- Y.F. Liu, Q. Liu, Y.Q. Li, P. Huang, J.Y. Yao et al., Spider-inspired ultrasensitive flexible vibration sensor for multifunctional sensing. ACS Appl. Mater. Interfaces 12(27), 30871–30881 (2020). https://doi.org/10.1021/acsami.0c08884
- K. Lee, X.Y. Ni, J.Y. Lee, H. Arafa, D.J. Pe et al., Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat. Biomed. Eng. 4(2), 148–158 (2020). https://doi.org/10.1038/s41551-019-0480-6
- J.H. Han, J.H. Kwak, D.J. Joe, S.K. Hong, H.S. Wang et al., Basilar membrane-inspired self-powered acoustic sensor enabled by highly sensitive multi tunable frequency band. Nano Energy 53, 198–205 (2018). https://doi.org/10.1016/j.nanoen.2018.08.053
- Y.Z. Liao, F. Duan, H.T. Zhang, Y. Lu, Z.H. Zeng et al., Ultrafast response of spray-on nanocomposite piezoresistive sensors to broadband ultrasound. Carbon 143, 743–751 (2019). https://doi.org/10.1016/j.carbon.2018.11.074
- F. Duan, Y.Z. Liao, Z.H. Zeng, H. Jin, L.M. Zhou et al., Graphene-based nanocomposite strain sensor response to ultrasonic guided waves. Compos. Sci. Technol. 174, 42–49 (2019). https://doi.org/10.1016/j.compscitech.2019.02.011
- Y.H. Li, Y.Z. Liao, Z.Q. Su, Graphene-functionalized polymer composites for self-sensing of ultrasonic waves: an initiative towards “sensor-free” structural health monitoring. Compos. Sci. Technol. 168, 203–213 (2018). https://doi.org/10.1016/j.compscitech.2018.09.021
- S. Kang, S. Cho, R. Shanker, H. Lee, J. Park et al., Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Sci. Adv. 4(8), eaas8772 (2018). https://doi.org/10.1126/sciadv.aas8772
- Y. Xu, F. Jiang, S. Newbern, A. Huang, C.M. Ho et al., Flexible shear-stress sensor skin and its application to unmanned aerial vehicles. Sensor Actuat. A-dPhys. 105(3), 321–329 (2003). https://doi.org/10.1016/S0924-4247(03)00230-9
- Y. Xu, Y.C. Tai, A. Huang, C.M. Ho, Ic-integrated flexible shear-stress sensor skin. J. Microelectromech. Syst. 12(5), 740–747 (2003). https://doi.org/10.1109/Jmems.2003.815831
- F.K. Jiang, G.B. Lee, Y.C. Tai, C.M. Ho, A flexible micromachine-based shear-stress sensor array and its application to separation-point detection. Sensor Actuat. A-Phys. 79(3), 194–203 (2000). https://doi.org/10.1016/S0924-4247(99)00277-0
- J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad et al., Flexible shear sensor based on embedded optoelectronic components. IEEE Photon. Techn. Lett. 23(12), 771–773 (2011). https://doi.org/10.1109/Lpt.2011.2134844
- H.Y. Yu, L.S. Ai, M. Rouhanizadeh, D. Patel, E.S. Kim et al., Flexible polymer sensors for in vivo intravascular shear stress analysis. J. Microelectromech. Syst. 17(5), 1178–1186 (2008). https://doi.org/10.1109/JMEMS.2008.927749
- M.Y. Xie, Y. Zhang, M.J. Krasny, C. Bowen, H. Khanbareh et al., Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic-polymer composites. Energ. Environ. Sci. 11(10), 2919–2927 (2018). https://doi.org/10.1039/c8ee01551a
- E.-S. Hwang, J.-H. Seo, Y.-J. Kim, A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics. J. Microelectromech. Syst. 16(3), 556–563 (2007). https://doi.org/10.1109/JMEMS.2007.896716
- H.K. Lee, J. Chung, S.I. Chang, E. Yoon, Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors. J. Microelectromech. Syst. 17(4), 934–942 (2008). https://doi.org/10.1109/JMEMS.2008.921727
- J.Z. Yin, V.J. Santos, J.D. Posner, Bioinspired flexible microfluidic shear force sensor skin. Sensor Actuat. A-Phys. 264, 289–297 (2017). https://doi.org/10.1016/j.sna.2017.08.001
- C.H. Mu, Y.Q. Song, W.T. Huang, A. Ran, R.J. Sun et al., Flexible normal-tangential force sensor with opposite resistance responding for highly sensitive artificial skin. Adv. Funct. Mater. 28(18), 1707503 (2018). https://doi.org/10.1002/adfm.201707503
- J. Park, Y. Lee, J. Hong, Y. Lee, M. Ha et al., Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 8(12), 12020–12029 (2014). https://doi.org/10.1021/nn505953t
- S. Pyo, J.I. Lee, M.O. Kim, H.K. Lee, J. Kim, Polymer-based flexible and multi-directional tactile sensor with multiple nicr piezoresistors. Micro Nano Syst. Lett. 7(1), 5 (2019). https://doi.org/10.1186/s40486-019-0085-6
- C. Pang, G.Y. Lee, T.I. Kim, S.M. Kim, H.N. Kim et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11(9), 795–801 (2012). https://doi.org/10.1038/Nmat3380
- C.M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos et al., A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 3(24), aau6914 (2018). https://doi.org/10.1126/scirobotics.aau6914
- F. Yuan, W.H. Wang, S. Liu, J.Y. Zhou, S. Wang et al., A self-powered three-dimensional integrated e-skin for multiple stimuli recognition. Chem. Eng. J. 451, 138522 (2023). https://doi.org/10.1016/j.cej.2022.138522
- H.T. Chen, Y. Song, H. Guo, L.M. Miao, X.X. Chen et al., Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection. Nano Energy 51, 496–503 (2018). https://doi.org/10.1016/j.nanoen.2018.07.001
- Z.Y. Wang, T.Z. Bu, Y.Y. Li, D.Y. Wei, B. Tao et al., Multidimensional force sensors based on triboelectric nanogenerators for electronic skin. ACS Appl. Mater. Interfaces 13(47), 56320–56328 (2021). https://doi.org/10.1021/acsami.1c17506
- Y.C. Yan, Z. Hu, Z.B. Yang, W.Z. Yuan, C.Y. Song et al., Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 6(51), eabc8801 (2021). https://doi.org/10.1126/scirobotics.abc8801
- J. Park, M. Kim, Y. Lee, H.S. Lee, H. Ko, Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 1(9), e1500661 (2015). https://doi.org/10.1126/sciadv.1500661
- J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, P. Van Daele et al., Embedded flexible optical shear sensor. IEEE Sensors (2010). https://doi.org/10.1109/Icsens.2010.5690919
- K.K. Kim, I. Ha, P. Won, D.G. Seo, K.J. Cho et al., Transparent wearable three-dimensional touch by self-generated multiscale structure. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-10736-6
- H.B. Liu, H.C. Xiang, Y. Wang, Z.J. Li, L.W. Qian et al., A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper. ACS Appl. Mater. Interfaces 11(43), 40613–40619 (2019). https://doi.org/10.1021/acsami.9b13349
- Y.Y. Lu, K.C. Xu, L.S. Zhang, M. Deguchi, H. Shishido et al., Multimodal plant healthcare flexible sensor system. ACS Nano 14(9), 10966–10975 (2020). https://doi.org/10.1021/acsnano.0c03757
- I. You, D.G. Mackanic, N. Matsuhisa, J. Kang, J. Kwon et al., Artificial multimodal receptors based on ion relaxation dynamics. Science 370(6519), 961 (2020). https://doi.org/10.1126/science.aba5132
- M. Cai, Z.D. Jiao, S. Nie, C.J. Wang, J. Zou et al., A multifunctional electronic skin based on patterned metal films for tactile sensing with a broad linear response range. Sci. Adv. 7(52), eabl8313 (2021). https://doi.org/10.1126/sciadv.abl8313
- Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3d porous crumpled mxene spheres as efficient gas and pressure sensing material for transient all-mxene sensors. Nano-Micro Lett. 14(1), 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
- R.X. Yang, W.Q. Zhang, N. Tiwari, H. Yan, T.J. Li et al., Multimodal sensors with decoupled sensing mechanisms. Adv. Sci. 9(26), 202202470 (2022). https://doi.org/10.1002/advs.202202470
- F.Y. Cui, Y. Yue, Y. Zhang, Z.M. Zhang, H.S. Zhou, Advancing biosensors with machine learning. ACS Sensors 5(11), 3346–3364 (2020). https://doi.org/10.1021/acssensors.0c01424
- Y. Fang, J. Xu, X. Xiao, Y. Zou, X. Zhao et al., A deep-learning assisted on-mask sensor network for adaptive respiratory monitoring. Adv. Mater. (2022). https://doi.org/10.1002/adma.202200252
- Z.K. Zeng, Z. Huang, K.M. Leng, W.X. Han, H. Niu et al., Nonintrusive monitoring of mental fatigue status using epidermal electronic systems and machine-learning algorithms. ACS Sensors 5(5), 1305–1313 (2020). https://doi.org/10.1021/acssensors.9b02451
- N. Bokka, V. Selamneni, P. Sahatiya, A water destructible SnS2 QD/PVA film based transient multifunctional sensor and machine learning assisted stimulus identification for non-invasive personal care diagnostics. Mater. Adv. 1(8), 2818–2830 (2020). https://doi.org/10.1039/d0ma00573h
- T. Kim, Y. Shin, K. Kang, K. Kim, G. Kim et al., Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces. Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-33457-9
- Y. Long, P.S. He, R.X. Xu, T. Hayasaka, Z.C. Shao et al., Molybdenum-carbide-graphene composites for paper-based strain and acoustic pressure sensors. Carbon 157, 594–601 (2020). https://doi.org/10.1016/j.carbon.2019.10.083
- Y.H. Wang, T.Y. Tang, Y. Xu, Y.Z. Bai, L. Yin et al., All-weather, natural silent speech recognition via machine-learning-assisted tattoo-like electronics. Npj Flex. Electron. 5(1), 20 (2021). https://doi.org/10.1038/s41528-021-00119-7
- F. Wen, Z.D. Sun, T.Y.Y. He, Q.F. Shi, M.L. Zhu et al., Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in Vr/Ar applications. Adv. Sci. 7(14), 2000261 (2020). https://doi.org/10.1002/advs.202000261
- S. Oh, J.I. Cho, B.H. Lee, S. Seo, J.H. Lee et al., Flexible artificial Si–In–Zn–O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Sci. Adv. 7(44), eabg9450 (2021). https://doi.org/10.1126/sciadv.abg9450
- K.K. Kim, I. Ha, M. Kim, J. Choi, P. Won et al., A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11, 2149 (2020). https://doi.org/10.1038/s41467-020-16040-y
- P.C. Tan, X. Han, Y. Zou, X.C. Qu, J.T. Xue et al., Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input. Adv. Mater. 34(21), 2200793 (2022). https://doi.org/10.1002/adma.202200793
- T. Jin, Z.D. Sun, L. Li, Q. Zhang, M.L. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11(1), 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
- G.Z. Li, S.Q. Liu, L.Q. Wang, R. Zhu, Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 5(49), eabc8134 (2020). https://doi.org/10.1126/scirobotics.abc8134
- S. Chun, W. Son, H. Kim, S.K. Lim, C. Pang et al., Self-powered pressure- and vibration-sensitive tactile sensors for learning technique-based neural finger skin. Nano Lett. 19(5), 3305–3312 (2019). https://doi.org/10.1021/acs.nanolett.9b00922
- S. Chun, J.S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4(6), 429 (2021). https://doi.org/10.1038/s41928-021-00585-x
- G.H. Lee, J.K. Park, J. Byun, J.C. Yang, S.Y. Kwon et al., Parallel signal processing of a wireless pressure-sensing platform combined with machine-learning-based cognition, inspired by the human somatosensory system. Adv. Mater. 32(8), 1906269 (2020). https://doi.org/10.1002/adma.201906269
- K. Bae, J. Jeong, J. Choi, S. Pyo, J. Kim, Large-area, crosstalk-free, flexible tactile sensor matrix pixelated by mesh layers. ACS Appl. Mater. Interfaces 13(10), 12259–12267 (2021). https://doi.org/10.1021/acsami.0c21671
- K.S. Sohn, J. Chung, M.Y. Cho, S. Timilsina, W.B. Park et al., An extremely simple macroscale electronic skin realized by deep machine learning. Sci. Rep. 7, 11061 (2017). https://doi.org/10.1038/s41598-017-11663-6
- J.W. Lee, J. Chung, M.Y. Cho, S. Timilsina, K. Sohn et al., Deep-learning technique to convert a crude piezoresistive carbon nanotube-ecoflex composite sheet into a smart, portable, disposable, and extremely flexible keypad. ACS Appl. Mater. Interfaces 10(24), 20862–20868 (2018). https://doi.org/10.1021/acsami.8b04914
- Y.Y. Luo, Y.Z. Li, P. Sharma, W. Shou, K. Wu et al., Learning human-environment interactions using conformal tactile textiles. Nat. Electron. 4(3), 193 (2021). https://doi.org/10.1038/s41928-021-00558-0
- G. Loke, T. Khudiyev, B. Wang, S. Fu, S. Payra et al., Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12(1), 3317 (2021). https://doi.org/10.1038/s41467-021-23628-5
- H.J. Lee, J.C. Yang, J. Choi, J. Kim, G.S. Lee et al., Hetero-dimensional 2D Ti3C2Tx Mxene and 1D graphene nanoribbon hybrids for machine learning-assisted pressure sensors. ACS Nano 15(6), 10347–10356 (2021). https://doi.org/10.1021/acsnano.1c02567
- H. Qiu, M.K. Qiu, Z.H. Lu, Selective encryption on ecg data in body sensor network based on supervised machine learning. Inform. Fusion. 55, 59–67 (2020). https://doi.org/10.1016/j.inffus.2019.07.012
- H.C. Liu, W. Dong, Y.F. Li, F.Q. Li, J.J. Geng et al., An epidermal semg tattoo-like patch as a new human-machine interface for patients with loss of voice. Microsyst. Nanoeng. 6(1), 16 (2020). https://doi.org/10.1038/s41378-019-0127-5
- Y.X. Peng, J.X. Wang, K. Pang, W.M. Liu, J. Meng et al., A physiology-based flexible strap sensor for gesture recognition by sensing tendon deformation. IEEE Sens. J. 21(7), 9449–9456 (2021). https://doi.org/10.1109/sen.2021.3054562
- J.M. Pan, Y.D. Li, Y.X. Luo, X.Y. Zhang, X.H. Wang et al., Hybrid-flexible bimodal sensing wearable glove system for complex hand gesture recognition. ACS Sensors 6(11), 4156–4166 (2021). https://doi.org/10.1021/acssensors.1c01698
- J. Hughes, A. Spielberg, M. Chounlakone, G. Chang, W. Matusik et al., A simple, inexpensive, wearable glove with hybrid resistive-pressure sensors for computational sensing, proprioception, and task identification. Adv. Intell. Syst. Ger. 2(6), 2000002 (2020). https://doi.org/10.1002/aisy.202000002
- C.M. Oddo, M. Controzzi, L. Beccai, C. Cipriani, M.C. Carrozza, Roughness encoding for discrimination of surfaces in artificial active-touch. IEEE Trans. Robot. 27(3), 522–533 (2011). https://doi.org/10.1109/Tro.2011.2116930
- N. Jamali, C. Sammut, Majority voting: Material classification by tactile sensing using surface texture. IEEE Trans. Robot. 27(3), 508–521 (2011). https://doi.org/10.1109/Tro.2011.2127110
- J.A. Fishel, G.E. Loeb, Bayesian exploration for intelligent identification of textures. Front. Neurorobot. 6, 4 (2012). https://doi.org/10.3389/fnbot.2012.00004
- Z.K. Yi, Y.L. Zhang, J. Peters, Bioinspired tactile sensor for surface roughness discrimination. Sensor Actuat. A-Phys. 255, 46–53 (2017). https://doi.org/10.1016/j.sna.2016.12.021
- M. Jung, S.K. Vishwanath, J. Kim, D.K. Ko, M.J. Park et al., Transparent and flexible mayan-pyramid-based pressure sensor using facile-transferred indium tin oxide for bimodal sensor applications. Sci. Rep. 9, 14040 (2019). https://doi.org/10.1038/s41598-019-50247-4
- Y. Luo, X. Xiao, J. Chen, Q. Li, H.Y. Fu, Machine-learning-assisted recognition on bioinspired soft sensor arrays. ACS Nano 16(4), 6734–6743 (2022). https://doi.org/10.1021/acsnano.2c01548
- H. Chen, X. Yang, P. Wang, J. Geng, G. Ma et al., A large-area flexible tactile sensor for multi-touch and force detection using electrical impedance tomography. IEEE Sens. J. 22(7), 7119–7129 (2022). https://doi.org/10.1109/JSEN.2022.3155125
- W.Z. Heng, G.Y. Pang, F.H. Xu, X.Y. Huang, Z.B. Pang et al., Flexible insole sensors with stably connected electrodes for gait phase detection. Sensors 19(23), 5197 (2019). https://doi.org/10.3390/s19235197
- D. Kobsar, R. Ferber, Wearable sensor data to track subject-specific movement patterns related to clinical outcomes using a machine learning approach. Sensors 18(9), 2828 (2018). https://doi.org/10.3390/s18092828
- Y.W. Jiang, A. Sadeqi, E.L. Miller, S. Sonkusale, Head motion classification using thread-based sensor and machine learning algorithm. Sci. Rep. 11(1), 2646 (2021). https://doi.org/10.1038/s41598-021-81284-7
- Q.S. Hu, X.C. Tang, W. Tang, A smart chair sitting posture recognition system using flex sensors and fpga implemented artificial neural network. IEEE Sens. J. 20(14), 8007–8016 (2020). https://doi.org/10.1109/Jsen.2020.2980207
- J. Meyer, B. Arnrich, J. Schumm, G. Troster, Design and modeling of a textile pressure sensor for sitting posture classification. IEEE Sens. J. 10(8), 1391–1398 (2010). https://doi.org/10.1109/Jsen.2009.2037330
- C.C. Ma, W.F. Li, R. Gravina, G. Fortino, Posture detection based on smart cushion for wheelchair users. Sensors 17(4), 719 (2017). https://doi.org/10.3390/s17040719
- H.Z. Tan, L.A. Slivovsky, A. Pentland, A sensing chair using pressure distribution sensors. IEEE-ASME Trans. Mech. 6(3), 261–268 (2001). https://doi.org/10.1109/3516.951364
- K. Bourahmoune, T. Amagasa, Ai-powered posture training: Application of machine learning in sitting posture recognition using the lifechair smart cushion. J ASME Trans Mech (2019). https://doi.org/10.24963/ijcai.2019/805
- C. Ma, G. Li, L.H. Qin, W.C. Huang, H.R. Zhang et al., Analytical model of micropyramidal capacitive pressure sensors and machine-learning-assisted design. Adv. Mater. Technol. 6(12), 2100634 (2021). https://doi.org/10.1002/admt.202100634
- Z. Wang, Z. Sun, H. Yin, X. Liu, J. Wang et al., Data-driven materials innovation and applications. Adv. Mater. 34(36), 2104113 (2022). https://doi.org/10.1002/adma.202104113
- M.Y. Zhang, J. Li, L. Kang, N. Zhang, C. Huang et al., Machine learning-guided design and development of multifunctional flexible ag/poly (amic acid) composites using the differential evolution algorithm. Nanoscale 12(6), 3988–3996 (2020). https://doi.org/10.1039/C9NR09146G
- J. Cao, X.X. Zhang, Modulating the percolation network of polymer nanocomposites for flexible sensors. J. Appl. Phys. 128(22), 220901 (2020). https://doi.org/10.1063/5.0033652
- Z. Ballard, C. Brown, A.M. Madni, A. Ozcan, Machine learning and computation-enabled intelligent sensor design. Nat. Mach. Intell. 3(7), 556–565 (2021). https://doi.org/10.1038/s42256-021-00360-9
- N. Yi, Y.Y. Gao, A. Lo Verso, J. Zhu, D. Erdely et al., Fabricating functional circuits on 3d freeform surfaces via intense pulsed light-induced zinc mass transfer. Mater. Today. 50, 24–34 (2021). https://doi.org/10.1016/j.mattod.2021.07.002
- S.H. Zhang, J. Zhu, Y.Y. Zhang, Z.S. Chen, C.Y. Song et al., Standalone stretchable rf systems based on asymmetric 3d microstrip antennas with on-body wireless communication and energy harvesting. Nano Energy 96, 107069 (2022). https://doi.org/10.1016/j.nanoen.2022.107069
- L. Yang, C. Liu, W. Yuan, C. Meng, A. Dutta et al., Fully stretchable, porous mxene-graphene foam nanocomposites for energy harvesting and self-powered sensing. Nano Energy 103, 107807 (2022). https://doi.org/10.1016/j.nanoen.2022.107807
- J. Zhu, Z.H. Hu, S.H. Zhang, X.Z. Zhang, H.L. Zhou et al., Stretchable 3d wideband dipole antennas from mechanical assembly for on-body communication. ACS Appl. Mater. Interfaces 14(10), 12855–12862 (2022). https://doi.org/10.1021/acsami.1c24651
References
Z.X. Zhang, Q.F. Shi, T.Y.Y. He, X.G. Guo, B.W. Dong et al., Artificial intelligence of toilet (ai-toilet) for an integrated health monitoring system (ihms) using smart triboelectric pressure sensors and image sensor. Nano Energy 90, 106517 (2021). https://doi.org/10.1016/j.nanoen.2021.106517
Z.D. Sun, M.L. Zhu, Z.X. Zhang, Z.C. Chen, Q.F. Shi et al., Artificial intelligence of things (aiot) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator. Adv. Sci. 8(14), 2100230 (2021). https://doi.org/10.1002/advs.202100230
Q.F. Shi, B.W. Dong, T.Y.Y. He, Z.D. Sun, J.X. Zhu et al., Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things. Infomat 2(6), 1131–1162 (2020). https://doi.org/10.1002/inf2.12122
Y.P. Zang, F.J. Zhang, C.A. Di, D.B. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2(2), 140–156 (2015). https://doi.org/10.1039/c4mh00147h
C. Pang, C. Lee, K.Y. Suh, Recent advances in flexible sensors for wearable and implantable devices. J. Appl. Polym. Sci. 130(3), 1429–1441 (2013). https://doi.org/10.1002/app.39461
J.C. Kenry, C.T. Yeo, Lim, Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst. Nanoeng. 2, 16043 (2016). https://doi.org/10.1038/micronano.2016.43
D. Choi, S. Jang, J.S. Kim, H.J. Kim, D.H. Kim et al., A highly sensitive tactile sensor using a pyramid-plug structure for detecting pressure, shear force, and torsion. Adv. Mater. Technol. 4(3), 1800284 (2019). https://doi.org/10.1002/admt.201800284
O.A. Moses, L. Gao, H. Zhao, Z. Wang, M. Lawan Adam et al., 2d materials inks toward smart flexible electronics. Mater. Today 50, 116–148 (2021). https://doi.org/10.1016/j.mattod.2021.08.010
D. Kim, J. Kwon, J. Jung, K. Kim, H. Lee et al., A transparent and flexible capacitive-force touch pad from high-aspect-ratio copper nanowires with enhanced oxidation resistance for applications in wearable electronics. Small Methods 2(7), 1800077 (2018). https://doi.org/10.1002/smtd.201800077
K.K. Kim, I. Ha, P. Won, D.G. Seo, K.J. Cho et al., Transparent wearable three-dimensional touch by self-generated multiscale structure. Nat Commun. (2019). https://doi.org/10.1038/s41467-019-10736-6
P. Won, J.J. Park, T. Lee, I. Ha, S. Han et al., Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett. 19(9), 6087–6096 (2019). https://doi.org/10.1021/acs.nanolett.9b02014
P. Won, K.K. Kim, H. Kim, J.J. Park, I. Ha et al., Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33(19), 2002397 (2021). https://doi.org/10.1002/adma.202002397
Y. Chu, J.W. Zhong, H.L. Liu, Y. Ma, N. Liu et al., Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Adv. Funct. Mater. 28(40), 1803413 (2018). https://doi.org/10.1002/adfm.201803413
Y.S. Fang, Y.J. Zou, J. Xu, G.R. Chen, Y.H. Zhou et al., Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 33(41), 2104178 (2021). https://doi.org/10.1002/adma.202104178
K.H. Huang, F. Tan, T.D. Wang, Y.J. Yang, A highly sensitive pressure-sensing array for blood pressure estimation assisted by machine-learning techniques. Sensors 19(4), 848 (2019). https://doi.org/10.3390/s19040848
J. Ramirez, D. Rodriquez, F. Qiao, J. Warchall, J. Rye et al., Metallic nanoislands on graphene for monitoring swallowing activity in head and neck cancer patients. ACS Nano 12(6), 5913–5922 (2018). https://doi.org/10.1021/acsnano.8b02133
B. Polat, L.L. Becerra, P.Y. Hsu, V. Kaipu, P.P. Mercier et al., Epidermal graphene sensors and machine learning for estimating swallowed volume. ACS Appl. Nano Mater. 4(8), 8126–8134 (2021). https://doi.org/10.1021/acsanm.1c01378
J.H. Han, K.M. Bae, S.K. Hong, H. Park, J.H. Kwak et al., Machine learning-based self-powered acoustic sensor for speaker recognition. Nano Energy 53, 658–665 (2018). https://doi.org/10.1016/j.nanoen.2018.09.030
H.S. Wang, S.K. Hong, J.H. Han, Y.H. Jung, H.K. Jeong et al., Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 7(7), eabe5683 (2021). https://doi.org/10.1126/sciadv.abe5683
Z.W. Lin, G.Q. Zhang, X. Xiao, C. Au, Y.H. Zhou et al., A personalized acoustic interface for wearable human-machine interaction. Adv. Funct. Mater. 32(9), 2109430 (2022). https://doi.org/10.1002/adfm.202109430
Q.F. Shi, Z.X. Zhang, T.Y.Y. He, Z.D. Sun, B.J. Wang et al., Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun. 11(1), 4609 (2020). https://doi.org/10.1038/s41467-020-18471-z
H.C. Yao, W.D. Yang, W. Cheng, Y.J. Tan, H.H. See et al., Near-hysteresis-free soft tactile electronic skins for wearables and reliable machine learning. Proc. Natl. Acad. Sci. USA 117(41), 25352–25359 (2020). https://doi.org/10.1073/pnas.2010989117
Z.H. Zhou, K. Chen, X.S. Li, S.L. Zhang, Y.F. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3(9), 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti et al., A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4(1), 54–63 (2021). https://doi.org/10.1038/s41928-020-00510-8
A. Alagumalai, W. Shou, O. Mahian, M. Aghbashlo, M. Tabatabaei et al., Self-powered sensing systems with learning capability. Joule 6(7), 1475–1500 (2022). https://doi.org/10.1016/j.joule.2022.06.001
M. Wang, T. Wang, Y.F. Luo, K. He, L. Pan et al., Fusing stretchable sensing technology with machine learning for human-machine interfaces. Adv. Funct. Mater. 31(39), 2008807 (2021). https://doi.org/10.1002/adfm.202008807
Y.H. Jung, S.K. Hong, H.S. Wang, J.H. Han, T.X. Pham et al., Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 32(35), 1904020 (2020). https://doi.org/10.1002/adma.201904020
S.H. Kwon, L. Dong, Flexible sensors and machine learning for heart monitoring. Nano Energy 102, 107632 (2022). https://doi.org/10.1016/j.nanoen.2022.107632
M.L. Zhu, T.Y.Y. He, C.K. Lee, Technologies toward next generation human machine interfaces: from machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl. Phys. Rev. 7(3), 031305 (2020). https://doi.org/10.1063/5.0016485
B. Shih, D. Shah, J.X. Li, T.G. Thuruthel, Y.L. Park et al., Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 5(41), aaz9239 (2020). https://doi.org/10.1126/scirobotics.aaz9239
S. Gao, C. Zheng, Y. Zhao, Z. Wu, J. Li et al., Comparison of enhancement techniques based on neural networks for attenuated voice signal captured by flexible vibration sensors on throats. Nanotechnol. Precis. Eng. 5(1), 013001 (2022). https://doi.org/10.1063/10.0009187
H.C. Yao, P.J. Li, W. Cheng, W.D. Yang, Z.J. Yang et al., Environment-resilient graphene vibrotactile sensitive sensors for machine intelligence. ACS Mater. Lett. 2(8), 986–992 (2020). https://doi.org/10.1021/acsmaterialslett.0c00160
W.D. Li, K. Ke, J. Jia, J.H. Pu, X. Zhao et al., Recent advances in multiresponsive flexible sensors towards e-skin: a delicate design for versatile sensing. Small 18(7), 2103734 (2022). https://doi.org/10.1002/smll.202103734
S. Sundaram, P. Kellnhofer, Y.Z. Li, J.Y. Zhu, A. Torralba et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 569(7758), 698 (2019). https://doi.org/10.1038/s41586-019-1234-z
H. Jeong, J.A. Rogers, S. Xu, Continuous on-body sensing for the covid-19 pandemic: gaps and opportunities. Sci. Adv. 6(36), eabd4794 (2020). https://doi.org/10.1126/sciadv.abd4794
J.H. Lee, J.S. Heo, Y.J. Kim, J. Eom, H.J. Jung et al., A behavior-learned cross-reactive sensor matrix for intelligent skin perception. Adv. Mater. 32(22), 2000969 (2020). https://doi.org/10.1002/adma.202000969
H. Xu, W. Zheng, Y. Wang, D. Xu, N. Zhao et al., Flexible tensile strain-pressure sensor with an off-axis deformation-insensitivity. Nano Energy 107, 384 (2022). https://doi.org/10.1016/j.nanoen.2022.107384
A.A. Barlian, W.T. Park, J.R. Mallon, A.J. Rastegar, B.L. Pruitt, Review: semiconductor piezoresistance for microsystems. Proc. IEEE 97(3), 513–552 (2009). https://doi.org/10.1109/Jproc.2009.2013612
A.S. Fiorillo, C.D. Critello, S.A. Pullano, Theory, technology and applications of piezoresistive sensors: a review. Sensor Actuat. A-Phys. 281, 156–175 (2018). https://doi.org/10.1016/j.sna.2018.07.006
F. Li, T. Shen, C. Wang, Y. Zhang, J. Qi et al., Recent advances in strain-induced piezoelectric and piezoresistive effect-engineered 2d semiconductors for adaptive electronics and optoelectronics. Nano-Micro Lett. 12(1), 106 (2020). https://doi.org/10.1007/s40820-020-00439-9
S.C. Kim, K.D. Wise, Temperature sensitivity in silicon piezoresistive pressure transducers. IEEE Trans. Electron. Dev. 30(7), 802–810 (1983). https://doi.org/10.1109/T-Ed.1983.21213
M. Akbar, M.A. Shanblatt, Temperature compensation of piezoresistive pressure sensors. Sensor Actuat. A-Phys. 33(3), 155–162 (1992). https://doi.org/10.1016/0924-4247(92)80161-U
J. Oh, J.O. Kim, Y. Kim, H.B. Choi, J.C. Yang et al., Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size. Small 15(33), 1901744 (2019). https://doi.org/10.1002/smll.201901744
M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26(11), 1678–1698 (2016). https://doi.org/10.1002/adfm.201504755
D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014). https://doi.org/10.1038/nature14002
A. de la Vega, J. Sumfleth, H. Wittich, K. Schulte, Time and temperature dependent piezoresistance of carbon nanofiller/polymer composites under dynamic load. J. Mater. Sci. 47(6), 2648–2657 (2012). https://doi.org/10.1007/s10853-011-6090-7
W.P. Mason, Crystal Physics of Interaction Processes (Academic Press, Cambridge, 1966)
R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 2008)
D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, Abingdon-on-Thames, 2018)
K.K. Kim, S. Hong, H.M. Cho, J. Lee, Y.D. Suh et al., Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 15(8), 5240–5247 (2015). https://doi.org/10.1021/acs.nanolett.5b01505
H. Jeong, S. Park, J. Lee, P. Won, S.H. Ko et al., Fabrication of transparent conductive film with flexible silver nanowires using roll-to-roll slot-die coating and calendering and its application to resistive touch panel. Adv. Electron. Mater. 4(11), 1800243 (2018). https://doi.org/10.1002/aelm.201800243
I. Hong, S. Lee, D. Kim, H. Cho, Y. Roh et al., Study on the oxidation of copper nanowire network electrodes for skin mountable flexible, stretchable and wearable electronics applications. Nanotechnology 30(7), 074001 (2019). https://doi.org/10.1088/1361-6528/aaf35c
Z. Chen, T. Ming, M.M. Goulamaly, H.M. Yao, D. Nezich et al., Enhancing the sensitivity of percolative graphene films for flexible and transparent pressure sensor arrays. Adv. Funct. Mater. 26(28), 5061–5067 (2016). https://doi.org/10.1002/adfm.201503674
T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296–301 (2011). https://doi.org/10.1038/Nnano.2011.36
Y. Huang, X.Y. He, L. Gao, Y. Wang, C.X. Liu et al., Pressure-sensitive carbon black/graphene nanoplatelets-silicone rubber hybrid conductive composites based on a three-dimensional polydopamine-modified polyurethane sponge. J. Mater. Sci. Mater. El. 28(13), 9495–9504 (2017). https://doi.org/10.1007/s10854-017-6693-0
S.H. Munsonmcgee, Estimation of the critical concentration in an anisotropic percolation network. Phys. Rev. B 43(4), 3331–3336 (1991). https://doi.org/10.1103/PhysRevB.43.3331
D.S. Mclachlan, M. Blaszkiewicz, R.E. Newnham, Electrical-resistivity of composites. J. Am. Ceram. Soc. 73(8), 2187–2203 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb07576.x
Y. Gao, G.H. Yu, T. Shu, Y.Q. Chen, W.Z. Yang et al., 3d-printed coaxial fibers for integrated wearable sensor skin. Adv. Mater. Technol. 4(10), 1900504 (2019). https://doi.org/10.1002/admt.201900504
P.D. Feng, Y. Zheng, K. Li, W.W. Zhao, Highly stretchable and sensitive strain sensors with ginkgo-like sandwich architectures. Nanoscale Adv. 4(6), 1681–1693 (2022). https://doi.org/10.1039/d1na00817j
C.C. Li, B.Z. Zhou, Y.F. Zhou, J.W. Ma, F.L. Zhou et al., Carbon nanotube coated fibrous tubes for highly stretchable strain sensors having high linearity. Nanomaterials 12(14), 2458 (2022). https://doi.org/10.3390/nano12142458
Y. Gao, T. Xiao, Q. Li, Y. Chen, X.L. Qiu et al., Flexible microstructured pressure sensors: design, fabrication and applications. Nanotechnology 33(32), 322002 (2022). https://doi.org/10.1088/1361-6528/ac6812
Y. Gao, M.D. Xu, G.H. Yu, J.P. Tan, F.Z. Xuan, Extrusion printing of carbon nanotube-coated elastomer fiber with microstructures for flexible pressure sensors. Sensor Actuat. A-Phys. 299, 111625 (2019). https://doi.org/10.1016/j.sna.2019.111625
G. Yang, L. Cong, G.H. Yu, S. Jin, J.P. Tan et al., Laser micro-structured pressure sensor with modulated sensitivity for electronic skins. Nanotechnology 30(32), 325502 (2019). https://doi.org/10.1088/1361-6528/ab1a86
J.A. Greenwood, Constriction resistance and the real area of contact. Br. J. Appl. Phys. 17(12), 1621 (1966). https://doi.org/10.1088/0508-3443/17/12/310
T.T. Yang, X.M. Li, X. Jiang, S.Y. Lin, J.C. Lao et al., Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing. Mater. Horiz. 3(3), 248–255 (2016). https://doi.org/10.1039/c6mh00027d
B. Park, J. Kim, D. Kang, C. Jeong, K.S. Kim et al., Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Adv. Mater. 28(37), 8130–8137 (2016). https://doi.org/10.1002/adma.201602425
J. Lee, S. Kim, J. Lee, D. Yang, B.C. Park et al., A stretchable strain sensor based on a metal nanop thin film for human motion detection. Nanoscale 6(20), 11932–11939 (2014). https://doi.org/10.1039/c4nr03295k
C.J. Lee, K.H. Park, C.J. Han, M.S. Oh, B. You et al., Crack-induced ag nanowire networks for transparent, stretchable, and highly sensitive strain sensors. Sci. Rep. 7, 7959 (2017). https://doi.org/10.1038/s41598-017-08484-y
Y.Y. Xin, J. Zhou, X.Z. Xu, G. Lubineau, Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors. Nanoscale 9(30), 10897–10905 (2017). https://doi.org/10.1039/c7nr01626c
S.J. Chen, R.Y. Wu, P. Li, Q. Li, Y. Gao et al., Acid-interface engineering of carbon nanotube/elastomers with enhanced sensitivity for stretchable strain sensors. ACS Appl. Mater. Interfaces 10(43), 37760–37766 (2018). https://doi.org/10.1021/acsami.8b16591
Q. Li, K. Wang, Y. Gao, J.P. Tan, R.Y. Wu et al., Highly sensitive wearable strain sensor based on ultra-violet/ozone cracked carbon nanotube/elastomer. Appl. Phys. Lett. 112(26), 263501 (2018). https://doi.org/10.1063/1.5029391
X.X. Gong, G.T. Fei, W.B. Fu, M. Fang, X.D. Gao et al., Flexible strain sensor with high performance based on pani/pdms films. Org. Electron. 47, 51–56 (2017). https://doi.org/10.1016/j.orgel.2017.05.001
Y.X. Qin, H.C. Xu, S.Y. Li, D.D. Xu, W.H. Zheng et al., Dual-mode flexible capacitive sensor for proximity-tactile interface and wireless perception. IEEE Sens J. 22(11), 10446–10453 (2022). https://doi.org/10.1109/JSEN.2022.3171218
H.C. Guo, Y.J. Tan, G. Chen, Z.F. Wang, G.J. Susanto et al., Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-19531-0
B. Zhang, Z.M. Xiang, S.W. Zhu, Q.Y. Hu, Y.Z. Cao et al., Dual functional transparent film for proximity and pressure sensing. Nano Res. 7(10), 1488–1496 (2014). https://doi.org/10.1007/s12274-014-0510-3
S.C. Chen, Y.F. Wang, L. Yang, F. Karouta, K. Sun, Electron-induced perpendicular graphene sheets embedded porous carbon film for flexible touch sensors. Nano-Micro Lett. 12(1), 136 (2020). https://doi.org/10.1007/s40820-020-00480-8
G. Libo, M. Wang, W.D. Wang, H.C. Xu, Y.J. Wang et al., Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett. 13(1), 140 (2021). https://doi.org/10.1007/s40820-021-00664-w
H.C. Xu, L.B. Gao, H.T. Zhao, H.L. Huang, Y.J. Wang et al., Stretchable and anti-impact iontronic pressure sensor with an ultrabroad linear range for biophysical monitoring and deep learning-aided knee rehabilitation. Microsyst. Nanoeng. 7(1), 92 (2021). https://doi.org/10.1038/s41378-021-00318-2
B.Q. Nie, S.Y. Xing, J.D. Brandt, T.R. Pan, Droplet-based interfacial capacitive sensing. Lab. Chip 12(6), 1110–1118 (2012). https://doi.org/10.1039/c2lc21168h
N.N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang et al., Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 11(1), 209 (2020). https://doi.org/10.1038/s41467-019-14054-9
Q. Liu, Y. Liu, J. Shi, Z. Liu, Q. Wang et al., High-porosity foam-based iontronic pressure sensor with superhigh sensitivity of 9280 kPa−1. Nano-Micro Lett. 14(1), 21 (2022). https://doi.org/10.1007/s40820-021-00770-9
Y. Chang, L. Wang, R.Y. Li, Z.C. Zhang, Q. Wang et al., First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv. Mater. 33(7), 2003464 (2021). https://doi.org/10.1002/adma.202003464
Z.J. Zhu, R.Y. Li, T.R. Pan, Imperceptible epidermal-iontronic interface for wearable sensing. Adv. Mater. 30(6), 1705122 (2018). https://doi.org/10.1002/adma.201705122
G. Zhu, C.F. Pan, W.X. Guo, C.Y. Chen, Y.S. Zhou et al., Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12(9), 4960–4965 (2012). https://doi.org/10.1021/nl302560k
F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator! Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z
L. Lin, Y.N. Xie, S.H. Wang, W.Z. Wu, S.M. Niu et al., Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7(9), 8266–8274 (2013). https://doi.org/10.1021/nn4037514
Y. Wu, Y. Ma, H. Zheng, S.J.M. Ramakrishna, Design Piezoelectric materials for flexible and wearable electronics: a review. Mater. Des. 211, 110164 (2021). https://doi.org/10.1016/j.matdes.2021.110164
C. Yan, W.L. Deng, L. Jin, T. Yang, Z.X. Wang et al., Epidermis-inspired ultrathin 3d cellular sensor array for self-powered biomedical monitoring. ACS Appl. Mater. Interfaces 10(48), 41070–41075 (2018). https://doi.org/10.1021/acsami.8b14514
L. Persano, C. Dagdeviren, Y.W. Su, Y.H. Zhang, S. Girardo et al., High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013). https://doi.org/10.1038/ncomms2639
J. Tao, M. Dong, L. Li, C.F. Wang, J. Li et al., Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsyst. Nanoeng. 6(1), 1–10 (2020). https://doi.org/10.1038/s41378-020-0171-1
X. Chen, B. Assadsangabi, Y. Hsiang, K. Takahata, Enabling angioplasty-ready “smart” stents to detect in-stent restenosis and occlusion. Adv. Sci. 5(5), 1700560 (2018). https://doi.org/10.1002/advs.201700560
H.C. Xu, L.B. Gao, Y.J. Wang, K. Cao, X.K. Hu et al., Flexible waterproof piezoresistive pressure sensors with wide linear working range based on conductive fabrics. Nano-Micro Lett. 12(1), 159 (2020). https://doi.org/10.1007/s40820-020-00498-y
E. Roh, B.U. Hwang, D. Kim, B.Y. Kim, N.E. Lee, Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9(6), 6252–6261 (2015). https://doi.org/10.1021/acsnano.5b01613
S. Wang, Y.L. Fang, H. He, L. Zhang, C.A. Li et al., Wearable stretchable dry and self-adhesive strain sensors with conformal contact to skin for high-quality motion monitoring. Adv. Funct. Mater. 31(5), 2007495 (2021). https://doi.org/10.1002/adfm.202007495
Y.H. Liu, J.J.S. Norton, R. Qazi, Z.N. Zou, K.R. Ammann et al., Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci. Adv. 2(11), e1601185 (2016). https://doi.org/10.1126/sciadv.1601185
S. Lee, J. Kim, I. Yun, G.Y. Bae, D. Kim et al., An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition. Nat. Commun. 10, 2468 (2019). https://doi.org/10.1038/s41467-019-10465-w
M.L. Liu, Z.H. Zeng, H. Xu, Y.Z. Liao, L.M. Zhou et al., Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring. Ultrasonics 78, 166–174 (2017). https://doi.org/10.1016/j.ultras.2017.03.007
W.N. Xiong, C. Zhu, D.L. Guo, C. Hou, Z.X. Yang et al., Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano Energy 90, 106550 (2021). https://doi.org/10.1016/j.nanoen.2021.106550
S.M. Won, H.L. Wang, B.H. Kim, K. Lee, H. Jang et al., Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 13(10), 10972–10979 (2019). https://doi.org/10.1021/acsnano.9b02030
S. Gong, W. Schwalb, Y.W. Wang, Y. Chen, Y. Tang et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014). https://doi.org/10.1038/ncomms4132
K.Y. Shin, J.S. Lee, J. Jang, Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring. Nano Energy 22, 95–104 (2016). https://doi.org/10.1016/j.nanoen.2016.02.012
Y. Gao, G.H. Yu, J.P. Tan, F.Z. Xuan, Sandpaper-molded wearable pressure sensor for electronic skins. Sensor Actuat. A-Phys. 280, 205–209 (2018). https://doi.org/10.1016/j.sna.2018.07.048
Y. Lee, J. Park, S. Cho, Y.E. Shin, H. Lee et al., Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 12(4), 4045–4054 (2018). https://doi.org/10.1021/acsnano.8b01805
A.H.A. Razak, A. Zayegh, R.K. Begg, Y. Wahab, Foot plantar pressure measurement system: a review. Sensors 12(7), 9884–9912 (2012). https://doi.org/10.3390/s120709884
L.J. Pan, A. Chortos, G.H. Yu, Y.Q. Wang, S. Isaacson et al., An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5, 3002 (2014). https://doi.org/10.1038/ncomms4002
L.B. Gao, Y.J. Wang, X.K. Hu, W.Z. Zhou, K. Cao et al., Cellular carbon-film-based flexible sensor and waterproof supercapacitors. ACS Appl. Mater. Interfaces 11(29), 26288–26297 (2019). https://doi.org/10.1021/acsami.9b09438
L.B. Gao, K. Cao, X.K. Hu, R. Xiao, B. Gan et al., Nano electromechanical approach for flexible piezoresistive sensor. Appl. Mater. Today 18, 100475 (2020). https://doi.org/10.1016/j.apmt.2019.100475
L.B. Gao, N.J. Zhao, H.C. Xu, X.K. Hu, D.D. Xu et al., Flexible pressure sensor with wide linear sensing range for human-machine interaction. IEEE Trans. Electron. Dev. 69(7), 3901–3907 (2022). https://doi.org/10.1109/Ted.2022.3173916
L.B. Gao, Y. Han, J.U. Surjadi, K. Cao, W.Z. Zhou et al., Magnetically induced micropillar arrays for an ultrasensitive flexible sensor with a wireless recharging system. Sci. China Mater. 64(8), 1977–1988 (2021). https://doi.org/10.1007/s40843-020-1637-9
Y.J. Wang, X. Li, S.F. Fan, X.B. Feng, K. Cao et al., Three-dimensional stretchable microelectronics by projection microstereolithography (PμSL). ACS Appl. Mater. Interfaces 13(7), 8901–8908 (2021). https://doi.org/10.1021/acsami.0c20162
C.-Z. Hang, X.-F. Zhao, S.-Y. Xi, Y.-H. Shang, K.-P. Yuan et al., Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy 76, 105064 (2020). https://doi.org/10.1016/j.nanoen.2020.105064
J. Eom, R. Jaisutti, H. Lee, W. Lee, J.S. Heo et al., Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl. Mater. Interfaces 9(11), 10190–10197 (2017). https://doi.org/10.1021/acsami.7b01771
M. Wang, Z. Yan, T. Wang, P.Q. Cai, S.Y. Gao et al., Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3(9), 563 (2020). https://doi.org/10.1038/s41928-020-0422-z
H. Zhang, D. Liu, J.H. Lee, H.M. Chen, E. Kim et al., Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors. Nano-Micro Lett. 13(1), 122 (2021). https://doi.org/10.1007/s40820-021-00615-5
X. Wang, X.H. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13(1), 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
Z.K. Liu, T.X. Zhu, J.R. Wang, Z.J. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: Pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
Y. Wang, L. Wang, T.T. Yang, X. Li, X.B. Zang et al., Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24(29), 4666–4670 (2014). https://doi.org/10.1002/adfm.201400379
S.Q. Liu, R.M. Zheng, S. Chen, Y.H. Wu, H.Z. Liu et al., A compliant, self-adhesive and self-healing wearable hydrogel as epidermal strain sensor. J. Mater. Chem. C 6(15), 4183–4190 (2018). https://doi.org/10.1039/c8tc00157j
N. Qaiser, F. Al-Modaf, S.M. Khan, S.F. Shaikh, N. El-Atab et al., A robust wearable point-of-care cnt-based strain sensor for wirelessly monitoring throat-related illnesses. Adv. Funct. Mater. 31(29), 2103375 (2021). https://doi.org/10.1002/adfm.202103375
T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
C.Y. Yan, J.X. Wang, W.B. Kang, M.Q. Cui, X. Wang et al., Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014). https://doi.org/10.1002/adma.201304742
M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014). https://doi.org/10.1021/nn501204t
Z.C. Yan, T.S. Pan, D.K. Wang, J.C. Li, L. Jin et al., Stretchable micromotion sensor with enhanced sensitivity using serpentine layout. Acs Appl Mater Inter. 11(13), 12261–12271 (2019). https://doi.org/10.1021/acsami.8b22613
Y. Jiang, Z.Y. Liu, N. Matsuhisa, D.P. Qi, W.R. Leow et al., Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv Mater. 30(12), 1706589 (2018). https://doi.org/10.1002/adma.201706589
J. Rostami, P.W. Tse, M.D. Yuan, Detection of broken wires in elevator wire ropes with ultrasonic guided waves and tone-burst wavelet. Struct. Health Monit. 19(2), 481–494 (2020). https://doi.org/10.1177/1475921719855915
A. Awwad, M. Yahyia, L. Albasha, M.M. Mortula, T. Ali, Communication network for ultrasonic acoustic water leakage detectors. IEEE Access. 8, 29954–29964 (2020). https://doi.org/10.1109/Access.2020.2972648
Z.W. Lin, C.C. Sun, G.Q. Zhang, E.D. Fan, Z.H. Zhou et al., Flexible triboelectric nanogenerator toward ultrahigh-frequency vibration sensing. Nano Res. 15, 7484–7491 (2022). https://doi.org/10.1007/s12274-022-4363-x
X.L. Chen, Q. Zeng, J.Y. Shao, S. Li, X.M. Li et al., Channel-crack-designed suspended sensing membrane as a fully flexible vibration sensor with high sensitivity and dynamic range. ACS Appl. Mater. Interfaces 13(29), 34637–34647 (2021). https://doi.org/10.1021/acsami.1c09963
Q.L. Wang, P. Xiao, W. Zhou, Y. Liang, G.Q. Yin et al., Bioinspired adaptive, elastic, and conductive graphene structured thin-films achieving high-efficiency underwater detection and vibration perception. Nano-Micro Lett. 14(1), 62 (2022). https://doi.org/10.1007/s40820-022-00799-4
K. Zhou, C. Zhang, Z.Y. Xiong, H.Y. Chen, T. Li et al., Template-directed growth of hierarchical mof hybrid arrays for tactile sensor. Adv. Funct. Mater. 30(38), 2001296 (2020). https://doi.org/10.1002/adfm.202001296
Z. Liu, S. Zhang, Y.M. Jin, H. Ouyang, Y. Zou et al., Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring. Semicond. Sci. Tech. 32(6), 064004 (2017). https://doi.org/10.1088/1361-6641/aa68d1
Z. Zhang, Q.L. Liao, X.Q. Yan, Z.L. Wang, W.D. Wang et al., Functional nanogenerators as vibration sensors enhanced by piezotronic effects. Nano Res. 7(2), 190–198 (2014). https://doi.org/10.1007/s12274-013-0386-7
Y.F. Liu, Q. Liu, Y.Q. Li, P. Huang, J.Y. Yao et al., Spider-inspired ultrasensitive flexible vibration sensor for multifunctional sensing. ACS Appl. Mater. Interfaces 12(27), 30871–30881 (2020). https://doi.org/10.1021/acsami.0c08884
K. Lee, X.Y. Ni, J.Y. Lee, H. Arafa, D.J. Pe et al., Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat. Biomed. Eng. 4(2), 148–158 (2020). https://doi.org/10.1038/s41551-019-0480-6
J.H. Han, J.H. Kwak, D.J. Joe, S.K. Hong, H.S. Wang et al., Basilar membrane-inspired self-powered acoustic sensor enabled by highly sensitive multi tunable frequency band. Nano Energy 53, 198–205 (2018). https://doi.org/10.1016/j.nanoen.2018.08.053
Y.Z. Liao, F. Duan, H.T. Zhang, Y. Lu, Z.H. Zeng et al., Ultrafast response of spray-on nanocomposite piezoresistive sensors to broadband ultrasound. Carbon 143, 743–751 (2019). https://doi.org/10.1016/j.carbon.2018.11.074
F. Duan, Y.Z. Liao, Z.H. Zeng, H. Jin, L.M. Zhou et al., Graphene-based nanocomposite strain sensor response to ultrasonic guided waves. Compos. Sci. Technol. 174, 42–49 (2019). https://doi.org/10.1016/j.compscitech.2019.02.011
Y.H. Li, Y.Z. Liao, Z.Q. Su, Graphene-functionalized polymer composites for self-sensing of ultrasonic waves: an initiative towards “sensor-free” structural health monitoring. Compos. Sci. Technol. 168, 203–213 (2018). https://doi.org/10.1016/j.compscitech.2018.09.021
S. Kang, S. Cho, R. Shanker, H. Lee, J. Park et al., Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Sci. Adv. 4(8), eaas8772 (2018). https://doi.org/10.1126/sciadv.aas8772
Y. Xu, F. Jiang, S. Newbern, A. Huang, C.M. Ho et al., Flexible shear-stress sensor skin and its application to unmanned aerial vehicles. Sensor Actuat. A-dPhys. 105(3), 321–329 (2003). https://doi.org/10.1016/S0924-4247(03)00230-9
Y. Xu, Y.C. Tai, A. Huang, C.M. Ho, Ic-integrated flexible shear-stress sensor skin. J. Microelectromech. Syst. 12(5), 740–747 (2003). https://doi.org/10.1109/Jmems.2003.815831
F.K. Jiang, G.B. Lee, Y.C. Tai, C.M. Ho, A flexible micromachine-based shear-stress sensor array and its application to separation-point detection. Sensor Actuat. A-Phys. 79(3), 194–203 (2000). https://doi.org/10.1016/S0924-4247(99)00277-0
J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad et al., Flexible shear sensor based on embedded optoelectronic components. IEEE Photon. Techn. Lett. 23(12), 771–773 (2011). https://doi.org/10.1109/Lpt.2011.2134844
H.Y. Yu, L.S. Ai, M. Rouhanizadeh, D. Patel, E.S. Kim et al., Flexible polymer sensors for in vivo intravascular shear stress analysis. J. Microelectromech. Syst. 17(5), 1178–1186 (2008). https://doi.org/10.1109/JMEMS.2008.927749
M.Y. Xie, Y. Zhang, M.J. Krasny, C. Bowen, H. Khanbareh et al., Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic-polymer composites. Energ. Environ. Sci. 11(10), 2919–2927 (2018). https://doi.org/10.1039/c8ee01551a
E.-S. Hwang, J.-H. Seo, Y.-J. Kim, A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics. J. Microelectromech. Syst. 16(3), 556–563 (2007). https://doi.org/10.1109/JMEMS.2007.896716
H.K. Lee, J. Chung, S.I. Chang, E. Yoon, Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors. J. Microelectromech. Syst. 17(4), 934–942 (2008). https://doi.org/10.1109/JMEMS.2008.921727
J.Z. Yin, V.J. Santos, J.D. Posner, Bioinspired flexible microfluidic shear force sensor skin. Sensor Actuat. A-Phys. 264, 289–297 (2017). https://doi.org/10.1016/j.sna.2017.08.001
C.H. Mu, Y.Q. Song, W.T. Huang, A. Ran, R.J. Sun et al., Flexible normal-tangential force sensor with opposite resistance responding for highly sensitive artificial skin. Adv. Funct. Mater. 28(18), 1707503 (2018). https://doi.org/10.1002/adfm.201707503
J. Park, Y. Lee, J. Hong, Y. Lee, M. Ha et al., Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 8(12), 12020–12029 (2014). https://doi.org/10.1021/nn505953t
S. Pyo, J.I. Lee, M.O. Kim, H.K. Lee, J. Kim, Polymer-based flexible and multi-directional tactile sensor with multiple nicr piezoresistors. Micro Nano Syst. Lett. 7(1), 5 (2019). https://doi.org/10.1186/s40486-019-0085-6
C. Pang, G.Y. Lee, T.I. Kim, S.M. Kim, H.N. Kim et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11(9), 795–801 (2012). https://doi.org/10.1038/Nmat3380
C.M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos et al., A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 3(24), aau6914 (2018). https://doi.org/10.1126/scirobotics.aau6914
F. Yuan, W.H. Wang, S. Liu, J.Y. Zhou, S. Wang et al., A self-powered three-dimensional integrated e-skin for multiple stimuli recognition. Chem. Eng. J. 451, 138522 (2023). https://doi.org/10.1016/j.cej.2022.138522
H.T. Chen, Y. Song, H. Guo, L.M. Miao, X.X. Chen et al., Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection. Nano Energy 51, 496–503 (2018). https://doi.org/10.1016/j.nanoen.2018.07.001
Z.Y. Wang, T.Z. Bu, Y.Y. Li, D.Y. Wei, B. Tao et al., Multidimensional force sensors based on triboelectric nanogenerators for electronic skin. ACS Appl. Mater. Interfaces 13(47), 56320–56328 (2021). https://doi.org/10.1021/acsami.1c17506
Y.C. Yan, Z. Hu, Z.B. Yang, W.Z. Yuan, C.Y. Song et al., Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 6(51), eabc8801 (2021). https://doi.org/10.1126/scirobotics.abc8801
J. Park, M. Kim, Y. Lee, H.S. Lee, H. Ko, Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 1(9), e1500661 (2015). https://doi.org/10.1126/sciadv.1500661
J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, P. Van Daele et al., Embedded flexible optical shear sensor. IEEE Sensors (2010). https://doi.org/10.1109/Icsens.2010.5690919
K.K. Kim, I. Ha, P. Won, D.G. Seo, K.J. Cho et al., Transparent wearable three-dimensional touch by self-generated multiscale structure. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-10736-6
H.B. Liu, H.C. Xiang, Y. Wang, Z.J. Li, L.W. Qian et al., A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper. ACS Appl. Mater. Interfaces 11(43), 40613–40619 (2019). https://doi.org/10.1021/acsami.9b13349
Y.Y. Lu, K.C. Xu, L.S. Zhang, M. Deguchi, H. Shishido et al., Multimodal plant healthcare flexible sensor system. ACS Nano 14(9), 10966–10975 (2020). https://doi.org/10.1021/acsnano.0c03757
I. You, D.G. Mackanic, N. Matsuhisa, J. Kang, J. Kwon et al., Artificial multimodal receptors based on ion relaxation dynamics. Science 370(6519), 961 (2020). https://doi.org/10.1126/science.aba5132
M. Cai, Z.D. Jiao, S. Nie, C.J. Wang, J. Zou et al., A multifunctional electronic skin based on patterned metal films for tactile sensing with a broad linear response range. Sci. Adv. 7(52), eabl8313 (2021). https://doi.org/10.1126/sciadv.abl8313
Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3d porous crumpled mxene spheres as efficient gas and pressure sensing material for transient all-mxene sensors. Nano-Micro Lett. 14(1), 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
R.X. Yang, W.Q. Zhang, N. Tiwari, H. Yan, T.J. Li et al., Multimodal sensors with decoupled sensing mechanisms. Adv. Sci. 9(26), 202202470 (2022). https://doi.org/10.1002/advs.202202470
F.Y. Cui, Y. Yue, Y. Zhang, Z.M. Zhang, H.S. Zhou, Advancing biosensors with machine learning. ACS Sensors 5(11), 3346–3364 (2020). https://doi.org/10.1021/acssensors.0c01424
Y. Fang, J. Xu, X. Xiao, Y. Zou, X. Zhao et al., A deep-learning assisted on-mask sensor network for adaptive respiratory monitoring. Adv. Mater. (2022). https://doi.org/10.1002/adma.202200252
Z.K. Zeng, Z. Huang, K.M. Leng, W.X. Han, H. Niu et al., Nonintrusive monitoring of mental fatigue status using epidermal electronic systems and machine-learning algorithms. ACS Sensors 5(5), 1305–1313 (2020). https://doi.org/10.1021/acssensors.9b02451
N. Bokka, V. Selamneni, P. Sahatiya, A water destructible SnS2 QD/PVA film based transient multifunctional sensor and machine learning assisted stimulus identification for non-invasive personal care diagnostics. Mater. Adv. 1(8), 2818–2830 (2020). https://doi.org/10.1039/d0ma00573h
T. Kim, Y. Shin, K. Kang, K. Kim, G. Kim et al., Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces. Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-33457-9
Y. Long, P.S. He, R.X. Xu, T. Hayasaka, Z.C. Shao et al., Molybdenum-carbide-graphene composites for paper-based strain and acoustic pressure sensors. Carbon 157, 594–601 (2020). https://doi.org/10.1016/j.carbon.2019.10.083
Y.H. Wang, T.Y. Tang, Y. Xu, Y.Z. Bai, L. Yin et al., All-weather, natural silent speech recognition via machine-learning-assisted tattoo-like electronics. Npj Flex. Electron. 5(1), 20 (2021). https://doi.org/10.1038/s41528-021-00119-7
F. Wen, Z.D. Sun, T.Y.Y. He, Q.F. Shi, M.L. Zhu et al., Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in Vr/Ar applications. Adv. Sci. 7(14), 2000261 (2020). https://doi.org/10.1002/advs.202000261
S. Oh, J.I. Cho, B.H. Lee, S. Seo, J.H. Lee et al., Flexible artificial Si–In–Zn–O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Sci. Adv. 7(44), eabg9450 (2021). https://doi.org/10.1126/sciadv.abg9450
K.K. Kim, I. Ha, M. Kim, J. Choi, P. Won et al., A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11, 2149 (2020). https://doi.org/10.1038/s41467-020-16040-y
P.C. Tan, X. Han, Y. Zou, X.C. Qu, J.T. Xue et al., Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input. Adv. Mater. 34(21), 2200793 (2022). https://doi.org/10.1002/adma.202200793
T. Jin, Z.D. Sun, L. Li, Q. Zhang, M.L. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11(1), 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
G.Z. Li, S.Q. Liu, L.Q. Wang, R. Zhu, Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 5(49), eabc8134 (2020). https://doi.org/10.1126/scirobotics.abc8134
S. Chun, W. Son, H. Kim, S.K. Lim, C. Pang et al., Self-powered pressure- and vibration-sensitive tactile sensors for learning technique-based neural finger skin. Nano Lett. 19(5), 3305–3312 (2019). https://doi.org/10.1021/acs.nanolett.9b00922
S. Chun, J.S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4(6), 429 (2021). https://doi.org/10.1038/s41928-021-00585-x
G.H. Lee, J.K. Park, J. Byun, J.C. Yang, S.Y. Kwon et al., Parallel signal processing of a wireless pressure-sensing platform combined with machine-learning-based cognition, inspired by the human somatosensory system. Adv. Mater. 32(8), 1906269 (2020). https://doi.org/10.1002/adma.201906269
K. Bae, J. Jeong, J. Choi, S. Pyo, J. Kim, Large-area, crosstalk-free, flexible tactile sensor matrix pixelated by mesh layers. ACS Appl. Mater. Interfaces 13(10), 12259–12267 (2021). https://doi.org/10.1021/acsami.0c21671
K.S. Sohn, J. Chung, M.Y. Cho, S. Timilsina, W.B. Park et al., An extremely simple macroscale electronic skin realized by deep machine learning. Sci. Rep. 7, 11061 (2017). https://doi.org/10.1038/s41598-017-11663-6
J.W. Lee, J. Chung, M.Y. Cho, S. Timilsina, K. Sohn et al., Deep-learning technique to convert a crude piezoresistive carbon nanotube-ecoflex composite sheet into a smart, portable, disposable, and extremely flexible keypad. ACS Appl. Mater. Interfaces 10(24), 20862–20868 (2018). https://doi.org/10.1021/acsami.8b04914
Y.Y. Luo, Y.Z. Li, P. Sharma, W. Shou, K. Wu et al., Learning human-environment interactions using conformal tactile textiles. Nat. Electron. 4(3), 193 (2021). https://doi.org/10.1038/s41928-021-00558-0
G. Loke, T. Khudiyev, B. Wang, S. Fu, S. Payra et al., Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12(1), 3317 (2021). https://doi.org/10.1038/s41467-021-23628-5
H.J. Lee, J.C. Yang, J. Choi, J. Kim, G.S. Lee et al., Hetero-dimensional 2D Ti3C2Tx Mxene and 1D graphene nanoribbon hybrids for machine learning-assisted pressure sensors. ACS Nano 15(6), 10347–10356 (2021). https://doi.org/10.1021/acsnano.1c02567
H. Qiu, M.K. Qiu, Z.H. Lu, Selective encryption on ecg data in body sensor network based on supervised machine learning. Inform. Fusion. 55, 59–67 (2020). https://doi.org/10.1016/j.inffus.2019.07.012
H.C. Liu, W. Dong, Y.F. Li, F.Q. Li, J.J. Geng et al., An epidermal semg tattoo-like patch as a new human-machine interface for patients with loss of voice. Microsyst. Nanoeng. 6(1), 16 (2020). https://doi.org/10.1038/s41378-019-0127-5
Y.X. Peng, J.X. Wang, K. Pang, W.M. Liu, J. Meng et al., A physiology-based flexible strap sensor for gesture recognition by sensing tendon deformation. IEEE Sens. J. 21(7), 9449–9456 (2021). https://doi.org/10.1109/sen.2021.3054562
J.M. Pan, Y.D. Li, Y.X. Luo, X.Y. Zhang, X.H. Wang et al., Hybrid-flexible bimodal sensing wearable glove system for complex hand gesture recognition. ACS Sensors 6(11), 4156–4166 (2021). https://doi.org/10.1021/acssensors.1c01698
J. Hughes, A. Spielberg, M. Chounlakone, G. Chang, W. Matusik et al., A simple, inexpensive, wearable glove with hybrid resistive-pressure sensors for computational sensing, proprioception, and task identification. Adv. Intell. Syst. Ger. 2(6), 2000002 (2020). https://doi.org/10.1002/aisy.202000002
C.M. Oddo, M. Controzzi, L. Beccai, C. Cipriani, M.C. Carrozza, Roughness encoding for discrimination of surfaces in artificial active-touch. IEEE Trans. Robot. 27(3), 522–533 (2011). https://doi.org/10.1109/Tro.2011.2116930
N. Jamali, C. Sammut, Majority voting: Material classification by tactile sensing using surface texture. IEEE Trans. Robot. 27(3), 508–521 (2011). https://doi.org/10.1109/Tro.2011.2127110
J.A. Fishel, G.E. Loeb, Bayesian exploration for intelligent identification of textures. Front. Neurorobot. 6, 4 (2012). https://doi.org/10.3389/fnbot.2012.00004
Z.K. Yi, Y.L. Zhang, J. Peters, Bioinspired tactile sensor for surface roughness discrimination. Sensor Actuat. A-Phys. 255, 46–53 (2017). https://doi.org/10.1016/j.sna.2016.12.021
M. Jung, S.K. Vishwanath, J. Kim, D.K. Ko, M.J. Park et al., Transparent and flexible mayan-pyramid-based pressure sensor using facile-transferred indium tin oxide for bimodal sensor applications. Sci. Rep. 9, 14040 (2019). https://doi.org/10.1038/s41598-019-50247-4
Y. Luo, X. Xiao, J. Chen, Q. Li, H.Y. Fu, Machine-learning-assisted recognition on bioinspired soft sensor arrays. ACS Nano 16(4), 6734–6743 (2022). https://doi.org/10.1021/acsnano.2c01548
H. Chen, X. Yang, P. Wang, J. Geng, G. Ma et al., A large-area flexible tactile sensor for multi-touch and force detection using electrical impedance tomography. IEEE Sens. J. 22(7), 7119–7129 (2022). https://doi.org/10.1109/JSEN.2022.3155125
W.Z. Heng, G.Y. Pang, F.H. Xu, X.Y. Huang, Z.B. Pang et al., Flexible insole sensors with stably connected electrodes for gait phase detection. Sensors 19(23), 5197 (2019). https://doi.org/10.3390/s19235197
D. Kobsar, R. Ferber, Wearable sensor data to track subject-specific movement patterns related to clinical outcomes using a machine learning approach. Sensors 18(9), 2828 (2018). https://doi.org/10.3390/s18092828
Y.W. Jiang, A. Sadeqi, E.L. Miller, S. Sonkusale, Head motion classification using thread-based sensor and machine learning algorithm. Sci. Rep. 11(1), 2646 (2021). https://doi.org/10.1038/s41598-021-81284-7
Q.S. Hu, X.C. Tang, W. Tang, A smart chair sitting posture recognition system using flex sensors and fpga implemented artificial neural network. IEEE Sens. J. 20(14), 8007–8016 (2020). https://doi.org/10.1109/Jsen.2020.2980207
J. Meyer, B. Arnrich, J. Schumm, G. Troster, Design and modeling of a textile pressure sensor for sitting posture classification. IEEE Sens. J. 10(8), 1391–1398 (2010). https://doi.org/10.1109/Jsen.2009.2037330
C.C. Ma, W.F. Li, R. Gravina, G. Fortino, Posture detection based on smart cushion for wheelchair users. Sensors 17(4), 719 (2017). https://doi.org/10.3390/s17040719
H.Z. Tan, L.A. Slivovsky, A. Pentland, A sensing chair using pressure distribution sensors. IEEE-ASME Trans. Mech. 6(3), 261–268 (2001). https://doi.org/10.1109/3516.951364
K. Bourahmoune, T. Amagasa, Ai-powered posture training: Application of machine learning in sitting posture recognition using the lifechair smart cushion. J ASME Trans Mech (2019). https://doi.org/10.24963/ijcai.2019/805
C. Ma, G. Li, L.H. Qin, W.C. Huang, H.R. Zhang et al., Analytical model of micropyramidal capacitive pressure sensors and machine-learning-assisted design. Adv. Mater. Technol. 6(12), 2100634 (2021). https://doi.org/10.1002/admt.202100634
Z. Wang, Z. Sun, H. Yin, X. Liu, J. Wang et al., Data-driven materials innovation and applications. Adv. Mater. 34(36), 2104113 (2022). https://doi.org/10.1002/adma.202104113
M.Y. Zhang, J. Li, L. Kang, N. Zhang, C. Huang et al., Machine learning-guided design and development of multifunctional flexible ag/poly (amic acid) composites using the differential evolution algorithm. Nanoscale 12(6), 3988–3996 (2020). https://doi.org/10.1039/C9NR09146G
J. Cao, X.X. Zhang, Modulating the percolation network of polymer nanocomposites for flexible sensors. J. Appl. Phys. 128(22), 220901 (2020). https://doi.org/10.1063/5.0033652
Z. Ballard, C. Brown, A.M. Madni, A. Ozcan, Machine learning and computation-enabled intelligent sensor design. Nat. Mach. Intell. 3(7), 556–565 (2021). https://doi.org/10.1038/s42256-021-00360-9
N. Yi, Y.Y. Gao, A. Lo Verso, J. Zhu, D. Erdely et al., Fabricating functional circuits on 3d freeform surfaces via intense pulsed light-induced zinc mass transfer. Mater. Today. 50, 24–34 (2021). https://doi.org/10.1016/j.mattod.2021.07.002
S.H. Zhang, J. Zhu, Y.Y. Zhang, Z.S. Chen, C.Y. Song et al., Standalone stretchable rf systems based on asymmetric 3d microstrip antennas with on-body wireless communication and energy harvesting. Nano Energy 96, 107069 (2022). https://doi.org/10.1016/j.nanoen.2022.107069
L. Yang, C. Liu, W. Yuan, C. Meng, A. Dutta et al., Fully stretchable, porous mxene-graphene foam nanocomposites for energy harvesting and self-powered sensing. Nano Energy 103, 107807 (2022). https://doi.org/10.1016/j.nanoen.2022.107807
J. Zhu, Z.H. Hu, S.H. Zhang, X.Z. Zhang, H.L. Zhou et al., Stretchable 3d wideband dipole antennas from mechanical assembly for on-body communication. ACS Appl. Mater. Interfaces 14(10), 12855–12862 (2022). https://doi.org/10.1021/acsami.1c24651