Towards Practical Application of Li–S Battery with High Sulfur Loading and Lean Electrolyte: Will Carbon-Based Hosts Win This Race?
Corresponding Author: Yunlong Zhao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 150
Abstract
As the need for high-energy–density batteries continues to grow, lithium-sulfur (Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.
Highlights:
1 A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization.
2 The recent implementation of effective machine learning methods in discovering carbon-based sulfur hosts has been systematically examined.
3 The challenges and future directions of carbon-based sulfur hosts for practically application have been comprehensively discussed.
4 A summary of the strengths and weaknesses, along with the outlook on carbon-based sulfur hosts for practical application has been incorporated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Liu, L. Zhang, H. Yu, J. Wang, J. Li et al., Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle. Adv. Energy Mater. 12(33), 2200889 (2022). https://doi.org/10.1002/aenm.202200889
- K. Yang, Y. Li, L. Jia, Y. Wang, Z. Wang et al., Atomic/nano-scale in-situ probing the shuttling effect of redox mediator in Na–O2 batteries. J. Energy Chem. 56, 438–443 (2021). https://doi.org/10.1016/j.jechem.2020.08.025
- H. Li, Y. Wen, M. Jiang, Y. Yao, H. Zhou et al., Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction. Adv. Funct. Mater. 31(22), 2011289 (2021). https://doi.org/10.1002/adfm.202011289
- P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2012). https://doi.org/10.1038/nmat3191
- S. Chen, Z. Song, L. Wang, H. Chen, S. Zhang et al., Establishing a resilient conductive binding network for Si-based anodes via molecular engineering. Acc. Chem. Res. 55(15), 2088–2102 (2022). https://doi.org/10.1021/acs.accounts.2c00259
- C. Zhu, S. Chen, K. Li, Z.-W. Yin, Y. Xiao et al., Quantitative analysis of the structural evolution in Si anode via multi-scale image reconstruction. Sci. Bull. (2023). https://doi.org/10.1016/j.scib.2023.01.032
- Y. Ji, K. Yang, M. Liu, S. Chen, X. Liu et al., PIM-1 as a multifunctional framework to enable high-performance solid-state lithium–sulfur batteries. Adv. Funct. Mater. 31(47), 2104830 (2021). https://doi.org/10.1002/adfm.202104830
- M. Zhao, B.-Q. Li, X.-Q. Zhang, J.-Q. Huang, Q. Zhang, A perspective toward practical lithium–sulfur batteries. ACS Centr. Sci. 6(7), 1095–1104 (2020). https://doi.org/10.1021/acscentsci.0c00449
- C. Zhao, G.-L. Xu, Z. Yu, L. Zhang, I. Hwang et al., A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechn. 16(2), 166–173 (2021). https://doi.org/10.1038/s41565-020-00797-w
- D.R. Deng, F. Xue, C.-D. Bai, J. Lei, R. Yuan et al., Enhanced adsorptions to polysulfides on graphene-supported bn nanosheets with excellent Li–S battery performance in a wide temperature range. ACS Nano 12(11), 11120–11129 (2018). https://doi.org/10.1021/acsnano.8b05534
- W. Cai, G. Li, K. Zhang, G. Xiao, C. Wang et al., Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater. 28(2), 1704865 (2018). https://doi.org/10.1002/adfm.201704865
- X. Chen, Y. Wang, J. Wang, J. Liu, S. Sun et al., A cof-like conductive conjugated microporous poly (aniline) serving as a current collector modifier for high-performance Li–S batteries. J. Mater. Chem. A 10(3), 1359–1368 (2022). https://doi.org/10.1039/D1TA08942K
- M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem. Int. Ed. 59(31), 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
- H. Ye, Y. Li, Towards practical lean-electrolyte li–s batteries: Highly solvating electrolytes or sparingly solvating electrolytes? Nano Res. Energy 1, 9120012 (2022). https://doi.org/10.26599/NRE.2022.9120012
- H. Shi, Y. Dong, F. Zhou, J. Chen, Z.-S. Wu, 2d hybrid interlayer of electrochemically exfoliated graphene and Co(OH)2 nanosheet as a bi-functionalized polysulfide barrier for high-performance lithium–sulfur batteries. J. Phys. Energy 1(1), 015002 (2018). https://doi.org/10.1088/2515-7655/aadef6
- Y. Boyjoo, H. Shi, Q. Tian, S. Liu, J. Liang et al., Engineering nanoreactors for metal–chalcogen batteries. Energy Environ. Sci. 14(2), 540–575 (2021). https://doi.org/10.1039/D0EE03316B
- H. Shi, X. Zhao, Z.-S. Wu, Y. Dong, P. Lu et al., Free-standing integrated cathode derived from 3d graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithiumsulfur batteries. Nano Energy 60, 743–751 (2019). https://doi.org/10.1016/j.nanoen.2019.04.006
- H. Shi, J. Qin, P. Lu, C. Dong, J. He et al., Interfacial engineering of bifunctional niobium (v)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium–sulfur full batteries. Mater. Adv. Funct. Mater. 31(28), 2102314 (2021). https://doi.org/10.1002/adfm.202102314
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Enhanced catalytic conversion of polysulfide using 1d cote and 2d mxene for heat-resistant and lean-electrolyte Li–S batteries. Chem. Engin. J. 430, 132734 (2022). https://doi.org/10.1016/j.cej.2021.132734
- L. Wang, X. Zhang, Y. Xu, C. Li, W. Liu et al., Tetrabutylammonium-intercalated 1t-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2d delaminated mxene for high-performance lithium-ion capacitors. Mater. Adv. Funct. Mater. 31(36), 2104286 (2021). https://doi.org/10.1002/adfm.202104286
- X. Chen, C. Zhao, K. Yang, S. Sun, J. Bi et al., Conducting polymers meet lithium‐sulfur batteries: progress, challenges and perspectives. Energy Environ. Mater. e12483 (2022). https://doi.org/10.1002/eem2.12483
- S.H. Chung, A. Manthiram, Current status and future prospects of metal–sulfur batteries. Adv. Mater. 31(27), 1901125 (2019). https://doi.org/10.1002/adma.201901125
- L. Zhou, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Host Mater. anchoring polysulfides in li–s batteries reviewed. Adv. Energy Mater. 11(15), 2001304 (2021). https://doi.org/10.1002/aenm.202001304
- K. Yang, L. Yang, Z. Wang, B. Guo, Z. Song et al., Constructing a highly efficient aligned conductive network to facilitate depolarized high-areal-capacity electrodes in Li-ion batteries. Adv. Energy Mater. 11(22), 2100601 (2021). https://doi.org/10.1002/aenm.202100601
- C. Deng, Z. Wang, S. Wang, J. Yu, Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies. J. Mater. Chem. A 7(20), 12381–12413 (2019). https://doi.org/10.1039/C9TA00535H
- S.S. Zhang, Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources. 231, 153–162 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.102
- O. Ogoke, G. Wu, X. Wang, A. Casimir, L. Ma et al., Effective strategies for stabilizing sulfur for advanced lithium–sulfur batteries. J. Mater. Chem. A 5(2), 448–469 (2017). https://doi.org/10.1039/C6TA07864H
- A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46(5), 1125–1134 (2013). https://doi.org/10.1021/ar300179v
- Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium–sulfur batteries: Electrochemical materials and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013). https://doi.org/10.1002/anie.201304762
- F. Liu, G. Sun, H.B. Wu, G. Chen, D. Xu et al., Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries. Nat. Commun. 11(1), 5215 (2020). https://doi.org/10.1038/s41467-020-19070-8
- S. Sun, J. Wang, X. Chen, Q. Ma, Y. Wang et al., Thermally stable and dendrite-resistant separators toward highly robust lithium metal batteries. Adv. Energy Mater. 12(41), 2202206 (2022). https://doi.org/10.1002/aenm.202202206
- H. Pan, M. Zhang, Z. Cheng, H. Jiang, J. Yang et al., Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci. Adv. 8(15), eabn4372 (2022). https://doi.org/10.1126/sciadv.abn4372
- M. Zhao, B.-Q. Li, H.-J. Peng, H. Yuan, J.-Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem. Int. Ed. 59(31), 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
- Y.-W. Song, L. Shen, N. Yao, X.-Y. Li, C.-X. Bi et al., Cationic lithium polysulfides in lithium–sulfur batteries. Chem 8(11), 3031–3050 (2022). https://doi.org/10.1016/j.chempr.2022.07.004
- J. Xie, H.J. Peng, Y.W. Song, B.Q. Li, Y. Xiao et al., Spatial and kinetic regulation of sulfur electrochemical on semi-immobilized redox mediators in working batteries. Angew. Chem. Int. Ed. 132(40), 17823–17828 (2020). https://doi.org/10.1002/ange.202007740
- Z. Shen, Q. Gao, X. Zhu, Z. Guo, K. Guo et al., In-situ free radical supplement strategy for improving the redox kinetics of Li-S batteries. Energy Storage Mater. 57, 299–307 (2023). https://doi.org/10.1016/j.ensm.2023.02.023
- J. Liang, Z.-H. Sun, F. Li, H.-M. Cheng, Carbon Mater. for Li–S batteries: Functional evolution and performance improvement. Energy Storage Mater. 2, 76–106 (2016). https://doi.org/10.1016/j.ensm.2015.09.007
- L. Borchardt, M. Oschatz, S. Kaskel. Carbon materials for lithium sulfur batteries—ten critical questions. Chem.–A Eur. J. 22(22), 7324–7351 (2016). https://doi.org/10.1002/chem.201600040
- C. Wang, J.-J. Chen, Y.-N. Shi, M.-S. Zheng, Q.-F. Dong, Preparation and performance of a core–shell carbon/sulfur material for lithium/sulfur battery. Electrochim. Acta 55(23), 7010–7015 (2010). https://doi.org/10.1016/j.electacta.2010.06.019
- J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee et al., Spherical ordered mesoporous carbon nanops with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51(15), 3591–3595 (2012). https://doi.org/10.1002/anie.201107817
- G. He, S. Evers, X. Liang, M. Cuisinier, A. Garsuch et al., Tailoring porosity in carbon nanospheres for lithium–sulfur battery cathodes. ACS Nano 7(12), 10920–10930 (2013). https://doi.org/10.1021/nn404439r
- K. Zhang, Q. Zhao, Z. Tao, J. Chen, Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 6(1), 38–46 (2013). https://doi.org/10.1007/s12274-012-0279-1
- Z. Li, L. Yuan, Z. Yi, Y. Sun, Y. Liu et al., Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 4(7), 1301473 (2014). https://doi.org/10.1002/aenm.201301473
- A. Fu, C. Wang, F. Pei, J. Cui, X. Fang et al., Recent advances in hollow porous carbon Mater. for lithium–sulfur batteries. Small 15(10), 1804786 (2019). https://doi.org/10.1002/smll.201804786
- N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem. Int. Ed. 50(26), 5904–5908 (2011). https://doi.org/10.1002/anie.201100637
- C. Zhang, H.B. Wu, C. Yuan, Z. Guo, X.W. Lou, Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51(38), 9592–9595 (2012). https://doi.org/10.1002/anie.201205292
- S. Chen, X. Huang, B. Sun, J. Zhang, H. Liu et al., Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances. J. Mater. Chem. A 2(38), 16199–16207 (2014). https://doi.org/10.1039/C4TA03877K
- C. Wang, K. Takei, T. Takahashi, A. Javey, Carbon nanotube electronics–moving forward. Chem. Soc. Rev. 42(7), 2592–2609 (2013). https://doi.org/10.1039/C2CS35325C
- F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo et al., Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510(7506), 522–524 (2014). https://doi.org/10.1038/nature13434
- Y.-S. Su, Y. Fu, A. Manthiram, Self-weaving sulfur–carbon composite cathodes for high rate lithium–sulfur batteries. Phys. Chem. Chem. Phys. 14(42), 14495–14499 (2012). https://doi.org/10.1039/c2cp42796f
- Y.C. Jeong, K. Lee, T. Kim, J.H. Kim, J. Park et al., Partially unzipped carbon nanotubes for high-rate and stable lithium–sulfur batteries. J. Mater. Chem. A 4(3), 819–826 (2016). https://doi.org/10.1039/C5TA07818K
- J. Guo, Y. Xu, C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett. 11(10), 4288–4294 (2011). https://doi.org/10.1021/nl202297p
- Y. Zhao, W. Wu, J. Li, Z. Xu, L. Guan, Encapsulating mwnts into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 26(30), 5113–5118 (2014). https://doi.org/10.1002/adma.201401191
- J.S. Lee, W. Kim, J. Jang, A. Manthiram, Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium–sulfur batteries. Adv. Energy Mater. 7(5), 1601943 (2017). https://doi.org/10.1002/aenm.201601943
- F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini et al., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501
- M.-Q. Zhao, Q. Zhang, J.-Q. Huang, G.-L. Tian, J.-Q. Nie et al., Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat. Commun. 5(1), 3410 (2014). https://doi.org/10.1038/ncomms4410
- C. Tang, B.-Q. Li, Q. Zhang, L. Zhu, H.-F. Wang et al., Cao-templated growth of hierarchical porous graphene for high-power lithium–sulfur battery applications. Adv. Funct. Mater. 26(4), 577–585 (2016). https://doi.org/10.1002/adfm.201503726
- S. Chen, X. Huang, H. Liu, B. Sun, W. Yeoh et al., 3d hyperbranched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries. Adv. Energy Mater. 4(8), 1301761 (2014). https://doi.org/10.1002/aenm.201301761
- Z. Zheng, H. Guo, F. Pei, X. Zhang, X. Chen et al., High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries. Adv. Funct. Mater. 26(48), 8952–8959 (2016). https://doi.org/10.1002/adfm.201601897
- W. Li, Z. Liang, Z. Lu, H. Yao, Z.W. Seh et al., A sulfur cathode with pomegranate-like cluster structure. Adv. Energy Mater. 5(16), 1500211 (2015). https://doi.org/10.1002/aenm.201500211
- R. Fang, S. Zhao, P. Hou, M. Cheng, S. Wang et al., 3d interconnected electrode Mater. with ultrahigh areal sulfur loading for Li–S batteries. Adv. Mater. 28(17), 3374–3382 (2016). https://doi.org/10.1002/adma.201506014
- L. Duan, L. Zhao, H. Cong, X. Zhang, W. Lüet al., Plasma treatment for nitrogen-doped 3d graphene framework by a conductive matrix with sulfur for high-performance Li–S batteries. Small 15(7), 1804347 (2019). https://doi.org/10.1002/smll.201804347
- G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang et al., Three-dimensional porous carbon composites containing high sulfur nanop content for high-performance lithium–sulfur batteries. Nat. Commun. 7(1), 10601 (2016). https://doi.org/10.1038/ncomms10601
- Y. Chen, X. Li, K.-S. Park, J. Hong, J. Song et al., Sulfur encapsulated in porous hollow CNTs@ CNFs for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2(26), 10126–10130 (2014). https://doi.org/10.1039/C4TA01823K
- J. Ruan, H. Sun, Y. Song, Y. Pang, J. Yang et al., Constructing 1d/2d interwoven carbonous matrix to enable high-efficiency sulfur immobilization in Li-S battery. Energy Mater. 1(2), 100018 (2021). https://doi.org/10.20517/energymater.2021.22
- L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li et al., Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133(46), 18522–18525 (2011). https://doi.org/10.1021/ja206955k
- G. Zheng, Q. Zhang, J.J. Cha, Y. Yang, W. Li et al., Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 13(3), 1265–1270 (2013). https://doi.org/10.1021/nl304795g
- Z.-L. Xu, J.-K. Kim, K. Kang, Carbon nano materials for Adv. lithium sulfur batteries. Nano Today 19, 84–107 (2018). https://doi.org/10.1016/j.nantod.2018.02.006
- W. Zhou, X. Xiao, M. Cai, L. Yang, Polydopamine-coated, nitrogen-doped, hollow carbon–sulfur double-layered core–shell structure for improving lithium–sulfur batteries. Nano Lett. 14(9), 5250–5256 (2014). https://doi.org/10.1021/nl502238b
- P. Zhu, J. Zhu, C. Yan, M. Dirican, J. Zang et al., In situ polymerization of nanostructured conductive polymer on 3d sulfur/carbon nanofiber composite network as cathode for high-performance lithium–sulfur batteries. Adv. Mater. Interfaces 5(10), 1701598 (2018). https://doi.org/10.1002/admi.201701598
- F. Sun, J. Wang, H. Chen, W. Li, W. Qiao et al., High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li–S batteries. ACS Appl. Mater. interfaces 5(12), 5630–5638 (2013). https://doi.org/10.1021/am400958x
- Q. Pang, J. Tang, H. Huang, X. Liang, C. Hart et al., A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@ cellulose for advanced lithium–sulfur batteries. Adv. Mater. 27(39), 6021–6028 (2015). https://doi.org/10.1002/adma.201502467
- T.Z. Hou, X. Chen, H.J. Peng, J.Q. Huang, B.Q. Li et al., Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries. Small 12(24), 3283–3291 (2016). https://doi.org/10.1002/smll.201600809
- H. Liu, F. Liu, Z. Qu, J. Chen, H. Liu et al., High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and n, p, f-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery. Nano Res. Energy e9120049 (2023). https://doi.org/10.26599/NRE.2023.9120049
- G. Zhou, E. Paek, G.S. Hwang, A. Manthiram, Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6(1), 7760 (2015). https://doi.org/10.1038/ncomms8760
- J. Wang, H. Yang, Z. Chen, L. Zhang, J. Liu et al., Double-shelled phosphorus and nitrogen codoped carbon nanospheres as efficient polysulfide mediator for high-performance lithium–sulfur batteries. Adv. Sci. 5(11), 1800621 (2018). https://doi.org/10.1002/advs.201800621
- Q. Pang, L.F. Nazar, Long-life and high-areal-capacity li–s batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 10(4), 4111–4118 (2016). https://doi.org/10.1021/acsnano.5b07347
- S. Kim, S. Shirvani-Arani, S. Choi, M. Cho, Y. Lee, Strongly anchoring polysulfides by hierarchical Fe3O4/C3N4 nanostructures for advanced lithium–sulfur batteries. Nano-Micro Lett. 12(1), 139 (2020). https://doi.org/10.1007/s40820-020-00475-5
- Y. Gong, C. Fu, G. Zhang, H. Zhou, Y. Kuang, Three-dimensional porous C3N4 nanosheets@ reduced graphene oxide network as sulfur hosts for high performance lithium-sulfur batteries. Electrochim. Acta 256, 1–9 (2017). https://doi.org/10.1016/j.electacta.2017.10.032
- Y. Yi, H. Li, H. Chang, P. Yang, X. Tian et al., Few-layer boron nitride with engineered nitrogen vacancies for promoting conversion of polysulfide as a cathode matrix for lithium–sulfur batteries. Chem. – A Eur. J. 25(34), 8112–8117 (2019). https://doi.org/10.1002/chem.201900884
- M. Li, K. Fu, Z. Wang, C. Cao, J. Yang et al., Enhanced adsorption of polysulfides on carbon nanotubes/boron nitride fibers for high-performance lithium-sulfur batteries. Chem. – A Eur. J. 26(72), 17567–17573 (2020). https://doi.org/10.1002/chem.202003807
- Q. Pang, D. Kundu, M. Cuisinier, L. Nazar, Surface-enhanced redox Chem. of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5(1), 4759 (2014). https://doi.org/10.1038/ncomms5759
- Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang et al., Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8(1), 14627 (2017). https://doi.org/10.1038/ncomms14627
- Z. Liang, G. Zheng, W. Li, Z.W. Seh, H. Yao et al., Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 8(5), 5249–5256 (2014). https://doi.org/10.1021/nn501308m
- W. Yang, Y. Wei, Q. Chen, S. Qin, J. Zuo et al., A MoO3/MoO2-CP self-supporting heterostructure for modification of lithium–sulfur batteries. J. Mater. Chem. A 8(31), 15816–15821 (2020). https://doi.org/10.1039/D0TA01664K
- L. Fan, H. Wu, X. Wu, M. Wang, J. Cheng et al., Fe-mof derived jujube pit like Fe3O4/C composite as sulfur host for lithium-sulfur battery. Electrochim. Acta 295, 444–451 (2019). https://doi.org/10.1016/j.electacta.2018.08.107
- Y. Jeon, J. Lee, H. Jo, H. Hong, L.Y.S. Lee et al., Co/Co3O4-embedded n-doped hollow carbon composite derived from a bimetallic MOF/ZnO core-shell template as a sulfur host for Li-S batteries. Chem. Engin. J. 407, 126967 (2021). https://doi.org/10.1016/j.cej.2020.126967
- Q. Zhang, Y. Wang, Z.W. Seh, Z. Fu, R. Zhang et al., Understanding the anchoring effect of two-dimensional layered material for lithium–sulfur batteries. Nano Lett. 15(6), 3780–3786 (2015). https://doi.org/10.1021/acs.nanolett.5b00367
- Z. Cui, C. Zu, W. Zhou, A. Manthiram, J.B. Goodenough, Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 28(32), 6926–6931 (2016). https://doi.org/10.1002/adma.201601382
- D.-R. Deng, F. Xue, Y.-J. Jia, J.-C. Ye, C.-D. Bai et al., Co4n nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries. ACS Nano 11(6), 6031–6039 (2017). https://doi.org/10.1021/acsnano.7b01945
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of mof-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13, 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
- T. Pan, Z. Li, Q. He, X. Xu, L. He et al., Uniform zeolitic imidazolate framework coating via in situ recoordination for efficient polysulfide trapping. Energy Storage Mater. 23, 55–61 (2019). https://doi.org/10.1016/j.ensm.2019.05.034
- Q. Zhu, H.-F. Xu, K. Shen, Y.-Z. Zhang, B. Li et al., Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium–sulfur batteries. Rare Met. 41(1), 311–318 (2022). https://doi.org/10.1007/s12598-021-01839-5
- J. Song, X. Guo, J. Zhang, Y. Chen, C. Zhang et al., Rational design of free-standing 3d porous MXene/RGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries. J. Mater. Chem. A 7(11), 6507–6513 (2019). https://doi.org/10.1039/C9TA00212J
- Z. Shi, Y. Ding, Q. Zhang, J. Sun, Electrocatalyst modulation toward bidirectional sulfur redox in Li–S batteries: From strategic probing to mechanistic understanding. Adv. Energy Mater. 12(29), 2201056 (2022). https://doi.org/10.1002/aenm.202201056
- Z. Sun, S. Vijay, H.H. Heenen, A.Y.S. Eng, W. Tu et al., Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur batteries. Adv. Energy Mater. 10(22), 1904010 (2020). https://doi.org/10.1002/aenm.201904010
- H. Li, S. Ma, H. Cai, H. Zhou, Z. Huang et al., Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. Energy storage Mater. 18, 338–348 (2019). https://doi.org/10.1016/j.ensm.2018.08.016
- S.-M. Wang, H.-N. Li, G.-F. Zhao, L.-F. Xu, D.-L. Liu et al., Ni3FeN anchored on porous carbon as electrocatalyst for advanced Li–S batteries. Rare Met. 42(2), 515–524 (2023). https://doi.org/10.1007/s12598-022-02140-9
- T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao et al., Twinborn TiO2–Tin heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environm. Sci. 10(7), 1694–1703 (2017). https://doi.org/10.1039/C7EE01430A
- Y. Song, W. Zhao, L. Kong, L. Zhang, X. Zhu et al., Synchronous immobilization and conversion of polysulfides on a VO2–Vn binary host targeting high sulfur load Li–S batteries. Energy Environm. Sci. 11(9), 2620–2630 (2018). https://doi.org/10.1039/C8EE01402G
- W. Yao, W. Zheng, J. Xu, C. Tian, K. Han et al., ZnS-SnS@ NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium–sulfur batteries. ACS Nano 15(4), 7114–7130 (2021). https://doi.org/10.1021/acsnano.1c00270
- W. Li, Z. Gong, X. Yan, D. Wang, J. Liu et al., In situ engineered zns–fes heterostructures in n-doped carbon nanocages accelerating polysulfide redox kinetics for lithium sulfur batteries. J. Mater. Chem. A 8(1), 433–442 (2020). https://doi.org/10.1039/C9TA11451C
- Y. Li, T. Jiang, H. Yang, D. Lei, X. Deng et al., A heterostuctured Co3S4/MnS nanotube array as a catalytic sulfur host for lithium–sulfur batteries. Electrochim. Acta 330, 135311 (2020). https://doi.org/10.1016/j.electacta.2019.135311
- S. Chen, J. Luo, N. Li, X. Han, J. Wang et al., Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan. Energy Storage Mater. 30, 187–195 (2020). https://doi.org/10.1016/j.ensm.2020.05.002
- R. Wang, C. Luo, T. Wang, G. Zhou, Y. Deng et al., Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries. Adv. Mater. 32(32), 2000315 (2020). https://doi.org/10.1002/adma.202000315
- Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu et al., Engineering catalytic CoSe–ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 9(1), 2103456 (2022). https://doi.org/10.1002/advs.202103456
- H. Li, C. Chen, Y. Yan, T. Yan, C. Cheng et al., Utilizing the built-in electric field of p–n junctions to spatially propel the stepwise polysulfide conversion in lithium–sulfur batteries. Adv. Mater. 33(51), 2105067 (2021). https://doi.org/10.1002/adma.202105067
- S. Wu, W. Wang, J. Shan, X. Wang, D. Lu et al., Conductive 1T-VS2− MXene heterostructured bidirectional electrocatalyst enabling compact li-s batteries with high volumetric and areal capacity. Energy Storage Mater. 49, 153–163 (2022). https://doi.org/10.1016/j.ensm.2022.04.004
- H. Li, S. Ma, J. Li, F. Liu, H. Zhou et al., Altering the reaction mechanism to eliminate the shuttle effect in lithium-sulfur batteries. Energy Storage Mater. 26, 203–212 (2020). https://doi.org/10.1016/j.ensm.2020.01.002
- D. Tian, X. Song, Y. Qiu, X. Sun, B. Jiang et al., Basal-plane-activated molybdenum sulfide nanosheets with suitable orbital orientation as efficient electrocatalysts for lithium–sulfur batteries. ACS Nano 15(10), 16515–16524 (2021). https://doi.org/10.1021/acsnano.1c06067
- L. Xu, H. Zhao, M. Sun, B. Huang, J. Wang et al., Oxygen vacancies on layered niobic acid that weaken the catalytic conversion of polysulfides in lithium–sulfur batteries. Angew. Chem. Int. Ed. 58(33), 11491–11496 (2019). https://doi.org/10.1002/anie.201905852
- H.-J. Li, K. Xi, W. Wang, S. Liu, G.-R. Li et al., Quantitatively regulating defects of 2d tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery. Energy Storage Mater. 45, 1229–1237 (2022). https://doi.org/10.1016/j.ensm.2021.11.024
- B. Jiang, Y. Qiu, D. Tian, Y. Zhang, X. Song et al., Crystal facet engineering induced active tin dioxide nanocatalysts for highly stable lithium–sulfur batteries. Adv. Energy Mater. 11(48), 2102995 (2021). https://doi.org/10.1002/aenm.202102995
- Z. Shi, Z. Sun, J. Cai, Z. Fan, J. Jin et al., Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li–S batteries. Adv. Funct. Mater. 31(4), 2006798 (2021). https://doi.org/10.1002/adfm.202006798
- Z.-Y. Wang, B. Zhang, S. Liu, G.-R. Li, T. Yan, X.-P. Gao, Nickel–platinum alloy nanocrystallites with high-index facets as highly effective core catalyst for lithium–sulfur batteries. Adv. Funct. Mater. 32(27), 2200893 (2022). https://doi.org/10.1002/adfm.202200893
- H. Xu, R. Hu, Y. Zhang, H. Yan, Q. Zhu et al., Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 43, 212–220 (2021). https://doi.org/10.1016/j.ensm.2021.09.003
- A. Urban, D.-H. Seo, G. Ceder, Computational understanding of Li-ion batteries. npj Computational Mater. 2(1), 16002 (2016). https://doi.org/10.1038/npjcompumats.2016.2
- E.I. Andritsos, C. Lekakou, Q. Cai, Single-atom catalysts as promising cathode materials for lithium–sulfur batteries. J. Phys. Chem. C 125(33), 18108–18118 (2021). https://doi.org/10.1021/acs.jpcc.1c04491
- G. Zhou, S. Zhao, T. Wang, S.-Z. Yang, B. Johannessen et al., Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries. Nano Lett. 20(2), 1252–1261 (2019). https://doi.org/10.1021/acs.nanolett.9b04719
- Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng et al., Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li–S batteries. Adv. Mater. 33(44), 2105947 (2021). https://doi.org/10.1002/adma.202105947
- C. Lu, Y. Chen, Y. Yang, X. Chen, Single-atom catalytic Mater. for lean-electrolyte ultrastable lithium–sulfur batteries. Nano Lett. 20(7), 5522–5530 (2020). https://doi.org/10.1021/acs.nanolett.0c02167
- Y. Li, J. Wu, B. Zhang, W. Wang, G. Zhang et al., Fast conversion and controlled deposition of lithium (poly) sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Mater. 30, 250–259 (2020). https://doi.org/10.1016/j.ensm.2020.05.022
- P. Wang, B. Xi, Z. Zhang, M. Huang, J. Feng et al., Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium–sulfur batteries. Angew. Chem. Int. Ed. 60(28), 15563–15571 (2021). https://doi.org/10.1002/anie.202104053
- S. Feng, Z.H. Fu, X. Chen, Q. Zhang, A review on theoretical models for lithium–sulfur battery cathodes. InfoMat 4(3), e12304 (2022). https://doi.org/10.1002/inf2.12304
- H. Zhang, Z. Wang, J. Cai, S. Wu, J. Li, Machine-learning-enabled tricks of the trade for rapid host material discovery in Li–S battery. ACS Appl. Mater. Interfaces 13(45), 53388–53397 (2021). https://doi.org/10.1021/acsami.1c10749
- H. Zhang, Z. Wang, J. Ren, J. Liu, J. Li, Ultra-fast and accurate binding energy prediction of shuttle effect-suppressive sulfur hosts for lithium-sulfur batteries using machine learning. Energy Storage Mater. 35, 88–98 (2021). https://doi.org/10.1016/j.ensm.2020.11.009
- Z. Lian, M. Yang, F. Jan, B. Li, Machine learning derived blueprint for rational design of the effective single-atom cathode catalyst of the lithium–sulfur battery. J. Phys. Chem. Lett. 12(29), 7053–7059 (2021). https://doi.org/10.1021/acs.jpclett.1c00927
- A. Kilic, Ç. Odabaşı, R. Yildirim, D. Eroglu, Assessment of critical materials and cell design factors for high performance lithium-sulfur batteries using machine learning. Chem. Engin. J. 390, 124117 (2020). https://doi.org/10.1016/j.cej.2020.124117
- C.-X. Bi, L.-P. Hou, Z. Li, M. Zhao, X.-Q. Zhang et al., Protecting lithium metal anodes in lithium–sulfur batteries: A review. Energy Mater. Adv. 4, 0010 (2023). https://doi.org/10.34133/energymatadv.0010
- T. Tao, Z. Zheng, Y. Gao, B. Yu, Y. Fan et al., Understanding the role of interfaces in solid-state lithium-sulfur batteries. Energy Mater. 2, 200036 (2022). https://doi.org/10.20517/energymater.2022.4
- H. Liu, X. Sun, X.B. Cheng, C. Guo, F. Yu et al., Working principles of lithium metal anode in pouch cells. Adv. Energy Mater. 2202518 (2022). https://doi.org/10.1002/aenm.202202518
- Z.X. Chen, M. Zhao, L.P. Hou, X.Q. Zhang, B.Q. Li et al., Toward practical high-energy-density lithium–sulfur pouch cells: A review. Adv. Mater. 34(35), 2201555 (2022). https://doi.org/10.1002/adma.202201555
- X.-B. Cheng, C. Yan, J.-Q. Huang, P. Li, L. Zhu et al., The gap between long lifespan li-s coin and pouch cells: The importance of lithium metal anode protection. Energy Storage Mater. 6, 18–25 (2017). https://doi.org/10.1016/j.ensm.2016.09.003
- L. Shi, C.S. Anderson, L. Mishra, H. Qiao, N. Canfield et al., Early failure of lithium–sulfur batteries at practical conditions: Crosstalk between sulfur cathode and lithium anode. Adv. Sci. 9(21), 2201640 (2022). https://doi.org/10.1002/advs.202201640
- L. Shi, S.-M. Bak, Z. Shadike, C. Wang, C. Niu et al., Reaction heterogeneity in practical high-energy lithium–sulfur pouch cells. Energy Environ. Sci. 13(10), 3620–3632 (2020). https://doi.org/10.1039/D0EE02088E
- L. Huang, T. Lu, G. Xu, X. Zhang, Z. Jiang et al., Thermal runaway routes of large-format lithium-sulfur pouch cell batteries. Joule 6(4), 906–922 (2022). https://doi.org/10.1016/j.joule.2022.02.015
- F.-N. Jiang, S.-J. Yang, Z.-X. Chen, H. Liu, H. Yuan et al., Higher-order polysulfides induced thermal runaway for 1.0 ah lithium sulfur pouch cells. Particuology 79, 10–17 (2023). https://doi.org/10.1016/j.partic.2022.11.009
- F. Wu, Y.-S. Ye, J.-Q. Huang, T. Zhao, J. Qian et al., Sulfur nanodots stitched in 2d “bubble-like” interconnected carbon fabric as reversibility-enhanced cathodes for lithium–sulfur batteries. ACS Nano 11(5), 4694–4702 (2017). https://doi.org/10.1021/acsnano.7b00596
- H. Ji, Z. Wang, Y. Sun, Y. Zhou, S. Li et al., Weakening Li+ de‐solvation barrier for cryogenic Li–S pouch cells. Adv. Mater. 2208590 (2022). https://doi.org/10.1002/adma.202208590
- S. Li, J. Lin, B. Chang, D. Yang, D.-Y. Wu et al., Implanting single-atom N2-Fe-B2 catalytic sites in carbon hosts to stabilize high-loading and lean-electrolyte lithium-sulfur batteries. Energy Storage Mater. 55, 94–104 (2023). https://doi.org/10.1016/j.ensm.2022.11.045
- C. Qu, Y. Chen, X. Yang, H. Zhang, X. Li et al., LiNO3-free electrolyte for Li-S battery: a solvent of choice with low ksp of polysulfide and low dendrite of lithium. Nano Energy 39, 262–272 (2017). https://doi.org/10.1016/j.nanoen.2017.07.002
- Q. Cheng, Z.-X. Chen, X.-Y. Li, L.-P. Hou, C.-X. Bi et al., Constructing a 700 wh kg−1-level rechargeable lithium–sulfur pouch cell. J. Energy Chem. 76, 181–186 (2023). https://doi.org/10.1016/j.jechem.2022.09.029
- Y. Ye, F. Wu, Y. Liu, T. Zhao, J. Qian et al., Toward practical high-energy batteries: a modular-assembled oval-like carbon microstructure for thick sulfur electrodes. Adv. Mater. 29(48), 1700598 (2017). https://doi.org/10.1002/adma.201700598
- K. Zhang, X. Li, Y. Yang, Z. Chen, L. Ma et al., High loading sulfur cathodes by reactive‐type polymer tubes for high‐performance lithium‐sulfur batteries. Adv. Funct. Mater. 2212759 (2022). https://doi.org/10.1002/adfm.202212759
- W. Xue, Z. Shi, L. Suo, C. Wang, Z. Wang et al., Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4(5), 374–382 (2019). https://doi.org/10.1038/s41560-019-0351-0
- Z. Li, I. Sami, J. Yang, J. Li, R.V. Kumar et al., Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nat. Energy 8, 84–93 (2023). https://doi.org/10.1038/s41560-022-01175-7
References
X. Liu, L. Zhang, H. Yu, J. Wang, J. Li et al., Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle. Adv. Energy Mater. 12(33), 2200889 (2022). https://doi.org/10.1002/aenm.202200889
K. Yang, Y. Li, L. Jia, Y. Wang, Z. Wang et al., Atomic/nano-scale in-situ probing the shuttling effect of redox mediator in Na–O2 batteries. J. Energy Chem. 56, 438–443 (2021). https://doi.org/10.1016/j.jechem.2020.08.025
H. Li, Y. Wen, M. Jiang, Y. Yao, H. Zhou et al., Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction. Adv. Funct. Mater. 31(22), 2011289 (2021). https://doi.org/10.1002/adfm.202011289
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2012). https://doi.org/10.1038/nmat3191
S. Chen, Z. Song, L. Wang, H. Chen, S. Zhang et al., Establishing a resilient conductive binding network for Si-based anodes via molecular engineering. Acc. Chem. Res. 55(15), 2088–2102 (2022). https://doi.org/10.1021/acs.accounts.2c00259
C. Zhu, S. Chen, K. Li, Z.-W. Yin, Y. Xiao et al., Quantitative analysis of the structural evolution in Si anode via multi-scale image reconstruction. Sci. Bull. (2023). https://doi.org/10.1016/j.scib.2023.01.032
Y. Ji, K. Yang, M. Liu, S. Chen, X. Liu et al., PIM-1 as a multifunctional framework to enable high-performance solid-state lithium–sulfur batteries. Adv. Funct. Mater. 31(47), 2104830 (2021). https://doi.org/10.1002/adfm.202104830
M. Zhao, B.-Q. Li, X.-Q. Zhang, J.-Q. Huang, Q. Zhang, A perspective toward practical lithium–sulfur batteries. ACS Centr. Sci. 6(7), 1095–1104 (2020). https://doi.org/10.1021/acscentsci.0c00449
C. Zhao, G.-L. Xu, Z. Yu, L. Zhang, I. Hwang et al., A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechn. 16(2), 166–173 (2021). https://doi.org/10.1038/s41565-020-00797-w
D.R. Deng, F. Xue, C.-D. Bai, J. Lei, R. Yuan et al., Enhanced adsorptions to polysulfides on graphene-supported bn nanosheets with excellent Li–S battery performance in a wide temperature range. ACS Nano 12(11), 11120–11129 (2018). https://doi.org/10.1021/acsnano.8b05534
W. Cai, G. Li, K. Zhang, G. Xiao, C. Wang et al., Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater. 28(2), 1704865 (2018). https://doi.org/10.1002/adfm.201704865
X. Chen, Y. Wang, J. Wang, J. Liu, S. Sun et al., A cof-like conductive conjugated microporous poly (aniline) serving as a current collector modifier for high-performance Li–S batteries. J. Mater. Chem. A 10(3), 1359–1368 (2022). https://doi.org/10.1039/D1TA08942K
M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem. Int. Ed. 59(31), 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
H. Ye, Y. Li, Towards practical lean-electrolyte li–s batteries: Highly solvating electrolytes or sparingly solvating electrolytes? Nano Res. Energy 1, 9120012 (2022). https://doi.org/10.26599/NRE.2022.9120012
H. Shi, Y. Dong, F. Zhou, J. Chen, Z.-S. Wu, 2d hybrid interlayer of electrochemically exfoliated graphene and Co(OH)2 nanosheet as a bi-functionalized polysulfide barrier for high-performance lithium–sulfur batteries. J. Phys. Energy 1(1), 015002 (2018). https://doi.org/10.1088/2515-7655/aadef6
Y. Boyjoo, H. Shi, Q. Tian, S. Liu, J. Liang et al., Engineering nanoreactors for metal–chalcogen batteries. Energy Environ. Sci. 14(2), 540–575 (2021). https://doi.org/10.1039/D0EE03316B
H. Shi, X. Zhao, Z.-S. Wu, Y. Dong, P. Lu et al., Free-standing integrated cathode derived from 3d graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithiumsulfur batteries. Nano Energy 60, 743–751 (2019). https://doi.org/10.1016/j.nanoen.2019.04.006
H. Shi, J. Qin, P. Lu, C. Dong, J. He et al., Interfacial engineering of bifunctional niobium (v)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium–sulfur full batteries. Mater. Adv. Funct. Mater. 31(28), 2102314 (2021). https://doi.org/10.1002/adfm.202102314
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Enhanced catalytic conversion of polysulfide using 1d cote and 2d mxene for heat-resistant and lean-electrolyte Li–S batteries. Chem. Engin. J. 430, 132734 (2022). https://doi.org/10.1016/j.cej.2021.132734
L. Wang, X. Zhang, Y. Xu, C. Li, W. Liu et al., Tetrabutylammonium-intercalated 1t-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2d delaminated mxene for high-performance lithium-ion capacitors. Mater. Adv. Funct. Mater. 31(36), 2104286 (2021). https://doi.org/10.1002/adfm.202104286
X. Chen, C. Zhao, K. Yang, S. Sun, J. Bi et al., Conducting polymers meet lithium‐sulfur batteries: progress, challenges and perspectives. Energy Environ. Mater. e12483 (2022). https://doi.org/10.1002/eem2.12483
S.H. Chung, A. Manthiram, Current status and future prospects of metal–sulfur batteries. Adv. Mater. 31(27), 1901125 (2019). https://doi.org/10.1002/adma.201901125
L. Zhou, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Host Mater. anchoring polysulfides in li–s batteries reviewed. Adv. Energy Mater. 11(15), 2001304 (2021). https://doi.org/10.1002/aenm.202001304
K. Yang, L. Yang, Z. Wang, B. Guo, Z. Song et al., Constructing a highly efficient aligned conductive network to facilitate depolarized high-areal-capacity electrodes in Li-ion batteries. Adv. Energy Mater. 11(22), 2100601 (2021). https://doi.org/10.1002/aenm.202100601
C. Deng, Z. Wang, S. Wang, J. Yu, Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies. J. Mater. Chem. A 7(20), 12381–12413 (2019). https://doi.org/10.1039/C9TA00535H
S.S. Zhang, Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources. 231, 153–162 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.102
O. Ogoke, G. Wu, X. Wang, A. Casimir, L. Ma et al., Effective strategies for stabilizing sulfur for advanced lithium–sulfur batteries. J. Mater. Chem. A 5(2), 448–469 (2017). https://doi.org/10.1039/C6TA07864H
A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46(5), 1125–1134 (2013). https://doi.org/10.1021/ar300179v
Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium–sulfur batteries: Electrochemical materials and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013). https://doi.org/10.1002/anie.201304762
F. Liu, G. Sun, H.B. Wu, G. Chen, D. Xu et al., Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries. Nat. Commun. 11(1), 5215 (2020). https://doi.org/10.1038/s41467-020-19070-8
S. Sun, J. Wang, X. Chen, Q. Ma, Y. Wang et al., Thermally stable and dendrite-resistant separators toward highly robust lithium metal batteries. Adv. Energy Mater. 12(41), 2202206 (2022). https://doi.org/10.1002/aenm.202202206
H. Pan, M. Zhang, Z. Cheng, H. Jiang, J. Yang et al., Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci. Adv. 8(15), eabn4372 (2022). https://doi.org/10.1126/sciadv.abn4372
M. Zhao, B.-Q. Li, H.-J. Peng, H. Yuan, J.-Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem. Int. Ed. 59(31), 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
Y.-W. Song, L. Shen, N. Yao, X.-Y. Li, C.-X. Bi et al., Cationic lithium polysulfides in lithium–sulfur batteries. Chem 8(11), 3031–3050 (2022). https://doi.org/10.1016/j.chempr.2022.07.004
J. Xie, H.J. Peng, Y.W. Song, B.Q. Li, Y. Xiao et al., Spatial and kinetic regulation of sulfur electrochemical on semi-immobilized redox mediators in working batteries. Angew. Chem. Int. Ed. 132(40), 17823–17828 (2020). https://doi.org/10.1002/ange.202007740
Z. Shen, Q. Gao, X. Zhu, Z. Guo, K. Guo et al., In-situ free radical supplement strategy for improving the redox kinetics of Li-S batteries. Energy Storage Mater. 57, 299–307 (2023). https://doi.org/10.1016/j.ensm.2023.02.023
J. Liang, Z.-H. Sun, F. Li, H.-M. Cheng, Carbon Mater. for Li–S batteries: Functional evolution and performance improvement. Energy Storage Mater. 2, 76–106 (2016). https://doi.org/10.1016/j.ensm.2015.09.007
L. Borchardt, M. Oschatz, S. Kaskel. Carbon materials for lithium sulfur batteries—ten critical questions. Chem.–A Eur. J. 22(22), 7324–7351 (2016). https://doi.org/10.1002/chem.201600040
C. Wang, J.-J. Chen, Y.-N. Shi, M.-S. Zheng, Q.-F. Dong, Preparation and performance of a core–shell carbon/sulfur material for lithium/sulfur battery. Electrochim. Acta 55(23), 7010–7015 (2010). https://doi.org/10.1016/j.electacta.2010.06.019
J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee et al., Spherical ordered mesoporous carbon nanops with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51(15), 3591–3595 (2012). https://doi.org/10.1002/anie.201107817
G. He, S. Evers, X. Liang, M. Cuisinier, A. Garsuch et al., Tailoring porosity in carbon nanospheres for lithium–sulfur battery cathodes. ACS Nano 7(12), 10920–10930 (2013). https://doi.org/10.1021/nn404439r
K. Zhang, Q. Zhao, Z. Tao, J. Chen, Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 6(1), 38–46 (2013). https://doi.org/10.1007/s12274-012-0279-1
Z. Li, L. Yuan, Z. Yi, Y. Sun, Y. Liu et al., Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 4(7), 1301473 (2014). https://doi.org/10.1002/aenm.201301473
A. Fu, C. Wang, F. Pei, J. Cui, X. Fang et al., Recent advances in hollow porous carbon Mater. for lithium–sulfur batteries. Small 15(10), 1804786 (2019). https://doi.org/10.1002/smll.201804786
N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem. Int. Ed. 50(26), 5904–5908 (2011). https://doi.org/10.1002/anie.201100637
C. Zhang, H.B. Wu, C. Yuan, Z. Guo, X.W. Lou, Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51(38), 9592–9595 (2012). https://doi.org/10.1002/anie.201205292
S. Chen, X. Huang, B. Sun, J. Zhang, H. Liu et al., Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances. J. Mater. Chem. A 2(38), 16199–16207 (2014). https://doi.org/10.1039/C4TA03877K
C. Wang, K. Takei, T. Takahashi, A. Javey, Carbon nanotube electronics–moving forward. Chem. Soc. Rev. 42(7), 2592–2609 (2013). https://doi.org/10.1039/C2CS35325C
F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo et al., Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510(7506), 522–524 (2014). https://doi.org/10.1038/nature13434
Y.-S. Su, Y. Fu, A. Manthiram, Self-weaving sulfur–carbon composite cathodes for high rate lithium–sulfur batteries. Phys. Chem. Chem. Phys. 14(42), 14495–14499 (2012). https://doi.org/10.1039/c2cp42796f
Y.C. Jeong, K. Lee, T. Kim, J.H. Kim, J. Park et al., Partially unzipped carbon nanotubes for high-rate and stable lithium–sulfur batteries. J. Mater. Chem. A 4(3), 819–826 (2016). https://doi.org/10.1039/C5TA07818K
J. Guo, Y. Xu, C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett. 11(10), 4288–4294 (2011). https://doi.org/10.1021/nl202297p
Y. Zhao, W. Wu, J. Li, Z. Xu, L. Guan, Encapsulating mwnts into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 26(30), 5113–5118 (2014). https://doi.org/10.1002/adma.201401191
J.S. Lee, W. Kim, J. Jang, A. Manthiram, Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium–sulfur batteries. Adv. Energy Mater. 7(5), 1601943 (2017). https://doi.org/10.1002/aenm.201601943
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini et al., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501
M.-Q. Zhao, Q. Zhang, J.-Q. Huang, G.-L. Tian, J.-Q. Nie et al., Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat. Commun. 5(1), 3410 (2014). https://doi.org/10.1038/ncomms4410
C. Tang, B.-Q. Li, Q. Zhang, L. Zhu, H.-F. Wang et al., Cao-templated growth of hierarchical porous graphene for high-power lithium–sulfur battery applications. Adv. Funct. Mater. 26(4), 577–585 (2016). https://doi.org/10.1002/adfm.201503726
S. Chen, X. Huang, H. Liu, B. Sun, W. Yeoh et al., 3d hyperbranched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries. Adv. Energy Mater. 4(8), 1301761 (2014). https://doi.org/10.1002/aenm.201301761
Z. Zheng, H. Guo, F. Pei, X. Zhang, X. Chen et al., High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries. Adv. Funct. Mater. 26(48), 8952–8959 (2016). https://doi.org/10.1002/adfm.201601897
W. Li, Z. Liang, Z. Lu, H. Yao, Z.W. Seh et al., A sulfur cathode with pomegranate-like cluster structure. Adv. Energy Mater. 5(16), 1500211 (2015). https://doi.org/10.1002/aenm.201500211
R. Fang, S. Zhao, P. Hou, M. Cheng, S. Wang et al., 3d interconnected electrode Mater. with ultrahigh areal sulfur loading for Li–S batteries. Adv. Mater. 28(17), 3374–3382 (2016). https://doi.org/10.1002/adma.201506014
L. Duan, L. Zhao, H. Cong, X. Zhang, W. Lüet al., Plasma treatment for nitrogen-doped 3d graphene framework by a conductive matrix with sulfur for high-performance Li–S batteries. Small 15(7), 1804347 (2019). https://doi.org/10.1002/smll.201804347
G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang et al., Three-dimensional porous carbon composites containing high sulfur nanop content for high-performance lithium–sulfur batteries. Nat. Commun. 7(1), 10601 (2016). https://doi.org/10.1038/ncomms10601
Y. Chen, X. Li, K.-S. Park, J. Hong, J. Song et al., Sulfur encapsulated in porous hollow CNTs@ CNFs for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2(26), 10126–10130 (2014). https://doi.org/10.1039/C4TA01823K
J. Ruan, H. Sun, Y. Song, Y. Pang, J. Yang et al., Constructing 1d/2d interwoven carbonous matrix to enable high-efficiency sulfur immobilization in Li-S battery. Energy Mater. 1(2), 100018 (2021). https://doi.org/10.20517/energymater.2021.22
L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li et al., Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133(46), 18522–18525 (2011). https://doi.org/10.1021/ja206955k
G. Zheng, Q. Zhang, J.J. Cha, Y. Yang, W. Li et al., Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 13(3), 1265–1270 (2013). https://doi.org/10.1021/nl304795g
Z.-L. Xu, J.-K. Kim, K. Kang, Carbon nano materials for Adv. lithium sulfur batteries. Nano Today 19, 84–107 (2018). https://doi.org/10.1016/j.nantod.2018.02.006
W. Zhou, X. Xiao, M. Cai, L. Yang, Polydopamine-coated, nitrogen-doped, hollow carbon–sulfur double-layered core–shell structure for improving lithium–sulfur batteries. Nano Lett. 14(9), 5250–5256 (2014). https://doi.org/10.1021/nl502238b
P. Zhu, J. Zhu, C. Yan, M. Dirican, J. Zang et al., In situ polymerization of nanostructured conductive polymer on 3d sulfur/carbon nanofiber composite network as cathode for high-performance lithium–sulfur batteries. Adv. Mater. Interfaces 5(10), 1701598 (2018). https://doi.org/10.1002/admi.201701598
F. Sun, J. Wang, H. Chen, W. Li, W. Qiao et al., High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li–S batteries. ACS Appl. Mater. interfaces 5(12), 5630–5638 (2013). https://doi.org/10.1021/am400958x
Q. Pang, J. Tang, H. Huang, X. Liang, C. Hart et al., A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@ cellulose for advanced lithium–sulfur batteries. Adv. Mater. 27(39), 6021–6028 (2015). https://doi.org/10.1002/adma.201502467
T.Z. Hou, X. Chen, H.J. Peng, J.Q. Huang, B.Q. Li et al., Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries. Small 12(24), 3283–3291 (2016). https://doi.org/10.1002/smll.201600809
H. Liu, F. Liu, Z. Qu, J. Chen, H. Liu et al., High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and n, p, f-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery. Nano Res. Energy e9120049 (2023). https://doi.org/10.26599/NRE.2023.9120049
G. Zhou, E. Paek, G.S. Hwang, A. Manthiram, Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6(1), 7760 (2015). https://doi.org/10.1038/ncomms8760
J. Wang, H. Yang, Z. Chen, L. Zhang, J. Liu et al., Double-shelled phosphorus and nitrogen codoped carbon nanospheres as efficient polysulfide mediator for high-performance lithium–sulfur batteries. Adv. Sci. 5(11), 1800621 (2018). https://doi.org/10.1002/advs.201800621
Q. Pang, L.F. Nazar, Long-life and high-areal-capacity li–s batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 10(4), 4111–4118 (2016). https://doi.org/10.1021/acsnano.5b07347
S. Kim, S. Shirvani-Arani, S. Choi, M. Cho, Y. Lee, Strongly anchoring polysulfides by hierarchical Fe3O4/C3N4 nanostructures for advanced lithium–sulfur batteries. Nano-Micro Lett. 12(1), 139 (2020). https://doi.org/10.1007/s40820-020-00475-5
Y. Gong, C. Fu, G. Zhang, H. Zhou, Y. Kuang, Three-dimensional porous C3N4 nanosheets@ reduced graphene oxide network as sulfur hosts for high performance lithium-sulfur batteries. Electrochim. Acta 256, 1–9 (2017). https://doi.org/10.1016/j.electacta.2017.10.032
Y. Yi, H. Li, H. Chang, P. Yang, X. Tian et al., Few-layer boron nitride with engineered nitrogen vacancies for promoting conversion of polysulfide as a cathode matrix for lithium–sulfur batteries. Chem. – A Eur. J. 25(34), 8112–8117 (2019). https://doi.org/10.1002/chem.201900884
M. Li, K. Fu, Z. Wang, C. Cao, J. Yang et al., Enhanced adsorption of polysulfides on carbon nanotubes/boron nitride fibers for high-performance lithium-sulfur batteries. Chem. – A Eur. J. 26(72), 17567–17573 (2020). https://doi.org/10.1002/chem.202003807
Q. Pang, D. Kundu, M. Cuisinier, L. Nazar, Surface-enhanced redox Chem. of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5(1), 4759 (2014). https://doi.org/10.1038/ncomms5759
Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang et al., Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8(1), 14627 (2017). https://doi.org/10.1038/ncomms14627
Z. Liang, G. Zheng, W. Li, Z.W. Seh, H. Yao et al., Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 8(5), 5249–5256 (2014). https://doi.org/10.1021/nn501308m
W. Yang, Y. Wei, Q. Chen, S. Qin, J. Zuo et al., A MoO3/MoO2-CP self-supporting heterostructure for modification of lithium–sulfur batteries. J. Mater. Chem. A 8(31), 15816–15821 (2020). https://doi.org/10.1039/D0TA01664K
L. Fan, H. Wu, X. Wu, M. Wang, J. Cheng et al., Fe-mof derived jujube pit like Fe3O4/C composite as sulfur host for lithium-sulfur battery. Electrochim. Acta 295, 444–451 (2019). https://doi.org/10.1016/j.electacta.2018.08.107
Y. Jeon, J. Lee, H. Jo, H. Hong, L.Y.S. Lee et al., Co/Co3O4-embedded n-doped hollow carbon composite derived from a bimetallic MOF/ZnO core-shell template as a sulfur host for Li-S batteries. Chem. Engin. J. 407, 126967 (2021). https://doi.org/10.1016/j.cej.2020.126967
Q. Zhang, Y. Wang, Z.W. Seh, Z. Fu, R. Zhang et al., Understanding the anchoring effect of two-dimensional layered material for lithium–sulfur batteries. Nano Lett. 15(6), 3780–3786 (2015). https://doi.org/10.1021/acs.nanolett.5b00367
Z. Cui, C. Zu, W. Zhou, A. Manthiram, J.B. Goodenough, Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 28(32), 6926–6931 (2016). https://doi.org/10.1002/adma.201601382
D.-R. Deng, F. Xue, Y.-J. Jia, J.-C. Ye, C.-D. Bai et al., Co4n nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries. ACS Nano 11(6), 6031–6039 (2017). https://doi.org/10.1021/acsnano.7b01945
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of mof-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13, 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
T. Pan, Z. Li, Q. He, X. Xu, L. He et al., Uniform zeolitic imidazolate framework coating via in situ recoordination for efficient polysulfide trapping. Energy Storage Mater. 23, 55–61 (2019). https://doi.org/10.1016/j.ensm.2019.05.034
Q. Zhu, H.-F. Xu, K. Shen, Y.-Z. Zhang, B. Li et al., Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium–sulfur batteries. Rare Met. 41(1), 311–318 (2022). https://doi.org/10.1007/s12598-021-01839-5
J. Song, X. Guo, J. Zhang, Y. Chen, C. Zhang et al., Rational design of free-standing 3d porous MXene/RGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries. J. Mater. Chem. A 7(11), 6507–6513 (2019). https://doi.org/10.1039/C9TA00212J
Z. Shi, Y. Ding, Q. Zhang, J. Sun, Electrocatalyst modulation toward bidirectional sulfur redox in Li–S batteries: From strategic probing to mechanistic understanding. Adv. Energy Mater. 12(29), 2201056 (2022). https://doi.org/10.1002/aenm.202201056
Z. Sun, S. Vijay, H.H. Heenen, A.Y.S. Eng, W. Tu et al., Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur batteries. Adv. Energy Mater. 10(22), 1904010 (2020). https://doi.org/10.1002/aenm.201904010
H. Li, S. Ma, H. Cai, H. Zhou, Z. Huang et al., Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. Energy storage Mater. 18, 338–348 (2019). https://doi.org/10.1016/j.ensm.2018.08.016
S.-M. Wang, H.-N. Li, G.-F. Zhao, L.-F. Xu, D.-L. Liu et al., Ni3FeN anchored on porous carbon as electrocatalyst for advanced Li–S batteries. Rare Met. 42(2), 515–524 (2023). https://doi.org/10.1007/s12598-022-02140-9
T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao et al., Twinborn TiO2–Tin heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environm. Sci. 10(7), 1694–1703 (2017). https://doi.org/10.1039/C7EE01430A
Y. Song, W. Zhao, L. Kong, L. Zhang, X. Zhu et al., Synchronous immobilization and conversion of polysulfides on a VO2–Vn binary host targeting high sulfur load Li–S batteries. Energy Environm. Sci. 11(9), 2620–2630 (2018). https://doi.org/10.1039/C8EE01402G
W. Yao, W. Zheng, J. Xu, C. Tian, K. Han et al., ZnS-SnS@ NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium–sulfur batteries. ACS Nano 15(4), 7114–7130 (2021). https://doi.org/10.1021/acsnano.1c00270
W. Li, Z. Gong, X. Yan, D. Wang, J. Liu et al., In situ engineered zns–fes heterostructures in n-doped carbon nanocages accelerating polysulfide redox kinetics for lithium sulfur batteries. J. Mater. Chem. A 8(1), 433–442 (2020). https://doi.org/10.1039/C9TA11451C
Y. Li, T. Jiang, H. Yang, D. Lei, X. Deng et al., A heterostuctured Co3S4/MnS nanotube array as a catalytic sulfur host for lithium–sulfur batteries. Electrochim. Acta 330, 135311 (2020). https://doi.org/10.1016/j.electacta.2019.135311
S. Chen, J. Luo, N. Li, X. Han, J. Wang et al., Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan. Energy Storage Mater. 30, 187–195 (2020). https://doi.org/10.1016/j.ensm.2020.05.002
R. Wang, C. Luo, T. Wang, G. Zhou, Y. Deng et al., Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries. Adv. Mater. 32(32), 2000315 (2020). https://doi.org/10.1002/adma.202000315
Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu et al., Engineering catalytic CoSe–ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 9(1), 2103456 (2022). https://doi.org/10.1002/advs.202103456
H. Li, C. Chen, Y. Yan, T. Yan, C. Cheng et al., Utilizing the built-in electric field of p–n junctions to spatially propel the stepwise polysulfide conversion in lithium–sulfur batteries. Adv. Mater. 33(51), 2105067 (2021). https://doi.org/10.1002/adma.202105067
S. Wu, W. Wang, J. Shan, X. Wang, D. Lu et al., Conductive 1T-VS2− MXene heterostructured bidirectional electrocatalyst enabling compact li-s batteries with high volumetric and areal capacity. Energy Storage Mater. 49, 153–163 (2022). https://doi.org/10.1016/j.ensm.2022.04.004
H. Li, S. Ma, J. Li, F. Liu, H. Zhou et al., Altering the reaction mechanism to eliminate the shuttle effect in lithium-sulfur batteries. Energy Storage Mater. 26, 203–212 (2020). https://doi.org/10.1016/j.ensm.2020.01.002
D. Tian, X. Song, Y. Qiu, X. Sun, B. Jiang et al., Basal-plane-activated molybdenum sulfide nanosheets with suitable orbital orientation as efficient electrocatalysts for lithium–sulfur batteries. ACS Nano 15(10), 16515–16524 (2021). https://doi.org/10.1021/acsnano.1c06067
L. Xu, H. Zhao, M. Sun, B. Huang, J. Wang et al., Oxygen vacancies on layered niobic acid that weaken the catalytic conversion of polysulfides in lithium–sulfur batteries. Angew. Chem. Int. Ed. 58(33), 11491–11496 (2019). https://doi.org/10.1002/anie.201905852
H.-J. Li, K. Xi, W. Wang, S. Liu, G.-R. Li et al., Quantitatively regulating defects of 2d tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery. Energy Storage Mater. 45, 1229–1237 (2022). https://doi.org/10.1016/j.ensm.2021.11.024
B. Jiang, Y. Qiu, D. Tian, Y. Zhang, X. Song et al., Crystal facet engineering induced active tin dioxide nanocatalysts for highly stable lithium–sulfur batteries. Adv. Energy Mater. 11(48), 2102995 (2021). https://doi.org/10.1002/aenm.202102995
Z. Shi, Z. Sun, J. Cai, Z. Fan, J. Jin et al., Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li–S batteries. Adv. Funct. Mater. 31(4), 2006798 (2021). https://doi.org/10.1002/adfm.202006798
Z.-Y. Wang, B. Zhang, S. Liu, G.-R. Li, T. Yan, X.-P. Gao, Nickel–platinum alloy nanocrystallites with high-index facets as highly effective core catalyst for lithium–sulfur batteries. Adv. Funct. Mater. 32(27), 2200893 (2022). https://doi.org/10.1002/adfm.202200893
H. Xu, R. Hu, Y. Zhang, H. Yan, Q. Zhu et al., Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 43, 212–220 (2021). https://doi.org/10.1016/j.ensm.2021.09.003
A. Urban, D.-H. Seo, G. Ceder, Computational understanding of Li-ion batteries. npj Computational Mater. 2(1), 16002 (2016). https://doi.org/10.1038/npjcompumats.2016.2
E.I. Andritsos, C. Lekakou, Q. Cai, Single-atom catalysts as promising cathode materials for lithium–sulfur batteries. J. Phys. Chem. C 125(33), 18108–18118 (2021). https://doi.org/10.1021/acs.jpcc.1c04491
G. Zhou, S. Zhao, T. Wang, S.-Z. Yang, B. Johannessen et al., Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries. Nano Lett. 20(2), 1252–1261 (2019). https://doi.org/10.1021/acs.nanolett.9b04719
Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng et al., Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li–S batteries. Adv. Mater. 33(44), 2105947 (2021). https://doi.org/10.1002/adma.202105947
C. Lu, Y. Chen, Y. Yang, X. Chen, Single-atom catalytic Mater. for lean-electrolyte ultrastable lithium–sulfur batteries. Nano Lett. 20(7), 5522–5530 (2020). https://doi.org/10.1021/acs.nanolett.0c02167
Y. Li, J. Wu, B. Zhang, W. Wang, G. Zhang et al., Fast conversion and controlled deposition of lithium (poly) sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Mater. 30, 250–259 (2020). https://doi.org/10.1016/j.ensm.2020.05.022
P. Wang, B. Xi, Z. Zhang, M. Huang, J. Feng et al., Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium–sulfur batteries. Angew. Chem. Int. Ed. 60(28), 15563–15571 (2021). https://doi.org/10.1002/anie.202104053
S. Feng, Z.H. Fu, X. Chen, Q. Zhang, A review on theoretical models for lithium–sulfur battery cathodes. InfoMat 4(3), e12304 (2022). https://doi.org/10.1002/inf2.12304
H. Zhang, Z. Wang, J. Cai, S. Wu, J. Li, Machine-learning-enabled tricks of the trade for rapid host material discovery in Li–S battery. ACS Appl. Mater. Interfaces 13(45), 53388–53397 (2021). https://doi.org/10.1021/acsami.1c10749
H. Zhang, Z. Wang, J. Ren, J. Liu, J. Li, Ultra-fast and accurate binding energy prediction of shuttle effect-suppressive sulfur hosts for lithium-sulfur batteries using machine learning. Energy Storage Mater. 35, 88–98 (2021). https://doi.org/10.1016/j.ensm.2020.11.009
Z. Lian, M. Yang, F. Jan, B. Li, Machine learning derived blueprint for rational design of the effective single-atom cathode catalyst of the lithium–sulfur battery. J. Phys. Chem. Lett. 12(29), 7053–7059 (2021). https://doi.org/10.1021/acs.jpclett.1c00927
A. Kilic, Ç. Odabaşı, R. Yildirim, D. Eroglu, Assessment of critical materials and cell design factors for high performance lithium-sulfur batteries using machine learning. Chem. Engin. J. 390, 124117 (2020). https://doi.org/10.1016/j.cej.2020.124117
C.-X. Bi, L.-P. Hou, Z. Li, M. Zhao, X.-Q. Zhang et al., Protecting lithium metal anodes in lithium–sulfur batteries: A review. Energy Mater. Adv. 4, 0010 (2023). https://doi.org/10.34133/energymatadv.0010
T. Tao, Z. Zheng, Y. Gao, B. Yu, Y. Fan et al., Understanding the role of interfaces in solid-state lithium-sulfur batteries. Energy Mater. 2, 200036 (2022). https://doi.org/10.20517/energymater.2022.4
H. Liu, X. Sun, X.B. Cheng, C. Guo, F. Yu et al., Working principles of lithium metal anode in pouch cells. Adv. Energy Mater. 2202518 (2022). https://doi.org/10.1002/aenm.202202518
Z.X. Chen, M. Zhao, L.P. Hou, X.Q. Zhang, B.Q. Li et al., Toward practical high-energy-density lithium–sulfur pouch cells: A review. Adv. Mater. 34(35), 2201555 (2022). https://doi.org/10.1002/adma.202201555
X.-B. Cheng, C. Yan, J.-Q. Huang, P. Li, L. Zhu et al., The gap between long lifespan li-s coin and pouch cells: The importance of lithium metal anode protection. Energy Storage Mater. 6, 18–25 (2017). https://doi.org/10.1016/j.ensm.2016.09.003
L. Shi, C.S. Anderson, L. Mishra, H. Qiao, N. Canfield et al., Early failure of lithium–sulfur batteries at practical conditions: Crosstalk between sulfur cathode and lithium anode. Adv. Sci. 9(21), 2201640 (2022). https://doi.org/10.1002/advs.202201640
L. Shi, S.-M. Bak, Z. Shadike, C. Wang, C. Niu et al., Reaction heterogeneity in practical high-energy lithium–sulfur pouch cells. Energy Environ. Sci. 13(10), 3620–3632 (2020). https://doi.org/10.1039/D0EE02088E
L. Huang, T. Lu, G. Xu, X. Zhang, Z. Jiang et al., Thermal runaway routes of large-format lithium-sulfur pouch cell batteries. Joule 6(4), 906–922 (2022). https://doi.org/10.1016/j.joule.2022.02.015
F.-N. Jiang, S.-J. Yang, Z.-X. Chen, H. Liu, H. Yuan et al., Higher-order polysulfides induced thermal runaway for 1.0 ah lithium sulfur pouch cells. Particuology 79, 10–17 (2023). https://doi.org/10.1016/j.partic.2022.11.009
F. Wu, Y.-S. Ye, J.-Q. Huang, T. Zhao, J. Qian et al., Sulfur nanodots stitched in 2d “bubble-like” interconnected carbon fabric as reversibility-enhanced cathodes for lithium–sulfur batteries. ACS Nano 11(5), 4694–4702 (2017). https://doi.org/10.1021/acsnano.7b00596
H. Ji, Z. Wang, Y. Sun, Y. Zhou, S. Li et al., Weakening Li+ de‐solvation barrier for cryogenic Li–S pouch cells. Adv. Mater. 2208590 (2022). https://doi.org/10.1002/adma.202208590
S. Li, J. Lin, B. Chang, D. Yang, D.-Y. Wu et al., Implanting single-atom N2-Fe-B2 catalytic sites in carbon hosts to stabilize high-loading and lean-electrolyte lithium-sulfur batteries. Energy Storage Mater. 55, 94–104 (2023). https://doi.org/10.1016/j.ensm.2022.11.045
C. Qu, Y. Chen, X. Yang, H. Zhang, X. Li et al., LiNO3-free electrolyte for Li-S battery: a solvent of choice with low ksp of polysulfide and low dendrite of lithium. Nano Energy 39, 262–272 (2017). https://doi.org/10.1016/j.nanoen.2017.07.002
Q. Cheng, Z.-X. Chen, X.-Y. Li, L.-P. Hou, C.-X. Bi et al., Constructing a 700 wh kg−1-level rechargeable lithium–sulfur pouch cell. J. Energy Chem. 76, 181–186 (2023). https://doi.org/10.1016/j.jechem.2022.09.029
Y. Ye, F. Wu, Y. Liu, T. Zhao, J. Qian et al., Toward practical high-energy batteries: a modular-assembled oval-like carbon microstructure for thick sulfur electrodes. Adv. Mater. 29(48), 1700598 (2017). https://doi.org/10.1002/adma.201700598
K. Zhang, X. Li, Y. Yang, Z. Chen, L. Ma et al., High loading sulfur cathodes by reactive‐type polymer tubes for high‐performance lithium‐sulfur batteries. Adv. Funct. Mater. 2212759 (2022). https://doi.org/10.1002/adfm.202212759
W. Xue, Z. Shi, L. Suo, C. Wang, Z. Wang et al., Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4(5), 374–382 (2019). https://doi.org/10.1038/s41560-019-0351-0
Z. Li, I. Sami, J. Yang, J. Li, R.V. Kumar et al., Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nat. Energy 8, 84–93 (2023). https://doi.org/10.1038/s41560-022-01175-7