Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems
Corresponding Author: Jianli Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 109
Abstract
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films. While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene, the rapid development of new 2D materials with exotic properties has opened up novel applications, particularly in smart interaction and integrated functionalities. This review aims to consolidate recent progress, highlight the unique advantages of 2D materials, and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices. We begin with an in-depth analysis of the advantages, sensing mechanisms, and potential applications of 2D materials in wearable biodevice fabrication. Following this, we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body. Special attention is given to showcasing the integration of multi-functionality in 2D smart devices, mainly including self-power supply, integrated diagnosis/treatment, and human–machine interaction. Finally, the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of 2D materials for advanced biodevices.
Highlights:
1 Two-dimensional (2D) materials are highlighted for their exceptional mechanical, electrical, optical, and chemical properties, making them ideal for fabricating high-performance wearable biodevices.
2 The review categorizes cutting-edge wearable biodevices by their interactions with physical, electrophysiological, and biochemical signals, showcasing how 2D materials enhance these devices' functionality, mainly including self-powering and human-machine interaction.
3 2D materials enable multifunctional, high-performance biodevices, integrating self-powered systems, treatment platforms, and human-machine interactions, though challenges remain in practical applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Lin, H. Hu, S. Zhou, S. Xu, Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022). https://doi.org/10.1038/s41578-022-00427-y
- H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narváez, F. Güder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
- T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
- J. Heikenfeld, A. Jajack, J. Rogers, P. Gutruf, L. Tian et al., Wearable sensors: modalities, challenges, and prospects. Lab Chip 18, 217–248 (2018). https://doi.org/10.1039/c7lc00914c
- C. Choi, Y. Lee, K.W. Cho, J.H. Koo, D.H. Kim, Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 52, 73–81 (2019). https://doi.org/10.1021/acs.accounts.8b00491
- J. Chen, Y. Zhu, X. Chang, D. Pan, G. Song et al., Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 31, 2104686 (2021). https://doi.org/10.1002/adfm.202104686
- Y.D. Horev, A. Maity, Y. Zheng, Y. Milyutin, M. Khatib et al., Stretchable and highly permeable nanofibrous sensors for detecting complex human body motion. Adv. Mater. 33, e2102488 (2021). https://doi.org/10.1002/adma.202102488
- Y. Luo, M.R. Abidian, J.-H. Ahn, D. Akinwande, A.M. Andrews et al., Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023). https://doi.org/10.1021/acsnano.2c12606
- B. Wu, T. Wu, Z. Huang, S. Ji, Advancing flexible sensors through on-demand regulation of supramolecular nanostructures. ACS Nano 18, 22664–22674 (2024). https://doi.org/10.1021/acsnano.4c08310
- Q. Shen, G. Song, H. Lin, H. Bai, Y. Huang et al., Sensing, imaging, and therapeutic strategies endowing by conjugate polymers for precision medicine. Adv. Mater. 36, e2310032 (2024). https://doi.org/10.1002/adma.202310032
- Y. Pang, Z. Yang, Y. Yang, T.-L. Ren, Wearable electronics based on 2D materials for human physiological information detection. Small 16, e1901124 (2020). https://doi.org/10.1002/smll.201901124
- J. Kim, I. Jeerapan, J.R. Sempionatto, A. Barfidokht, R.K. Mishra et al., Wearable bioelectronics: enzyme-based body-worn electronic devices. Acc. Chem. Res. 51, 2820–2828 (2018). https://doi.org/10.1021/acs.accounts.8b00451
- B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang et al., Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11, 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8
- L. Lu, B. Yang, J. Liu, Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain, temperature and gas measurements. Chem. Eng. J. 400, 125928 (2020). https://doi.org/10.1016/j.cej.2020.125928
- Y. Jiang, S. Ji, J. Sun, J. Huang, Y. Li et al., A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023). https://doi.org/10.1038/s41586-022-05579-z
- C. Wang, E. Shirzaei Sani, W. Gao, Wearable bioelectronics for chronic wound management. Adv. Funct. Mater. 32, 2270099 (2022). https://doi.org/10.1002/adfm.202270099
- Y.J. Hong, H. Jeong, K.W. Cho, N. Lu, D.-H. Kim, Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 29, 1808247 (2019). https://doi.org/10.1002/adfm.201808247
- P. Escobedo, M.D. Fernández-Ramos, N. López-Ruiz, O. Moyano-Rodríguez, A. Martínez-Olmos et al., Smart facemask for wireless CO2 monitoring. Nat. Commun. 13, 72 (2022). https://doi.org/10.1038/s41467-021-27733-3
- S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014). https://doi.org/10.1038/ncomms4132
- M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8, 5154–5163 (2014). https://doi.org/10.1021/nn501204t
- W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). https://doi.org/10.1038/nature16521
- J.S. Heo, M.F. Hossain, I. Kim, Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring: a critical review. Sensors (Basel) 20, 3927 (2020). https://doi.org/10.3390/s20143927
- J.A. Rogers, R. Ghaffari, D.-H. Kim, Stretchable Bioelectronics for Medical Devices and Systems (Springer International Publishing, Cham, 2016), pp.4–5
- S.H. Chae, W.J. Yu, J.J. Bae, D.L. Duong, D. Perello et al., Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat. Mater. 12, 403–409 (2013). https://doi.org/10.1038/nmat3572
- J. Yoon, A.J. Baca, S.-I. Park, P. Elvikis, J.B. Geddes et al., Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7, 907–915 (2008). https://doi.org/10.1038/nmat2287
- D.-Y. Khang, H. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006). https://doi.org/10.1126/science.1121401
- Z. Huang, Y. Hao, Y. Li, H. Hu, C. Wang et al., Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018). https://doi.org/10.1038/s41928-018-0116-y
- D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim et al., Epidermal electronics. Science 333, 838–843 (2011). https://doi.org/10.1126/science.1206157
- L. Tian, B. Zimmerman, A. Akhtar, K.J. Yu, M. Moore et al., Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 3, 194–205 (2019). https://doi.org/10.1038/s41551-019-0347-x
- J. Rivnay, S. Inal, A. Salleo, R.M. Owens, M. Berggren et al., Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018). https://doi.org/10.1038/natrevmats.2017.86
- Y. Fang, X. Li, Y. Fang, Organic bioelectronics for neural interfaces. J. Mater. Chem. C 3, 6424–6430 (2015). https://doi.org/10.1039/C5TC00569H
- Y. Ling, T. An, L.W. Yap, B. Zhu, S. Gong et al., Disruptive, soft, wearable sensors. Adv. Mater. 32, 1904664 (2020). https://doi.org/10.1002/adma.201904664
- J. Yin, R. Hinchet, H. Shea, C. Majidi, Wearable soft technologies for haptic sensing and feedback. Adv. Funct. Mater. 31, 2007428 (2021). https://doi.org/10.1002/adfm.202007428
- Y. Pei, X. Zhang, Z. Hui, J. Zhou, X. Huang et al., Ti3C2TX MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano 15, 3996–4017 (2021). https://doi.org/10.1021/acsnano.1c00248
- M. Wang, Y. Yang, W. Gao, Laser-engraved graphene for flexible and wearable electronics. Trends Chem. 3, 969–981 (2021). https://doi.org/10.1016/j.trechm.2021.09.001
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
- A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang et al., Buckled two-dimensional xene sheets. Nat. Mater. 16, 163–169 (2017). https://doi.org/10.1038/nmat4802
- W. Tao, N. Kong, X. Ji, Y. Zhang, A. Sharma et al., Emerging two-dimensional monoelemental materials (xenes) for biomedical applications. Chem. Soc. Rev. 48, 2891–2912 (2019). https://doi.org/10.1039/C8CS00823J
- N. Rohaizad, C.C. Mayorga-Martinez, M. Fojtů, N.M. Latiff, M. Pumera, Two-dimensional materials in biomedical, biosensing and sensing applications. Chem. Soc. Rev. 50, 619–657 (2021). https://doi.org/10.1039/d0cs00150c
- M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). https://doi.org/10.1038/nchem.1589
- G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha et al., Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015). https://doi.org/10.1021/acsnano.5b05556
- M.M. Ugeda, A.J. Bradley, S.F. Shi, F.H. da Jornada, Y. Zhang et al., Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014). https://doi.org/10.1038/nmat4061
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h
- Q. Wang, D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012). https://doi.org/10.1021/cr200434v
- G. Fan, F. Li, D.G. Evans, X. Duan, Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem. Soc. Rev. 43, 7040–7066 (2014). https://doi.org/10.1039/C4CS00160E
- J. Pan, H. Hu, Z. Li, J. Mu, Y. Cai et al., Recent progress in two-dimensional materials for terahertz protection. Acta Chim. Sin. 79, 58–70 (2021). https://doi.org/10.6023/a20080361
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
- Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005). https://doi.org/10.1038/nature04235
- X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Modern Phys. 83, 1057–1110 (2011). https://doi.org/10.1103/revmodphys.83.1057
- H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang et al., Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single dirac cone on the surface. Nat. Phys. 5, 438–442 (2009). https://doi.org/10.1038/nphys1270
- G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014). https://doi.org/10.1038/nnano.2014.207
- K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). https://doi.org/10.1038/nature07719
- C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
- D. Papageorgiou, I. Kinloch, R. Young, Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017). https://doi.org/10.1016/j.pmatsci.2017.07.004
- H. Jiang, L. Zheng, Z. Liu, X. Wang, Two-dimensional materials: from mechanical properties to flexible mechanical sensors. InfoMat 2, 1077–1094 (2020). https://doi.org/10.1002/inf2.12072
- A.H. Castro Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Modern Phys. 81, 109–162 (2009). https://doi.org/10.1103/revmodphys.81.109
- J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475
- S. Das Sarma, S. Adam, E. Hwang, E. Rossi, Electronic transport in two-dimensional graphene. Rev. Modern Phys. 83, 407–470 (2011). https://doi.org/10.1103/revmodphys.83.407
- K.F. Mak, K.L. McGill, J. Park, P.L. McEuen, The valley Hall effect in MoS2transistors. Science 344, 1489–1492 (2014). https://doi.org/10.1126/science.1250140
- F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photonics 8, 899–907 (2014). https://doi.org/10.1038/nphoton.2014.271
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der waals heterostructures. Science 353, eaac9439 (2016). https://doi.org/10.1126/science.aac9439
- Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang et al., Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42
- D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017). https://doi.org/10.1038/nmat4703
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- A.K. Katiyar, A.T. Hoang, D. Xu, J. Hong, B.J. Kim et al., 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 124, 318–419 (2024). https://doi.org/10.1021/acs.chemrev.3c00302
- Y. Wang, L. Wang, T. Yang, X. Li, X. Zang et al., Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24, 4666–4670 (2014). https://doi.org/10.1002/adfm.201400379
- Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin et al., Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12, 56–62 (2018). https://doi.org/10.1021/acsnano.7b06251
- A. Bolotsky, D. Butler, C. Dong, K. Gerace, N.R. Glavin et al., Two-dimensional materials in biosensing and healthcare: from in vitro diagnostics to optogenetics and beyond. ACS Nano 13, 9781–9810 (2019). https://doi.org/10.1021/acsnano.9b03632
- S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013). https://doi.org/10.1021/nn400280c
- D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). https://doi.org/10.1038/ncomms6678
- Y. Yang, W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019). https://doi.org/10.1039/C7CS00730B
- H.R. Lim, H.S. Kim, R. Qazi, Y.T. Kwon, J.W. Jeong et al., Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32, e1901924 (2020). https://doi.org/10.1002/adma.201901924
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872
- C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang et al., Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). https://doi.org/10.1038/nnano.2010.172
- C. Liu, B. Zhang, W. Chen, W. Liu, S. Zhang, Current development of wearable sensors based on nanosheets and applications. Trac Trends Anal. Chem. 143, 116334 (2021). https://doi.org/10.1016/j.trac.2021.116334
- K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30, e1804779 (2018). https://doi.org/10.1002/adma.201804779
- S. Yang, C. Jiang, S.-H. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 4, 021304 (2017). https://doi.org/10.1063/1.4983310
- R. Saleh, M. Barth, W. Eberhardt, A. Zimmermann, Bending setups for reliability investigation of flexible electronics. Micromachines 12, 78 (2021). https://doi.org/10.3390/mi12010078
- Y. Liu, L. Yuan, M. Yang, Y. Zheng, L. Li et al., Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers. Nat. Commun. 5, 5461 (2014). https://doi.org/10.1038/ncomms6461
- K. Xia, C. Wang, M. Jian, Q. Wang, Y. Zhang, CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 11, 1124–1134 (2018). https://doi.org/10.1007/s12274-017-1731-z
- G. Du, Y. Shao, B. Luo, T. Liu, J. Zhao et al., Compliant iontronic triboelectric gels with phase-locked structure enabled by competitive hydrogen bonding. Nano-Micro Lett. 16, 170 (2024). https://doi.org/10.1007/s40820-024-01387-4
- G. Wang, Z. Dai, J. Xiao, S. Feng, C. Weng et al., Bending of multilayer van der Waals materials. Phys. Rev. Lett. 123, 116101 (2019). https://doi.org/10.1103/PhysRevLett.123.116101
- X. Hu, M. Wu, L. Che, J. Huang, H. Li et al., Nanoengineering ultrathin flexible pressure sensor with superior sensitivity and perfect conformability. Small 19, 2208015 (2023). https://doi.org/10.1002/smll.202208015
- V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, e1226419 (2013). https://doi.org/10.1126/science.1226419
- C.-F. Xu, X.-D. Wang, L.-S. Liao, From low-dimensional materials to complex superstructures: a review and outlook. Natl. Sci. Open 2, 20230016 (2023). https://doi.org/10.1360/nso/20230016
- P. Kumar, G. Singh, X. Guan, S. Roy, J. Lee et al., The rise of xene hybrids. Adv. Mater. 36, 2403881 (2024). https://doi.org/10.1002/adma.202403881
- B. Cho, J. Yoon, S.K. Lim, A.R. Kim, D.H. Kim et al., Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces 7, 16775–16780 (2015). https://doi.org/10.1021/acsami.5b04541
- Y.J. Park, S.-K. Lee, M.-S. Kim, H. Kim, J.-H. Ahn, Graphene-based conformal devices. ACS Nano 8, 7655–7662 (2014). https://doi.org/10.1021/nn503446f
- F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). https://doi.org/10.1038/nmat1967
- D. Akinwande, C. Huyghebaert, C.-H. Wang, M.I. Serna, S. Goossens et al., Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). https://doi.org/10.1038/s41586-019-1573-9
- H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
- J. Li, P. Song, J. Zhao, K. Vaklinova, X. Zhao et al., Printable two-dimensional superconducting monolayers. Nat. Mater. 20, 181–187 (2021). https://doi.org/10.1038/s41563-020-00831-1
- V.B. Mohan, K.-T. Lau, D. Hui, D. Bhattacharyya, Graphene-based materials and their composites: a review on production, applications and product limitations. Compos. Part B Eng. 142, 200–220 (2018). https://doi.org/10.1016/j.compositesb.2018.01.013
- N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys et al., Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018). https://doi.org/10.1038/s41565-017-0035-5
- Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng et al., Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem. Rev. 119, 1806–1854 (2019). https://doi.org/10.1021/acs.chemrev.8b00501
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). https://doi.org/10.1126/science.abf1581
- Z. He, Z. Qi, H. Liu, K. Wang, L. Roberts et al., Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials. Natl. Sci. Rev. 9, nwab184 (2021). https://doi.org/10.1093/nsr/nwab184
- J. Ramírez, D. Rodriquez, F. Qiao, J. Warchall, J. Rye et al., Metallic nanoislands on graphene for monitoring swallowing activity in head and neck cancer patients. ACS Nano 12, 5913–5922 (2018). https://doi.org/10.1021/acsnano.8b02133
- J. Qiu, T. Yu, W. Zhang, Z. Zhao, Y. Zhang et al., A bioinspired, durable, and nondisposable transparent graphene skin electrode for electrophysiological signal detection. ACS Mater. Lett. 2, 999–1007 (2020). https://doi.org/10.1021/acsmaterialslett.0c00203
- F. Li, Y. Liu, X. Shi, H. Li, C. Wang et al., Printable and stretchable temperature-strain dual-sensing nanocomposite with high sensitivity and perfect stimulus discriminability. Nano Lett. 20, 6176–6184 (2020). https://doi.org/10.1021/acs.nanolett.0c02519
- Y. Yamamoto, S. Harada, D. Yamamoto, W. Honda, T. Arie et al., Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci. Adv. 2, e1601473 (2016). https://doi.org/10.1126/sciadv.1601473
- Z. Li, W. Guo, Y. Huang, K. Zhu, H. Yi et al., On-skin graphene electrodes for large area electrophysiological monitoring and human-machine interfaces. Carbon 164, 164–170 (2020). https://doi.org/10.1016/j.carbon.2020.03.058
- Z. Lin, G. Zhang, X. Xiao, C. Au, Y. Zhou et al., A personalized acoustic interface for wearable human–machine interaction. Adv. Funct. Mater. 32, 2109430 (2022). https://doi.org/10.1002/adfm.202109430
- D. Kireev, S.K. Ameri, A. Nederveld, J. Kampfe, H. Jang et al., Fabrication, characterization and applications of graphene electronic tattoos. Nat. Protoc. 16, 2395–2417 (2021). https://doi.org/10.1038/s41596-020-00489-8
- E.H.R. Association, E.A.F.C.-T. Surgery, A.J. Camm, P. Kirchhof, G.Y.H. Lip et al., Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European society of cardiology (ESC). Eur. Heart J. 31, 2369–2429 (2010). https://doi.org/10.1093/eurheartj/ehq278
- F. Shaffer, R. McCraty, C.L. Zerr, A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 5, 1040 (2014). https://doi.org/10.3389/fpsyg.2014.01040
- S. Cao, H. Zou, B. Jiang, M. Li, Q. Yuan, Incorporation of ZnO encapsulated MoS2 to fabricate flexible piezoelectric nanogenerator and sensor. Nano Energy 102, 107635 (2022). https://doi.org/10.1016/j.nanoen.2022.107635
- L. Zhang, X. Zhang, H. Zhang, L. Xu, D. Wang et al., Semi-embedded robust MXene/AgNW sensor with self-healing, high sensitivity and a wide range for motion detection. Chem. Eng. J. 434, 134751 (2022). https://doi.org/10.1016/j.cej.2022.134751
- R.M. Carey, P. Muntner, H.B. Bosworth, P.K. Whelton, Prevention and control of hypertension JACC health promotion series. J. Am. Coll. Cardiol. 72, 1278–1293 (2018). https://doi.org/10.1016/j.jacc.2018.07.008
- H. Yang, X. Xiao, Z. Li, K. Li, N. Cheng et al., Wireless Ti3C2Tx MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS Nano 14, 11860–11875 (2020). https://doi.org/10.1021/acsnano.0c04730
- O. Marrone, M.R. Bonsignore, Blood-pressure variability in patients with obstructive sleep apnea: current perspectives. Nat. Sci. Sleep 10, 229–242 (2018). https://doi.org/10.2147/nss.s148543
- N. Davis, J. Heikenfeld, C. Milla, A. Javey, The challenges and promise of sweat sensing. Nat. Biotechnol. 42, 860–871 (2024). https://doi.org/10.1038/s41587-023-02059-1
- C. Liu, Q. Wang, C. Wang, Q. Wang, W. Zhao et al., State of the art overview wearable biohazard gas sensors based on nanosheets for environment monitoring applications. Trends Environ. Anal. Chem. 40, e00215 (2023). https://doi.org/10.1016/j.teac.2023.e00215
- H. Wang, R. Zhou, D. Li, L. Zhang, G. Ren et al., High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 15, 9690–9700 (2021). https://doi.org/10.1021/acsnano.1c00259
- J. Yang, C. Wang, L. Liu, H. Zhang, J. Ma, Water-tolerant MXene epidermal sensors with high sensitivity and reliability for healthcare monitoring. ACS Appl. Mater. Interfaces 14, 21253–21262 (2022). https://doi.org/10.1021/acsami.2c03731
- Y. Wang, Y. Yue, F. Cheng, Y. Cheng, B. Ge et al., Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 16, 1734–1758 (2022). https://doi.org/10.1021/acsnano.1c09925
- Y. Zheng, R. Yin, Y. Zhao, H. Liu, D. Zhang et al., Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. 420, 127720 (2021). https://doi.org/10.1016/j.cej.2020.127720
- H. Zhuo, Y. Hu, Z. Chen, X. Peng, L. Liu et al., A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors. J. Mater. Chem. A 7, 8092–8100 (2019). https://doi.org/10.1039/C9TA00596J
- M. Yang, Y. Cheng, Y. Yue, Y. Chen, H. Gao et al., High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 9, 2200507 (2022). https://doi.org/10.1002/advs.202200507
- S. Zhang, C. Liu, X. Sun, W.-C. Huang, Current development of materials science and engineering towards epidermal sensors. Prog. Mater. Sci. 128, 100962 (2022). https://doi.org/10.1016/j.pmatsci.2022.100962
- S. Afroj, S. Tan, A.M. Abdelkader, K.S. Novoselov, N. Karim, Highly conductive, scalable, and machine washable graphene-based E-textiles for multifunctional wearable electronic applications. Adv. Funct. Mater. 30, 2000293 (2020). https://doi.org/10.1002/adfm.202000293
- J. Ryu, Y. Kim, D. Won, N. Kim, J.S. Park et al., Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano 8, 950–956 (2014). https://doi.org/10.1021/nn405754d
- M. Kang, J. Kim, B. Jang, Y. Chae, J.-H. Kim et al., Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano 11, 7950–7957 (2017). https://doi.org/10.1021/acsnano.7b02474
- C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11, 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
- S. Moon, J. Kim, J. Park, S. Im, J. Kim et al., Hexagonal boron nitride for next-generation photonics and electronics. Adv. Mater. 35, 2204161 (2023). https://doi.org/10.1002/adma.202204161
- Y. Xie, Y. Cheng, Y. Ma, J. Wang, J. Zou et al., 3D MXene-based flexible network for high-performance pressure sensor with a wide temperature range. Adv. Sci. 10, 2205303 (2023). https://doi.org/10.1002/advs.202205303
- Y. Su, W. Li, X. Cheng, Y. Zhou, S. Yang et al., High-performance piezoelectric composites via β phase programming. Nat. Commun. 13, 4867 (2022). https://doi.org/10.1038/s41467-022-32518-3
- D. Kireev, K. Sel, B. Ibrahim, N. Kumar, A. Akbari et al., Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 17, 864–870 (2022). https://doi.org/10.1038/s41565-022-01145-w
- Y. Yang, L. Shi, Z. Cao, R. Wang, J. Sun, Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanop–nanosheet hybrid network. Adv. Funct. Mater. 29, 1807882 (2019). https://doi.org/10.1002/adfm.201807882
- W. Xu, S. Hu, Y. Zhao, W. Zhai, Y. Chen et al., Nacre-inspired tunable strain sensor with synergistic interfacial interaction for sign language interpretation. Nano Energy 90, 106606 (2021). https://doi.org/10.1016/j.nanoen.2021.106606
- X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13, 1602790 (2017). https://doi.org/10.1002/smll.201602790
- J. Guo, B. Zhou, C. Yang, Q. Dai, L. Kong, Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv. Funct. Mater. 29, 1902898 (2019). https://doi.org/10.1002/adfm.201902898
- Y.S. Oh, J.-H. Kim, Z. Xie, S. Cho, H. Han et al., Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nat. Commun. 12, 5008 (2021). https://doi.org/10.1038/s41467-021-25324-w
- A. Nag, R.B.V.B. Simorangkir, D.R. Gawade, S. Nuthalapati, J.L. Buckley et al., Graphene-based wearable temperature sensors: a review. Mater. Des. 221, 110971 (2022). https://doi.org/10.1016/j.matdes.2022.110971
- H. Chen, J. Huang, J. Liu, J. Gu, J. Zhu et al., High toughness multifunctional organic hydrogels for flexible strain and temperature sensor. J. Mater. Chem. A 9, 23243–23255 (2021). https://doi.org/10.1039/D1TA07127K
- V. Shirhatti, S. Nuthalapati, V. Kedambaimoole, S. Kumar, M.M. Nayak et al., Multifunctional graphene sensor ensemble as a smart biomonitoring fashion accessory. ACS Sens. 6, 4325–4337 (2021). https://doi.org/10.1021/acssensors.1c01393
- W. Fan, T. Liu, F. Wu, S. Wang, S. Ge et al., An antisweat interference and highly sensitive temperature sensor based on poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature. ACS Nano 17, 21073–21082 (2023). https://doi.org/10.1021/acsnano.3c04246
- W. Li, M. Xu, J. Gao, X. Zhang, H. Huang et al., Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv. Mater. 35, e2207447 (2023). https://doi.org/10.1002/adma.202207447
- D. Mohapatra, Y. Shin, M.Z. Ansari, Y.H. Kim, Y.J. Park et al., Process controlled ruthenium on 2D engineered V-MXene via atomic layer deposition for human healthcare monitoring. Adv. Sci. 10, e2206355 (2023). https://doi.org/10.1002/advs.202206355
- T.Q. Trung, S. Ramasundaram, B.U. Hwang, N.E. Lee, An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016). https://doi.org/10.1002/adma.201504441
- P. Wang, W. Yu, G. Li, C. Meng, S. Guo, Printable, flexible, breathable and sweatproof bifunctional sensors based on an all-nanofiber platform for fully decoupled pressure–temperature sensing application. Chem. Eng. J. 452, 139174 (2023). https://doi.org/10.1016/j.cej.2022.139174
- S.Y. Hong, Y.H. Lee, H. Park, S.W. Jin, Y.R. Jeong et al., Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv. Mater. 28, 930–935 (2016). https://doi.org/10.1002/adma.201504659
- Z. Lei, Q. Wang, S. Sun, W. Zhu, P. Wu, A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 29, 1700321 (2017). https://doi.org/10.1002/adma.201700321
- Z. Lou, L. Wang, K. Jiang, G. Shen, Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. Nano Today 26, 176–198 (2019). https://doi.org/10.1016/j.nantod.2019.03.002
- W.M. Ryu, Y. Lee, Y. Son, G. Park, S. Park, Thermally drawn multi-material fibers based on polymer nanocomposite for continuous temperature sensing. Adv. Fiber Mater. 5, 1712–1724 (2023). https://doi.org/10.1007/s42765-023-00306-3
- S. Zhang, A. Chhetry, M. Abu Zahed, S. Sharma, C. Park et al., On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. npj Flex. Electron. 6, 11 (2022). https://doi.org/10.1038/s41528-022-00140-4
- J. Luo, S. Gao, H. Luo, L. Wang, X. Huang et al., Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem. Eng. J. 406, 126898 (2021). https://doi.org/10.1016/j.cej.2020.126898
- A. Champagne, L. Shi, T. Ouisse, B. Hackens, J.-C. Charlier, Electronic and vibrational properties of V2C-based MXenes: from experiments to first-principles modeling. Phys. Rev. B 97, 115439 (2018). https://doi.org/10.1103/physrevb.97.115439
- M. Khazaei, A. Ranjbar, M. Ghorbani-Asl, M. Arai, T. Sasaki et al., Nearly free electron states in MXenes. Phys. Rev. B 93, 205125 (2016). https://doi.org/10.1103/physrevb.93.205125
- K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13, 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
- M. Chao, L. He, M. Gong, N. Li, X. Li et al., Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 15, 9746–9758 (2021). https://doi.org/10.1021/acsnano.1c00472
- Z. Zeng, N. Wu, W. Yang, H. Xu, Y. Liao et al., Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing. Small 18, 2202047 (2022). https://doi.org/10.1002/smll.202202047
- Y. Hu, H. Zhuo, Q. Luo, Y. Wu, R. Wen et al., Biomass polymer-assisted fabrication of aerogels from MXenes with ultrahigh compression elasticity and pressure sensitivity. J. Mater. Chem. A 7, 10273–10281 (2019). https://doi.org/10.1039/C9TA01448A
- H. Li, D. Zhang, C. Wang, Y. Hao, Y. Zhang et al., 3D extruded graphene thermoelectric threads for self-powered oral health monitoring. Small 19, e2300908 (2023). https://doi.org/10.1002/smll.202300908
- S. Niu, X. Chang, Z. Zhu, Z. Qin, J. Li et al., Low-temperature wearable strain sensor based on a silver nanowires/graphene composite with a near-zero temperature coefficient of resistance. ACS Appl. Mater. Interfaces 13, 55307–55318 (2021). https://doi.org/10.1021/acsami.1c14671
- G.Y. Bae, J.T. Han, G. Lee, S. Lee, S.W. Kim et al., Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater. 30, e1803388 (2018). https://doi.org/10.1002/adma.201803388
- L.F. Nicolas-Alonso, J. Gomez-Gil, Brain computer interfaces, a review. Sensors 12, 1211–1279 (2012). https://doi.org/10.3390/s120201211
- H. Wu, G. Yang, K. Zhu, S. Liu, W. Guo et al., Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human–machine interfaces. Adv. Sci. 8, 2001938 (2021). https://doi.org/10.1002/advs.202001938
- S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang et al., Graphene electronic tattoo sensors. ACS Nano 11, 7634–7641 (2017). https://doi.org/10.1021/acsnano.7b02182
- D. Wu, J. Xu, W. Fang, Y. Zhang, L. Yang et al., Adversarial attacks and defenses in physiological computing: a systematic review. Natl. Sci. Open 2, 20220023 (2023). https://doi.org/10.1360/nso/20220023
- P. Ponikowski, A.A. Voors, S.D. Anker, H. Bueno, J.G.F. Cleland et al., 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Kardiol. Pol. 74, 1037–1147 (2016). https://doi.org/10.5603/kp.2016.0141
- R.A. Nawrocki, H. Jin, S. Lee, T. Yokota, M. Sekino et al., Self-adhesive and ultra-conformable, sub-300 nm dry thin-film electrodes for surface monitoring of biopotentials. Adv. Funct. Mater. 28, 1803279 (2018). https://doi.org/10.1002/adfm.201803279
- P. Leleux, C. Johnson, X. Strakosas, J. Rivnay, T. Hervé et al., Ionic liquid gel-assisted electrodes for long-term cutaneous recordings. Adv. Healthc. Mater. 3, 1377–1380 (2014). https://doi.org/10.1002/adhm.201300614
- M. Zhu, B. Yu, W. Yang, Y. Jiang, L. Lu et al., Evaluation of normal swallowing functions by using dynamic high-density surface electromyography maps. Biomed. Eng. Online 16, 133 (2017). https://doi.org/10.1186/s12938-017-0424-x
- Y. Wang, Y. Qiu, S.K. Ameri, H. Jang, Z. Dai et al., Low-cost, μm-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts. NPJ Flex. Electron. 2, 6 (2018). https://doi.org/10.1038/s41528-017-0019-4
- X. Xuan, J.Y. Kim, X. Hui, P.S. Das, H.S. Yoon et al., A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosens. Bioelectron. 120, 160–167 (2018). https://doi.org/10.1016/j.bios.2018.07.071
- K. Hu, Z. Zhao, Y. Wang, L. Yu, K. Liu et al., A tough organohydrogel-based multiresponsive sensor for a triboelectric nanogenerator and supercapacitor toward wearable intelligent devices. J. Mater. Chem. A 10, 12092–12103 (2022). https://doi.org/10.1039/D2TA01503J
- Y.M. Chi, T.-P. Jung, G. Cauwenberghs, Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3, 106–119 (2010). https://doi.org/10.1109/RBME.2010.2084078
- S. Ha, C. Kim, Y.M. Chi, A. Akinin, C. Maier et al., Integrated circuits and electrode interfaces for noninvasive physiological monitoring. IEEE Trans. Biomed. Eng. 61, 1522–1537 (2014). https://doi.org/10.1109/TBME.2014.2308552
- M. Lopez-Gordo, D. Sanchez-Morillo, F. Valle, Dry EEG electrodes. Sensors 14, 12847–12870 (2014). https://doi.org/10.3390/s140712847
- K.E. ewson, T.J.L. Harrison, S.A.D. Kizuk, High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Psychophysiology 54, 74–82 (2017). https://doi.org/10.1111/psyp.12536
- M. Li, Y. Zhang, L. Lian, K. Liu, M. Lu et al., Flexible accelerated-wound-healing antibacterial MXene-based epidermic sensor for intelligent wearable human-machine interaction. Adv. Funct. Mater. 32, 2208141 (2022). https://doi.org/10.1002/adfm.202208141
- Y. Zhao, S. Zhang, T. Yu, Y. Zhang, G. Ye et al., Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat. Commun. 12, 4880 (2021). https://doi.org/10.1038/s41467-021-25152-y
- R. Yin, Z. Xu, M. Mei, Z. Chen, K. Wang et al., Soft transparent graphene contact lens electrodes for conformal full-Cornea recording of electroretinogram. Nat. Commun. 9, 2334 (2018). https://doi.org/10.1038/s41467-018-04781-w
- W.H. Lee, J. Park, Y. Kim, K.S. Kim, B.H. Hong et al., Control of graphene field-effect transistors by interfacial hydrophobic self-assembled monolayers. Adv. Mater. 23, 3460–3464 (2011). https://doi.org/10.1002/adma.201101340
- F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
- A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011). https://doi.org/10.1038/nmat3064
- H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao et al., Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008). https://doi.org/10.1021/nn700375n
- N. Liu, A. Chortos, T. Lei, L. Jin, T.R. Kim et al., Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3, e1700159 (2017). https://doi.org/10.1126/sciadv.1700159
- P.S. Das, M.F. Hossain, J.Y. Park, Chemically reduced graphene oxide-based dry electrodes as touch sensor for electrocardiograph measurement. Microelectron. Eng. 180, 45–51 (2017). https://doi.org/10.1016/j.mee.2017.05.048
- P.S. Das, S.H. Park, K.Y. Baik, J.W. Lee, J.Y. Park, Thermally reduced graphene oxide-nylon membrane based epidermal sensor using vacuum filtration for wearable electrophysiological signals and human motion monitoring. Carbon 158, 386–393 (2020). https://doi.org/10.1016/j.carbon.2019.11.001
- Q. Yu, L.A. Jauregui, W. Wu, R. Colby, J. Tian et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011). https://doi.org/10.1038/nmat3010
- J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008). https://doi.org/10.1038/nnano.2008.58
- S. Deng, V. Berry, Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19, 197–212 (2016). https://doi.org/10.1016/j.mattod.2015.10.002
- M.K. Blees, A.W. Barnard, P.A. Rose, S.P. Roberts, K.L. McGill et al., Graphene kirigami. Nature 524, 204–207 (2015). https://doi.org/10.1038/nature14588
- R. You, Y.-Q. Liu, Y.-L. Hao, D.-D. Han, Y.-L. Zhang et al., Laser fabrication of graphene-based flexible electronics. Adv. Mater. 32, 1901981 (2020). https://doi.org/10.1002/adma.201901981
- H. Jang, Y.J. Park, X. Chen, T. Das, M.-S. Kim et al., Graphene-based flexible and stretchable electronics. Adv. Mater. 28, 4184–4202 (2016). https://doi.org/10.1002/adma.201504245
- J. Kim, A.S. Campbell, B.E.-F. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
- Y.J. Yun, J. Ju, J.H. Lee, S.-H. Moon, S.-J. Park et al., Highly elastic graphene-based electronics toward electronic skin. Adv. Funct. Mater. 27, 1701513 (2017). https://doi.org/10.1002/adfm.201701513
- Y. Wei, Y. Qiao, G. Jiang, Y. Wang, F. Wang et al., A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 13, 8639–8647 (2019). https://doi.org/10.1021/acsnano.9b03218
- X. Du, W. Jiang, Y. Zhang, J. Qiu, Y. Zhao et al., Transparent and stretchable graphene electrode by intercalation doping for epidermal electrophysiology. ACS Appl. Mater. Interfaces 12, 56361–56371 (2020). https://doi.org/10.1021/acsami.0c17658
- B. Sun, R.N. McCay, S. Goswami, Y. Xu, C. Zhang et al., Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 30, e1804327 (2018). https://doi.org/10.1002/adma.201804327
- X. Li, L. He, Y. Li, M. Chao, M. Li et al., Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors. ACS Nano 15, 7765–7773 (2021). https://doi.org/10.1021/acsnano.1c01751
- Q.-L. Zhao, Z.-M. Wang, J.-H. Chen, S.-Q. Liu, Y.-K. Wang et al., A highly conductive self-assembled multilayer graphene nanosheet film for electronic tattoos in the applications of human electrophysiology and strain sensing. Nanoscale 13, 10798–10806 (2021). https://doi.org/10.1039/D0NR08032B
- S. Lee, D.H. Ho, J. Jekal, S.Y. Cho, Y.J. Choi et al., Fabric-based Lamina emergent MXene-based electrode for electrophysiological monitoring. Nat. Commun. 15, 5974 (2024). https://doi.org/10.1038/s41467-024-49939-x
- C. Lim, C. Park, S.H. Sunwoo, Y.G. Kim, S. Lee et al., Facile and scalable synthesis of whiskered gold nanosheets for stretchable, conductive, and biocompatible nanocomposites. ACS Nano 16, 10431–10442 (2022). https://doi.org/10.1021/acsnano.2c00880
- D. Gan, Z. Huang, X. Wang, L. Jiang, C. Wang et al., Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv. Funct. Mater. 30, 1907678 (2020). https://doi.org/10.1002/adfm.201907678
- M. Park, W. Yang, J.W. Kim, Y. Choi, S. Kim et al., A fully self-healing patch of integrated bio-signal monitoring sensors with self-healing microporous foam and Au nanosheet electrodes. Adv. Funct. Mater. 34, 2402508 (2024). https://doi.org/10.1002/adfm.202402508
- T. Cui, Y. Qiao, D. Li, X. Huang, L. Yang et al., Multifunctional, breathable MXene-PU mesh electronic skin for wearable intelligent 12-lead ECG monitoring system. Chem. Eng. J. 455, 140690 (2023). https://doi.org/10.1016/j.cej.2022.140690
- Q. Wang, X. Pan, C. Lin, H. Gao, S. Cao et al., Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Chem. Eng. J. 401, 126129 (2020). https://doi.org/10.1016/j.cej.2020.126129
- S. Jeong, S. Heo, M. Kang, H.-J. Kim, Mechanical durability enhancement of gold-nanosheet stretchable electrodes for wearable human bio-signal detection. Mater. Des. 196, 109178 (2020). https://doi.org/10.1016/j.matdes.2020.109178
- R.A. Potyrailo, S. Go, D. Sexton, X. Li, N. Alkadi et al., Extraordinary performance of semiconducting metal oxide gas sensors using dielectric excitation. Nat. Electron. 3, 280–289 (2020). https://doi.org/10.1038/s41928-020-0402-3
- J. Wang, Y. Ren, H. Liu, Z. Li, X. Liu et al., Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature. Adv. Mater. 34, 2104958 (2022). https://doi.org/10.1002/adma.202104958
- M.A. Al Mamun, M.R. Yuce, Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications. Adv. Funct. Mater. 30, 2005703 (2020). https://doi.org/10.1002/adfm.202005703
- C. Figueres, P.J. Landrigan, R. Fuller, Tackling air pollution, climate change, and NCDs: time to pull together. Lancet 392, 1502–1503 (2018). https://doi.org/10.1016/S0140-6736(18)32740-5
- X. Han, H.G.W. Godfrey, L. Briggs, A.J. Davies, Y. Cheng et al., Reversible adsorption of nitrogen dioxide within a robust porous metal-organic framework. Nat. Mater. 17, 691–696 (2018). https://doi.org/10.1038/s41563-018-0104-7
- M. Guarnieri, J.R. Balmes, Outdoor air pollution and asthma. Lancet 383, 1581–1592 (2014). https://doi.org/10.1016/S0140-6736(14)60617-6
- Z. Wu, H. Wang, Q. Ding, K. Tao, W. Shi et al., A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. 33, 2300046 (2023). https://doi.org/10.1002/adfm.202300046
- A.T. Güntner, S. Abegg, K. Königstein, P.A. Gerber, A. Schmidt-Trucksäss et al., Breath sensors for health monitoring. ACS Sens. 4, 268–280 (2019). https://doi.org/10.1021/acssensors.8b00937
- Y. Luo, J. Li, Q. Ding, H. Wang, C. Liu et al., Functionalized hydrogel-based wearable gas and humidity sensors. Nano-Micro Lett. 15, 136 (2023). https://doi.org/10.1007/s40820-023-01109-2
- K. Deshmukh, T. Kovářík, S.K. Khadheer Pasha, State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: a comprehensive review. Coord. Chem. Rev. 424, 213514 (2020). https://doi.org/10.1016/j.ccr.2020.213514
- X. Huang, Z. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42, 1934–1946 (2013). https://doi.org/10.1039/C2CS35387C
- Z. Meng, R.M. Stolz, L. Mendecki, K.A. Mirica, Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119, 478–598 (2019). https://doi.org/10.1021/acs.chemrev.8b00311
- C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski et al., Chemical sensing with 2D materials. Chem. Soc. Rev. 47, 4860–4908 (2018). https://doi.org/10.1039/c8cs00417j
- T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen et al., Flexible transparent electronic gas sensors. Small 12, 3748–3756 (2016). https://doi.org/10.1002/smll.201601049
- C. Han, X. Li, Y. Liu, Y. Tang, M. Liu et al., Flexible all-inorganic room-temperature chemiresistors based on fibrous ceramic substrate and visible-light-powered semiconductor sensing layer. Adv. Sci. 8, e2102471 (2021). https://doi.org/10.1002/advs.202102471
- Z. Wang, X. Jing, S. Duan, C. Liu, D. Kang et al., 2D PtSe2 enabled wireless wearable gas monitoring circuits with distinctive strain-enhanced performance. ACS Nano 17, 11557–11566 (2023). https://doi.org/10.1021/acsnano.3c01582
- Y. Huang, F. Yang, S. Liu, R. Wang, J. Guo et al., Liquid metal-based epidermal flexible sensor for wireless breath monitoring and diagnosis enabled by highly sensitive SnS2 nanosheets. Research 2021, 9847285 (2021). https://doi.org/10.34133/2021/9847285
- S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: a review. Nano Energy 79, 105369 (2021). https://doi.org/10.1016/j.nanoen.2020.105369
- R.A. Potyrailo, Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial Internet. Chem. Rev. 116, 11877–11923 (2016). https://doi.org/10.1021/acs.chemrev.6b00187
- M. Chen, M. Zhang, Z. Yang, C. Zhou, D. Cui et al., AI-driven wearable mask-inspired self-healing sensor array for detection and identification of volatile organic compounds. Adv. Funct. Mater. 34, 2309732 (2024). https://doi.org/10.1002/adfm.202309732
- H. Yuan, N. Li, W. Fan, H. Cai, D. Zhao, Metal-organic framework based gas sensors. Adv. Sci. 9, 2104374 (2022). https://doi.org/10.1002/advs.202104374
- Z. Wu, Q. Ding, H. Wang, J. Ye, Y. Luo et al., A humidity-resistant, sensitive, and stretchable hydrogel-based oxygen sensor for wireless health and environmental monitoring. Adv. Funct. Mater. 34, 2308280 (2024). https://doi.org/10.1002/adfm.202308280
- W. Li, R. Chen, W. Qi, L. Cai, Y. Sun et al., Reduced graphene oxide/mesoporous ZnO NSs hybrid fibers for flexible, stretchable, twisted, and wearable NO2 E-textile gas sensor. ACS Sens. 4, 2809–2818 (2019). https://doi.org/10.1021/acssensors.9b01509
- S.-J. Choi, J.-S. Jang, H.J. Park, I.-D. Kim, Optically sintered 2D RuO2 nanosheets: temperature-controlled NO2 reaction. Adv. Funct. Mater. 27, 1606026 (2017). https://doi.org/10.1002/adfm.201606026
- X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2021). https://doi.org/10.1007/s40820-021-00740-1
- J. He, X. Yan, A. Liu, R. You, F. Liu et al., A rapid-response room-temperature planar type gas sensor based on DPA-Ph-DBPzDCN for the sensitive detection of NH3. J. Mater. Chem. A 7, 4744–4750 (2019). https://doi.org/10.1039/C8TA10840D
- X. Xing, L. Du, D. Feng, C. Wang, Y. Tian et al., Twistable and tailorable V2O5/PANI/GO nanocomposites textile for wearable ammonia sensing. Sens. Actuat. B Chem. 351, 130944 (2022). https://doi.org/10.1016/j.snb.2021.130944
- A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 42, 15119–15141 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145
- T. Chvojka, V. Vrkoslav, I. Jelinek, J. Jindrich, M. Lorenc et al., Mechanisms of photoluminescence sensor response of porous silicon for organic species in gas and liquid phases. Sens. Actuat. B Chem. 100, 246–249 (2004). https://doi.org/10.1016/j.snb.2003.12.040
- H. Ma, Y. Jiang, J. Ma, X. Ma, M. Xue et al., Highly selective wearable smartsensors for vapor/liquid amphibious methanol monitoring. Anal. Chem. 92, 5897–5903 (2020). https://doi.org/10.1021/acs.analchem.9b05728
- X. Chen, J. Zhao, J. Zhao, Y. He, L. Wang et al., Contrasting sludge toxicity under various starting modes (shocking or acclimating) and original organics (with or without N, N-dimethylformamide (DMF)). Int. Biodeterior. Biodegrad. 104, 435–442 (2015). https://doi.org/10.1016/j.ibiod.2015.07.002
- T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang et al., A flexible transparent colorimetric wrist strap sensor. Nanoscale 9, 869–874 (2017). https://doi.org/10.1039/c6nr08265c
- P.-G. Su, Z.-H. Liao, Fabrication of a flexible single-yarn NH3 gas sensor by layer-by-layer self-assembly of graphene oxide. Mater. Chem. Phys. 224, 349–356 (2019). https://doi.org/10.1016/j.matchemphys.2018.12.043
- P.G. Choi, N. Izu, N. Shirahata, Y. Masuda, SnO2 nanosheets for selective alkene gas sensing. ACS Appl. Nano Mater. 2, 1820–1827 (2019). https://doi.org/10.1021/acsanm.8b01945
- Q. Zhang, C. An, S. Fan, S. Shi, R. Zhang et al., Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection. Nanotechnology 29, 285501 (2018). https://doi.org/10.1088/1361-6528/aabf2f
- Y.J. Yun, D.Y. Kim, W.G. Hong, D.H. Ha, Y. Jun et al., Highly stretchable, mechanically stable, and weavable reduced graphene oxide yarn with high NO2 sensitivity for wearable gas sensors. RSC Adv. 8, 7615–7621 (2018). https://doi.org/10.1039/c7ra12760j
- F. Li, H. Peng, D. Xia, J. Yang, K. Yang et al., Highly sensitive, selective, and flexible NO2 chemiresistors based on multilevel structured three-dimensional reduced graphene oxide fiber scaffold modified with aminoanthroquinone moieties and Ag nanops. ACS Appl. Mater. Interfaces 11, 9309–9316 (2019). https://doi.org/10.1021/acsami.8b20462
- H. Guo, C. Lan, Z. Zhou, P. Sun, D. Wei et al., Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 9, 6246–6253 (2017). https://doi.org/10.1039/c7nr01016h
- Y.J. Yun, W.G. Hong, D.Y. Kim, H.J. Kim, Y. Jun et al., E-textile gas sensors composed of molybdenum disulfide and reduced graphene oxide for high response and reliability. Sens. Actuat. B Chem. 248, 829–835 (2017). https://doi.org/10.1016/j.snb.2016.12.028
- S.-J. Choi, S.-J. Kim, I.-D. Kim, Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. NPG Asia Mater. 8, e315 (2016). https://doi.org/10.1038/am.2016.150
- S.-J. Choi, S.-J. Kim, J.-S. Jang, J.-H. Lee, I.-D. Kim, Silver nanowire embedded colorless polyimide heater for wearable chemical sensors: improved reversible reaction kinetics of optically reduced graphene oxide. Small 12, 5826–5835 (2016). https://doi.org/10.1002/smll.201602230
- Y.H. Kim, S.J. Kim, Y.J. Kim, Y.S. Shim, S.Y. Kim et al., Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9, 10453–10460 (2015). https://doi.org/10.1021/acsnano.5b04680
- Y.J. Yun, W.G. Hong, N.J. Choi, B.H. Kim, Y. Jun et al., Ultrasensitive and highly selective graphene-based single yarn for use in wearable gas sensor. Sci. Rep. 5, 10904 (2015). https://doi.org/10.1038/srep10904
- L.T. Duy, T.Q. Trung, V.Q. Dang, B.-U. Hwang, S. Siddiqui et al., Flexible transparent reduced graphene oxide sensor coupled with organic dye molecules for rapid dual-mode ammonia gas detection. Adv. Funct. Mater. 26, 4329–4338 (2016). https://doi.org/10.1002/adfm.201505477
- B. Cho, A.R. Kim, D.J. Kim, H.-S. Chung, S.Y. Choi et al., Two-dimensional atomic-layered alloy junctions for high-performance wearable chemical sensor. ACS Appl. Mater. Interfaces 8, 19635–19642 (2016). https://doi.org/10.1021/acsami.6b05943
- L. Yang, N. Yi, J. Zhu, Z. Cheng, X. Yin et al., Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. J. Mater. Chem. A 8, 6487–6500 (2020). https://doi.org/10.1039/C9TA07855J
- Z. Song, Z. Huang, J. Liu, Z. Hu, J. Zhang et al., Fully stretchable and humidity-resistant quantum dot gas sensors. ACS Sens. 3, 1048–1055 (2018). https://doi.org/10.1021/acssensors.8b00263
- H.Y. Nyein, W. Gao, Z. Shahpar, S. Emaminejad, S. Challa et al., A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 10, 7216–7224 (2016). https://doi.org/10.1021/acsnano.6b04005
- Y.Y. Broza, X. Zhou, M. Yuan, D. Qu, Y. Zheng et al., Disease detection with molecular biomarkers: from chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev. 119, 11761–11817 (2019). https://doi.org/10.1021/acs.chemrev.9b00437
- F. Wen, T. He, H. Liu, H.-Y. Chen, T. Zhang et al., Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era. Nano Energy 78, 105155 (2020). https://doi.org/10.1016/j.nanoen.2020.105155
- N. Mishra, N.T. Garland, K.A. Hewett, M. Shamsi, M.D. Dickey et al., A soft wearable microfluidic patch with finger-actuated pumps and valves for on-demand, longitudinal, and multianalyte sweat sensing. ACS Sens. 7, 3169–3180 (2022). https://doi.org/10.1021/acssensors.2c01669
- J.R. Sempionatto, J.A. Lasalde-Ramírez, K. Mahato, J. Wang, W. Gao, Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022). https://doi.org/10.1038/s41570-022-00439-w
- F. Tehrani, H. Teymourian, B. Wuerstle, J. Kavner, R. Patel et al., An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022). https://doi.org/10.1038/s41551-022-00887-1
- J.R. Sempionatto, M. Lin, L. Yin, E. De la Paz, K. Pei et al., An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021). https://doi.org/10.1038/s41551-021-00685-1
- S. Imani, A.J. Bandodkar, A.M. Mohan, R. Kumar, S. Yu et al., A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016). https://doi.org/10.1038/ncomms11650
- H. Lee, C. Song, Y.S. Hong, M. Kim, H.R. Cho et al., Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3, e1601314 (2017). https://doi.org/10.1126/sciadv.1601314
- M. Bariya, H.Y.Y. Nyein, A. Javey, Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018). https://doi.org/10.1038/s41928-018-0043-y
- A.J. Bandodkar, J. Wang, Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363–371 (2014). https://doi.org/10.1016/j.tibtech.2014.04.005
- M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan et al., Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012). https://doi.org/10.1038/ncomms1767
- J. Heikenfeld, Bioanalytical devices: technological leap for sweat sensing. Nature 529, 475–476 (2016). https://doi.org/10.1038/529475a
- C.L. Tan, Z.A. Knight, Regulation of body temperature by the nervous system. Neuron 98, 31–48 (2018). https://doi.org/10.1016/j.neuron.2018.02.022
- M. Dervisevic, M. Alba, B. Prieto-Simon, N.H. Voelcker, Skin in the diagnostics game: wearable biosensor nano- and microsystems for medical diagnostics. Nano Today 30, 100828 (2020). https://doi.org/10.1016/j.nantod.2019.100828
- J. Choi, R. Ghaffari, L.B. Baker, J.A. Rogers, Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 4, eaar3921 (2018). https://doi.org/10.1126/sciadv.aar3921
- A.J. Bandodkar, I. Jeerapan, J. Wang, Wearable chemical sensors: present challenges and future prospects. ACS Sens. 1, 464–482 (2016). https://doi.org/10.1021/acssensors.6b00250
- K.K. Yeung, J. Li, T. Huang, I.I. Hosseini, R. Al Mahdi et al., Utilizing gradient porous graphene substrate as the solid-contact layer to enhance wearable electrochemical sweat sensor sensitivity. Nano Lett. 22, 6647–6654 (2022). https://doi.org/10.1021/acs.nanolett.2c01969
- Y. Lei, W. Zhao, Y. Zhang, Q. Jiang, J.H. He et al., A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small 15, e1901190 (2019). https://doi.org/10.1002/smll.201901190
- Z. Wang, Z. Hao, X. Wang, C. Huang, Q. Lin et al., A flexible and regenerative aptameric graphene–nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications. Adv. Funct. Mater. 31, 2005958 (2021). https://doi.org/10.1002/adfm.202005958
- L.B. Baker, A.S. Wolfe, Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol. 120, 719–752 (2020). https://doi.org/10.1007/s00421-020-04323-7
- H.J. Park, J.-M. Jeong, S.G. Son, S.J. Kim, M. Lee et al., Fluid-dynamics-processed highly stretchable, conductive, and printable graphene inks for real-time monitoring sweat during stretching exercise. Adv. Funct. Mater. 31, 2011059 (2021). https://doi.org/10.1002/adfm.202011059
- M. Sharifuzzaman, A. Chhetry, M.A. Zahed, S.H. Yoon, C.I. Park et al., Smart bandage with integrated multifunctional sensors based on MXene-functionalized porous graphene scaffold for chronic wound care management. Biosens. Bioelectron. 169, 112637 (2020). https://doi.org/10.1016/j.bios.2020.112637
- L. Zhang, L. Wang, J. Li, C. Cui, Z. Zhou et al., Surface engineering of laser-induced graphene enables long-term monitoring of on-body uric acid and pH simultaneously. Nano Lett. 22, 5451–5458 (2022). https://doi.org/10.1021/acs.nanolett.2c01500
- T. Hu, Z. Gu, G.R. Williams, M. Strimaite, J. Zha et al., Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 51, 6126–6176 (2022). https://doi.org/10.1039/d2cs00236a
- S. Lukasiak, C. Schiller, P. Oehlschlaeger, G. Schmidtke, P. Krause et al., Proinflammatory cytokines cause FAT10 upregulation in cancers of liver and colon. Oncogene 27, 6068–6074 (2008). https://doi.org/10.1038/onc.2008.201
- J. Heikenfeld, Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016. Electroanalysis 28, 1242–1249 (2016). https://doi.org/10.1002/elan.201600018
- C.J. Harvey, R.F. LeBouf, A.B. Stefaniak, Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol. In Vitro 24, 1790–1796 (2010). https://doi.org/10.1016/j.tiv.2010.06.016
- X. Luo, L. Zhu, Y.-C. Wang, J. Li, J. Nie et al., A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 31, 2104928 (2021). https://doi.org/10.1002/adfm.202104928
- Y. Yu, J. Nassar, C. Xu, J. Min, Y. Yang et al., Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 5, eaaz7946 (2020). https://doi.org/10.1126/scirobotics.aaz7946
- S. Li, Y. Zhang, X. Liang, H. Wang, H. Lu et al., Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat. Commun. 13, 5416 (2022). https://doi.org/10.1038/s41467-022-33133-y
- J.-L. Xu, Y.-H. Liu, X. Gao, S. Shen, S.-D. Wang, Toward wearable electronics: a lightweight all-solid-state supercapacitor with outstanding transparency, foldability and breathability. Energy Storage Mater. 22, 402–409 (2019). https://doi.org/10.1016/j.ensm.2019.02.013
- S. Long, Y. Feng, F. He, J. Zhao, T. Bai et al., Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 85, 105973 (2021). https://doi.org/10.1016/j.nanoen.2021.105973
- Y. Lu, K. Jiang, D. Chen, G. Shen, Wearable sweat monitoring system with integrated micro-supercapacitors. Nano Energy 58, 624–632 (2019). https://doi.org/10.1016/j.nanoen.2019.01.084
- Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 19, 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
- T. Zhao, C. Zhao, W. Xu, Y. Liu, H. Gao et al., Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx MXenes floating gate. Adv. Funct. Mater. 31, 2106000 (2021). https://doi.org/10.1002/adfm.202106000
- M.K. Choi, I. Park, D.C. Kim, E. Joh, O.K. Park et al., Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system. Adv. Funct. Mater. 25, 7109–7118 (2015). https://doi.org/10.1002/adfm.201502956
- X. Jin, S. Wang, C. Sang, Y. Yue, X. Xu et al., Patternable nanocellulose/Ti3C2Tx flexible films with tunable photoresponsive and electromagnetic interference shielding performances. ACS Appl. Mater. Interfaces 14, 35040–35052 (2022). https://doi.org/10.1021/acsami.2c11567
- H. Lee, E. Kim, Y. Lee, H. Kim, J. Lee et al., Toward all-day wearable health monitoring: an ultralow-power, reflective organic pulse oximetry sensing patch. Sci. Adv. 4, eaas9530 (2018). https://doi.org/10.1126/sciadv.aas9530
- N. Driscoll, A.G. Richardson, K. Maleski, B. Anasori, O. Adewole et al., Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano 12, 10419–10429 (2018). https://doi.org/10.1021/acsnano.8b06014
- Y. Yang, N. Sun, Z. Wen, P. Cheng, H. Zheng et al., Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 12, 2027–2034 (2018). https://doi.org/10.1021/acsnano.8b00147
- Q. Zhao, Y. Jiang, Z. Duan, Z. Yuan, J. Zha et al., A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing. Chem. Eng. J. 438, 135588 (2022). https://doi.org/10.1016/j.cej.2022.135588
- J. Chen, S.K. Oh, N. Nabulsi, H. Johnson, W. Wang et al., Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator. Nano Energy 57, 670–679 (2019). https://doi.org/10.1016/j.nanoen.2018.12.080
- T. Wu, X. Wu, L. Li, M. Hao, G. Wu et al., Anisotropic boron-carbon hetero-nanosheets for ultrahigh energy density supercapacitors. Angew. Chem. Int. Ed. 59, 23800–23809 (2020). https://doi.org/10.1002/anie.202011523
- H. Ryu, H.-J. Yoon, S.-W. Kim, Hybrid energy harvesters: toward sustainable energy harvesting. Adv. Mater. 31, 1802898 (2019). https://doi.org/10.1002/adma.201802898
- M. Han, H. Wang, Y. Yang, C. Liang, W. Bai et al., Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2, 26–35 (2019). https://doi.org/10.1038/s41928-018-0189-7
- R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi et al., Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019). https://doi.org/10.1126/
References
M. Lin, H. Hu, S. Zhou, S. Xu, Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022). https://doi.org/10.1038/s41578-022-00427-y
H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narváez, F. Güder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
J. Heikenfeld, A. Jajack, J. Rogers, P. Gutruf, L. Tian et al., Wearable sensors: modalities, challenges, and prospects. Lab Chip 18, 217–248 (2018). https://doi.org/10.1039/c7lc00914c
C. Choi, Y. Lee, K.W. Cho, J.H. Koo, D.H. Kim, Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 52, 73–81 (2019). https://doi.org/10.1021/acs.accounts.8b00491
J. Chen, Y. Zhu, X. Chang, D. Pan, G. Song et al., Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 31, 2104686 (2021). https://doi.org/10.1002/adfm.202104686
Y.D. Horev, A. Maity, Y. Zheng, Y. Milyutin, M. Khatib et al., Stretchable and highly permeable nanofibrous sensors for detecting complex human body motion. Adv. Mater. 33, e2102488 (2021). https://doi.org/10.1002/adma.202102488
Y. Luo, M.R. Abidian, J.-H. Ahn, D. Akinwande, A.M. Andrews et al., Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023). https://doi.org/10.1021/acsnano.2c12606
B. Wu, T. Wu, Z. Huang, S. Ji, Advancing flexible sensors through on-demand regulation of supramolecular nanostructures. ACS Nano 18, 22664–22674 (2024). https://doi.org/10.1021/acsnano.4c08310
Q. Shen, G. Song, H. Lin, H. Bai, Y. Huang et al., Sensing, imaging, and therapeutic strategies endowing by conjugate polymers for precision medicine. Adv. Mater. 36, e2310032 (2024). https://doi.org/10.1002/adma.202310032
Y. Pang, Z. Yang, Y. Yang, T.-L. Ren, Wearable electronics based on 2D materials for human physiological information detection. Small 16, e1901124 (2020). https://doi.org/10.1002/smll.201901124
J. Kim, I. Jeerapan, J.R. Sempionatto, A. Barfidokht, R.K. Mishra et al., Wearable bioelectronics: enzyme-based body-worn electronic devices. Acc. Chem. Res. 51, 2820–2828 (2018). https://doi.org/10.1021/acs.accounts.8b00451
B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang et al., Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11, 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8
L. Lu, B. Yang, J. Liu, Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain, temperature and gas measurements. Chem. Eng. J. 400, 125928 (2020). https://doi.org/10.1016/j.cej.2020.125928
Y. Jiang, S. Ji, J. Sun, J. Huang, Y. Li et al., A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023). https://doi.org/10.1038/s41586-022-05579-z
C. Wang, E. Shirzaei Sani, W. Gao, Wearable bioelectronics for chronic wound management. Adv. Funct. Mater. 32, 2270099 (2022). https://doi.org/10.1002/adfm.202270099
Y.J. Hong, H. Jeong, K.W. Cho, N. Lu, D.-H. Kim, Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 29, 1808247 (2019). https://doi.org/10.1002/adfm.201808247
P. Escobedo, M.D. Fernández-Ramos, N. López-Ruiz, O. Moyano-Rodríguez, A. Martínez-Olmos et al., Smart facemask for wireless CO2 monitoring. Nat. Commun. 13, 72 (2022). https://doi.org/10.1038/s41467-021-27733-3
S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014). https://doi.org/10.1038/ncomms4132
M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8, 5154–5163 (2014). https://doi.org/10.1021/nn501204t
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). https://doi.org/10.1038/nature16521
J.S. Heo, M.F. Hossain, I. Kim, Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring: a critical review. Sensors (Basel) 20, 3927 (2020). https://doi.org/10.3390/s20143927
J.A. Rogers, R. Ghaffari, D.-H. Kim, Stretchable Bioelectronics for Medical Devices and Systems (Springer International Publishing, Cham, 2016), pp.4–5
S.H. Chae, W.J. Yu, J.J. Bae, D.L. Duong, D. Perello et al., Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat. Mater. 12, 403–409 (2013). https://doi.org/10.1038/nmat3572
J. Yoon, A.J. Baca, S.-I. Park, P. Elvikis, J.B. Geddes et al., Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7, 907–915 (2008). https://doi.org/10.1038/nmat2287
D.-Y. Khang, H. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006). https://doi.org/10.1126/science.1121401
Z. Huang, Y. Hao, Y. Li, H. Hu, C. Wang et al., Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018). https://doi.org/10.1038/s41928-018-0116-y
D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim et al., Epidermal electronics. Science 333, 838–843 (2011). https://doi.org/10.1126/science.1206157
L. Tian, B. Zimmerman, A. Akhtar, K.J. Yu, M. Moore et al., Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 3, 194–205 (2019). https://doi.org/10.1038/s41551-019-0347-x
J. Rivnay, S. Inal, A. Salleo, R.M. Owens, M. Berggren et al., Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018). https://doi.org/10.1038/natrevmats.2017.86
Y. Fang, X. Li, Y. Fang, Organic bioelectronics for neural interfaces. J. Mater. Chem. C 3, 6424–6430 (2015). https://doi.org/10.1039/C5TC00569H
Y. Ling, T. An, L.W. Yap, B. Zhu, S. Gong et al., Disruptive, soft, wearable sensors. Adv. Mater. 32, 1904664 (2020). https://doi.org/10.1002/adma.201904664
J. Yin, R. Hinchet, H. Shea, C. Majidi, Wearable soft technologies for haptic sensing and feedback. Adv. Funct. Mater. 31, 2007428 (2021). https://doi.org/10.1002/adfm.202007428
Y. Pei, X. Zhang, Z. Hui, J. Zhou, X. Huang et al., Ti3C2TX MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano 15, 3996–4017 (2021). https://doi.org/10.1021/acsnano.1c00248
M. Wang, Y. Yang, W. Gao, Laser-engraved graphene for flexible and wearable electronics. Trends Chem. 3, 969–981 (2021). https://doi.org/10.1016/j.trechm.2021.09.001
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang et al., Buckled two-dimensional xene sheets. Nat. Mater. 16, 163–169 (2017). https://doi.org/10.1038/nmat4802
W. Tao, N. Kong, X. Ji, Y. Zhang, A. Sharma et al., Emerging two-dimensional monoelemental materials (xenes) for biomedical applications. Chem. Soc. Rev. 48, 2891–2912 (2019). https://doi.org/10.1039/C8CS00823J
N. Rohaizad, C.C. Mayorga-Martinez, M. Fojtů, N.M. Latiff, M. Pumera, Two-dimensional materials in biomedical, biosensing and sensing applications. Chem. Soc. Rev. 50, 619–657 (2021). https://doi.org/10.1039/d0cs00150c
M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). https://doi.org/10.1038/nchem.1589
G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha et al., Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015). https://doi.org/10.1021/acsnano.5b05556
M.M. Ugeda, A.J. Bradley, S.F. Shi, F.H. da Jornada, Y. Zhang et al., Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014). https://doi.org/10.1038/nmat4061
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h
Q. Wang, D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012). https://doi.org/10.1021/cr200434v
G. Fan, F. Li, D.G. Evans, X. Duan, Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem. Soc. Rev. 43, 7040–7066 (2014). https://doi.org/10.1039/C4CS00160E
J. Pan, H. Hu, Z. Li, J. Mu, Y. Cai et al., Recent progress in two-dimensional materials for terahertz protection. Acta Chim. Sin. 79, 58–70 (2021). https://doi.org/10.6023/a20080361
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005). https://doi.org/10.1038/nature04235
X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Modern Phys. 83, 1057–1110 (2011). https://doi.org/10.1103/revmodphys.83.1057
H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang et al., Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single dirac cone on the surface. Nat. Phys. 5, 438–442 (2009). https://doi.org/10.1038/nphys1270
G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014). https://doi.org/10.1038/nnano.2014.207
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). https://doi.org/10.1038/nature07719
C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
D. Papageorgiou, I. Kinloch, R. Young, Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017). https://doi.org/10.1016/j.pmatsci.2017.07.004
H. Jiang, L. Zheng, Z. Liu, X. Wang, Two-dimensional materials: from mechanical properties to flexible mechanical sensors. InfoMat 2, 1077–1094 (2020). https://doi.org/10.1002/inf2.12072
A.H. Castro Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Modern Phys. 81, 109–162 (2009). https://doi.org/10.1103/revmodphys.81.109
J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475
S. Das Sarma, S. Adam, E. Hwang, E. Rossi, Electronic transport in two-dimensional graphene. Rev. Modern Phys. 83, 407–470 (2011). https://doi.org/10.1103/revmodphys.83.407
K.F. Mak, K.L. McGill, J. Park, P.L. McEuen, The valley Hall effect in MoS2transistors. Science 344, 1489–1492 (2014). https://doi.org/10.1126/science.1250140
F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photonics 8, 899–907 (2014). https://doi.org/10.1038/nphoton.2014.271
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der waals heterostructures. Science 353, eaac9439 (2016). https://doi.org/10.1126/science.aac9439
Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang et al., Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42
D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017). https://doi.org/10.1038/nmat4703
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
A.K. Katiyar, A.T. Hoang, D. Xu, J. Hong, B.J. Kim et al., 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 124, 318–419 (2024). https://doi.org/10.1021/acs.chemrev.3c00302
Y. Wang, L. Wang, T. Yang, X. Li, X. Zang et al., Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24, 4666–4670 (2014). https://doi.org/10.1002/adfm.201400379
Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin et al., Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12, 56–62 (2018). https://doi.org/10.1021/acsnano.7b06251
A. Bolotsky, D. Butler, C. Dong, K. Gerace, N.R. Glavin et al., Two-dimensional materials in biosensing and healthcare: from in vitro diagnostics to optogenetics and beyond. ACS Nano 13, 9781–9810 (2019). https://doi.org/10.1021/acsnano.9b03632
S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013). https://doi.org/10.1021/nn400280c
D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). https://doi.org/10.1038/ncomms6678
Y. Yang, W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019). https://doi.org/10.1039/C7CS00730B
H.R. Lim, H.S. Kim, R. Qazi, Y.T. Kwon, J.W. Jeong et al., Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32, e1901924 (2020). https://doi.org/10.1002/adma.201901924
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872
C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang et al., Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). https://doi.org/10.1038/nnano.2010.172
C. Liu, B. Zhang, W. Chen, W. Liu, S. Zhang, Current development of wearable sensors based on nanosheets and applications. Trac Trends Anal. Chem. 143, 116334 (2021). https://doi.org/10.1016/j.trac.2021.116334
K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30, e1804779 (2018). https://doi.org/10.1002/adma.201804779
S. Yang, C. Jiang, S.-H. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 4, 021304 (2017). https://doi.org/10.1063/1.4983310
R. Saleh, M. Barth, W. Eberhardt, A. Zimmermann, Bending setups for reliability investigation of flexible electronics. Micromachines 12, 78 (2021). https://doi.org/10.3390/mi12010078
Y. Liu, L. Yuan, M. Yang, Y. Zheng, L. Li et al., Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers. Nat. Commun. 5, 5461 (2014). https://doi.org/10.1038/ncomms6461
K. Xia, C. Wang, M. Jian, Q. Wang, Y. Zhang, CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 11, 1124–1134 (2018). https://doi.org/10.1007/s12274-017-1731-z
G. Du, Y. Shao, B. Luo, T. Liu, J. Zhao et al., Compliant iontronic triboelectric gels with phase-locked structure enabled by competitive hydrogen bonding. Nano-Micro Lett. 16, 170 (2024). https://doi.org/10.1007/s40820-024-01387-4
G. Wang, Z. Dai, J. Xiao, S. Feng, C. Weng et al., Bending of multilayer van der Waals materials. Phys. Rev. Lett. 123, 116101 (2019). https://doi.org/10.1103/PhysRevLett.123.116101
X. Hu, M. Wu, L. Che, J. Huang, H. Li et al., Nanoengineering ultrathin flexible pressure sensor with superior sensitivity and perfect conformability. Small 19, 2208015 (2023). https://doi.org/10.1002/smll.202208015
V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, e1226419 (2013). https://doi.org/10.1126/science.1226419
C.-F. Xu, X.-D. Wang, L.-S. Liao, From low-dimensional materials to complex superstructures: a review and outlook. Natl. Sci. Open 2, 20230016 (2023). https://doi.org/10.1360/nso/20230016
P. Kumar, G. Singh, X. Guan, S. Roy, J. Lee et al., The rise of xene hybrids. Adv. Mater. 36, 2403881 (2024). https://doi.org/10.1002/adma.202403881
B. Cho, J. Yoon, S.K. Lim, A.R. Kim, D.H. Kim et al., Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces 7, 16775–16780 (2015). https://doi.org/10.1021/acsami.5b04541
Y.J. Park, S.-K. Lee, M.-S. Kim, H. Kim, J.-H. Ahn, Graphene-based conformal devices. ACS Nano 8, 7655–7662 (2014). https://doi.org/10.1021/nn503446f
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). https://doi.org/10.1038/nmat1967
D. Akinwande, C. Huyghebaert, C.-H. Wang, M.I. Serna, S. Goossens et al., Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). https://doi.org/10.1038/s41586-019-1573-9
H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
J. Li, P. Song, J. Zhao, K. Vaklinova, X. Zhao et al., Printable two-dimensional superconducting monolayers. Nat. Mater. 20, 181–187 (2021). https://doi.org/10.1038/s41563-020-00831-1
V.B. Mohan, K.-T. Lau, D. Hui, D. Bhattacharyya, Graphene-based materials and their composites: a review on production, applications and product limitations. Compos. Part B Eng. 142, 200–220 (2018). https://doi.org/10.1016/j.compositesb.2018.01.013
N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys et al., Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018). https://doi.org/10.1038/s41565-017-0035-5
Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng et al., Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem. Rev. 119, 1806–1854 (2019). https://doi.org/10.1021/acs.chemrev.8b00501
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). https://doi.org/10.1126/science.abf1581
Z. He, Z. Qi, H. Liu, K. Wang, L. Roberts et al., Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials. Natl. Sci. Rev. 9, nwab184 (2021). https://doi.org/10.1093/nsr/nwab184
J. Ramírez, D. Rodriquez, F. Qiao, J. Warchall, J. Rye et al., Metallic nanoislands on graphene for monitoring swallowing activity in head and neck cancer patients. ACS Nano 12, 5913–5922 (2018). https://doi.org/10.1021/acsnano.8b02133
J. Qiu, T. Yu, W. Zhang, Z. Zhao, Y. Zhang et al., A bioinspired, durable, and nondisposable transparent graphene skin electrode for electrophysiological signal detection. ACS Mater. Lett. 2, 999–1007 (2020). https://doi.org/10.1021/acsmaterialslett.0c00203
F. Li, Y. Liu, X. Shi, H. Li, C. Wang et al., Printable and stretchable temperature-strain dual-sensing nanocomposite with high sensitivity and perfect stimulus discriminability. Nano Lett. 20, 6176–6184 (2020). https://doi.org/10.1021/acs.nanolett.0c02519
Y. Yamamoto, S. Harada, D. Yamamoto, W. Honda, T. Arie et al., Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci. Adv. 2, e1601473 (2016). https://doi.org/10.1126/sciadv.1601473
Z. Li, W. Guo, Y. Huang, K. Zhu, H. Yi et al., On-skin graphene electrodes for large area electrophysiological monitoring and human-machine interfaces. Carbon 164, 164–170 (2020). https://doi.org/10.1016/j.carbon.2020.03.058
Z. Lin, G. Zhang, X. Xiao, C. Au, Y. Zhou et al., A personalized acoustic interface for wearable human–machine interaction. Adv. Funct. Mater. 32, 2109430 (2022). https://doi.org/10.1002/adfm.202109430
D. Kireev, S.K. Ameri, A. Nederveld, J. Kampfe, H. Jang et al., Fabrication, characterization and applications of graphene electronic tattoos. Nat. Protoc. 16, 2395–2417 (2021). https://doi.org/10.1038/s41596-020-00489-8
E.H.R. Association, E.A.F.C.-T. Surgery, A.J. Camm, P. Kirchhof, G.Y.H. Lip et al., Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European society of cardiology (ESC). Eur. Heart J. 31, 2369–2429 (2010). https://doi.org/10.1093/eurheartj/ehq278
F. Shaffer, R. McCraty, C.L. Zerr, A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 5, 1040 (2014). https://doi.org/10.3389/fpsyg.2014.01040
S. Cao, H. Zou, B. Jiang, M. Li, Q. Yuan, Incorporation of ZnO encapsulated MoS2 to fabricate flexible piezoelectric nanogenerator and sensor. Nano Energy 102, 107635 (2022). https://doi.org/10.1016/j.nanoen.2022.107635
L. Zhang, X. Zhang, H. Zhang, L. Xu, D. Wang et al., Semi-embedded robust MXene/AgNW sensor with self-healing, high sensitivity and a wide range for motion detection. Chem. Eng. J. 434, 134751 (2022). https://doi.org/10.1016/j.cej.2022.134751
R.M. Carey, P. Muntner, H.B. Bosworth, P.K. Whelton, Prevention and control of hypertension JACC health promotion series. J. Am. Coll. Cardiol. 72, 1278–1293 (2018). https://doi.org/10.1016/j.jacc.2018.07.008
H. Yang, X. Xiao, Z. Li, K. Li, N. Cheng et al., Wireless Ti3C2Tx MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS Nano 14, 11860–11875 (2020). https://doi.org/10.1021/acsnano.0c04730
O. Marrone, M.R. Bonsignore, Blood-pressure variability in patients with obstructive sleep apnea: current perspectives. Nat. Sci. Sleep 10, 229–242 (2018). https://doi.org/10.2147/nss.s148543
N. Davis, J. Heikenfeld, C. Milla, A. Javey, The challenges and promise of sweat sensing. Nat. Biotechnol. 42, 860–871 (2024). https://doi.org/10.1038/s41587-023-02059-1
C. Liu, Q. Wang, C. Wang, Q. Wang, W. Zhao et al., State of the art overview wearable biohazard gas sensors based on nanosheets for environment monitoring applications. Trends Environ. Anal. Chem. 40, e00215 (2023). https://doi.org/10.1016/j.teac.2023.e00215
H. Wang, R. Zhou, D. Li, L. Zhang, G. Ren et al., High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 15, 9690–9700 (2021). https://doi.org/10.1021/acsnano.1c00259
J. Yang, C. Wang, L. Liu, H. Zhang, J. Ma, Water-tolerant MXene epidermal sensors with high sensitivity and reliability for healthcare monitoring. ACS Appl. Mater. Interfaces 14, 21253–21262 (2022). https://doi.org/10.1021/acsami.2c03731
Y. Wang, Y. Yue, F. Cheng, Y. Cheng, B. Ge et al., Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 16, 1734–1758 (2022). https://doi.org/10.1021/acsnano.1c09925
Y. Zheng, R. Yin, Y. Zhao, H. Liu, D. Zhang et al., Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. 420, 127720 (2021). https://doi.org/10.1016/j.cej.2020.127720
H. Zhuo, Y. Hu, Z. Chen, X. Peng, L. Liu et al., A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors. J. Mater. Chem. A 7, 8092–8100 (2019). https://doi.org/10.1039/C9TA00596J
M. Yang, Y. Cheng, Y. Yue, Y. Chen, H. Gao et al., High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 9, 2200507 (2022). https://doi.org/10.1002/advs.202200507
S. Zhang, C. Liu, X. Sun, W.-C. Huang, Current development of materials science and engineering towards epidermal sensors. Prog. Mater. Sci. 128, 100962 (2022). https://doi.org/10.1016/j.pmatsci.2022.100962
S. Afroj, S. Tan, A.M. Abdelkader, K.S. Novoselov, N. Karim, Highly conductive, scalable, and machine washable graphene-based E-textiles for multifunctional wearable electronic applications. Adv. Funct. Mater. 30, 2000293 (2020). https://doi.org/10.1002/adfm.202000293
J. Ryu, Y. Kim, D. Won, N. Kim, J.S. Park et al., Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano 8, 950–956 (2014). https://doi.org/10.1021/nn405754d
M. Kang, J. Kim, B. Jang, Y. Chae, J.-H. Kim et al., Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano 11, 7950–7957 (2017). https://doi.org/10.1021/acsnano.7b02474
C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11, 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
S. Moon, J. Kim, J. Park, S. Im, J. Kim et al., Hexagonal boron nitride for next-generation photonics and electronics. Adv. Mater. 35, 2204161 (2023). https://doi.org/10.1002/adma.202204161
Y. Xie, Y. Cheng, Y. Ma, J. Wang, J. Zou et al., 3D MXene-based flexible network for high-performance pressure sensor with a wide temperature range. Adv. Sci. 10, 2205303 (2023). https://doi.org/10.1002/advs.202205303
Y. Su, W. Li, X. Cheng, Y. Zhou, S. Yang et al., High-performance piezoelectric composites via β phase programming. Nat. Commun. 13, 4867 (2022). https://doi.org/10.1038/s41467-022-32518-3
D. Kireev, K. Sel, B. Ibrahim, N. Kumar, A. Akbari et al., Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 17, 864–870 (2022). https://doi.org/10.1038/s41565-022-01145-w
Y. Yang, L. Shi, Z. Cao, R. Wang, J. Sun, Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanop–nanosheet hybrid network. Adv. Funct. Mater. 29, 1807882 (2019). https://doi.org/10.1002/adfm.201807882
W. Xu, S. Hu, Y. Zhao, W. Zhai, Y. Chen et al., Nacre-inspired tunable strain sensor with synergistic interfacial interaction for sign language interpretation. Nano Energy 90, 106606 (2021). https://doi.org/10.1016/j.nanoen.2021.106606
X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13, 1602790 (2017). https://doi.org/10.1002/smll.201602790
J. Guo, B. Zhou, C. Yang, Q. Dai, L. Kong, Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv. Funct. Mater. 29, 1902898 (2019). https://doi.org/10.1002/adfm.201902898
Y.S. Oh, J.-H. Kim, Z. Xie, S. Cho, H. Han et al., Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nat. Commun. 12, 5008 (2021). https://doi.org/10.1038/s41467-021-25324-w
A. Nag, R.B.V.B. Simorangkir, D.R. Gawade, S. Nuthalapati, J.L. Buckley et al., Graphene-based wearable temperature sensors: a review. Mater. Des. 221, 110971 (2022). https://doi.org/10.1016/j.matdes.2022.110971
H. Chen, J. Huang, J. Liu, J. Gu, J. Zhu et al., High toughness multifunctional organic hydrogels for flexible strain and temperature sensor. J. Mater. Chem. A 9, 23243–23255 (2021). https://doi.org/10.1039/D1TA07127K
V. Shirhatti, S. Nuthalapati, V. Kedambaimoole, S. Kumar, M.M. Nayak et al., Multifunctional graphene sensor ensemble as a smart biomonitoring fashion accessory. ACS Sens. 6, 4325–4337 (2021). https://doi.org/10.1021/acssensors.1c01393
W. Fan, T. Liu, F. Wu, S. Wang, S. Ge et al., An antisweat interference and highly sensitive temperature sensor based on poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature. ACS Nano 17, 21073–21082 (2023). https://doi.org/10.1021/acsnano.3c04246
W. Li, M. Xu, J. Gao, X. Zhang, H. Huang et al., Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv. Mater. 35, e2207447 (2023). https://doi.org/10.1002/adma.202207447
D. Mohapatra, Y. Shin, M.Z. Ansari, Y.H. Kim, Y.J. Park et al., Process controlled ruthenium on 2D engineered V-MXene via atomic layer deposition for human healthcare monitoring. Adv. Sci. 10, e2206355 (2023). https://doi.org/10.1002/advs.202206355
T.Q. Trung, S. Ramasundaram, B.U. Hwang, N.E. Lee, An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016). https://doi.org/10.1002/adma.201504441
P. Wang, W. Yu, G. Li, C. Meng, S. Guo, Printable, flexible, breathable and sweatproof bifunctional sensors based on an all-nanofiber platform for fully decoupled pressure–temperature sensing application. Chem. Eng. J. 452, 139174 (2023). https://doi.org/10.1016/j.cej.2022.139174
S.Y. Hong, Y.H. Lee, H. Park, S.W. Jin, Y.R. Jeong et al., Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv. Mater. 28, 930–935 (2016). https://doi.org/10.1002/adma.201504659
Z. Lei, Q. Wang, S. Sun, W. Zhu, P. Wu, A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 29, 1700321 (2017). https://doi.org/10.1002/adma.201700321
Z. Lou, L. Wang, K. Jiang, G. Shen, Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. Nano Today 26, 176–198 (2019). https://doi.org/10.1016/j.nantod.2019.03.002
W.M. Ryu, Y. Lee, Y. Son, G. Park, S. Park, Thermally drawn multi-material fibers based on polymer nanocomposite for continuous temperature sensing. Adv. Fiber Mater. 5, 1712–1724 (2023). https://doi.org/10.1007/s42765-023-00306-3
S. Zhang, A. Chhetry, M. Abu Zahed, S. Sharma, C. Park et al., On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. npj Flex. Electron. 6, 11 (2022). https://doi.org/10.1038/s41528-022-00140-4
J. Luo, S. Gao, H. Luo, L. Wang, X. Huang et al., Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem. Eng. J. 406, 126898 (2021). https://doi.org/10.1016/j.cej.2020.126898
A. Champagne, L. Shi, T. Ouisse, B. Hackens, J.-C. Charlier, Electronic and vibrational properties of V2C-based MXenes: from experiments to first-principles modeling. Phys. Rev. B 97, 115439 (2018). https://doi.org/10.1103/physrevb.97.115439
M. Khazaei, A. Ranjbar, M. Ghorbani-Asl, M. Arai, T. Sasaki et al., Nearly free electron states in MXenes. Phys. Rev. B 93, 205125 (2016). https://doi.org/10.1103/physrevb.93.205125
K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13, 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
M. Chao, L. He, M. Gong, N. Li, X. Li et al., Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 15, 9746–9758 (2021). https://doi.org/10.1021/acsnano.1c00472
Z. Zeng, N. Wu, W. Yang, H. Xu, Y. Liao et al., Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing. Small 18, 2202047 (2022). https://doi.org/10.1002/smll.202202047
Y. Hu, H. Zhuo, Q. Luo, Y. Wu, R. Wen et al., Biomass polymer-assisted fabrication of aerogels from MXenes with ultrahigh compression elasticity and pressure sensitivity. J. Mater. Chem. A 7, 10273–10281 (2019). https://doi.org/10.1039/C9TA01448A
H. Li, D. Zhang, C. Wang, Y. Hao, Y. Zhang et al., 3D extruded graphene thermoelectric threads for self-powered oral health monitoring. Small 19, e2300908 (2023). https://doi.org/10.1002/smll.202300908
S. Niu, X. Chang, Z. Zhu, Z. Qin, J. Li et al., Low-temperature wearable strain sensor based on a silver nanowires/graphene composite with a near-zero temperature coefficient of resistance. ACS Appl. Mater. Interfaces 13, 55307–55318 (2021). https://doi.org/10.1021/acsami.1c14671
G.Y. Bae, J.T. Han, G. Lee, S. Lee, S.W. Kim et al., Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater. 30, e1803388 (2018). https://doi.org/10.1002/adma.201803388
L.F. Nicolas-Alonso, J. Gomez-Gil, Brain computer interfaces, a review. Sensors 12, 1211–1279 (2012). https://doi.org/10.3390/s120201211
H. Wu, G. Yang, K. Zhu, S. Liu, W. Guo et al., Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human–machine interfaces. Adv. Sci. 8, 2001938 (2021). https://doi.org/10.1002/advs.202001938
S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang et al., Graphene electronic tattoo sensors. ACS Nano 11, 7634–7641 (2017). https://doi.org/10.1021/acsnano.7b02182
D. Wu, J. Xu, W. Fang, Y. Zhang, L. Yang et al., Adversarial attacks and defenses in physiological computing: a systematic review. Natl. Sci. Open 2, 20220023 (2023). https://doi.org/10.1360/nso/20220023
P. Ponikowski, A.A. Voors, S.D. Anker, H. Bueno, J.G.F. Cleland et al., 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Kardiol. Pol. 74, 1037–1147 (2016). https://doi.org/10.5603/kp.2016.0141
R.A. Nawrocki, H. Jin, S. Lee, T. Yokota, M. Sekino et al., Self-adhesive and ultra-conformable, sub-300 nm dry thin-film electrodes for surface monitoring of biopotentials. Adv. Funct. Mater. 28, 1803279 (2018). https://doi.org/10.1002/adfm.201803279
P. Leleux, C. Johnson, X. Strakosas, J. Rivnay, T. Hervé et al., Ionic liquid gel-assisted electrodes for long-term cutaneous recordings. Adv. Healthc. Mater. 3, 1377–1380 (2014). https://doi.org/10.1002/adhm.201300614
M. Zhu, B. Yu, W. Yang, Y. Jiang, L. Lu et al., Evaluation of normal swallowing functions by using dynamic high-density surface electromyography maps. Biomed. Eng. Online 16, 133 (2017). https://doi.org/10.1186/s12938-017-0424-x
Y. Wang, Y. Qiu, S.K. Ameri, H. Jang, Z. Dai et al., Low-cost, μm-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts. NPJ Flex. Electron. 2, 6 (2018). https://doi.org/10.1038/s41528-017-0019-4
X. Xuan, J.Y. Kim, X. Hui, P.S. Das, H.S. Yoon et al., A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosens. Bioelectron. 120, 160–167 (2018). https://doi.org/10.1016/j.bios.2018.07.071
K. Hu, Z. Zhao, Y. Wang, L. Yu, K. Liu et al., A tough organohydrogel-based multiresponsive sensor for a triboelectric nanogenerator and supercapacitor toward wearable intelligent devices. J. Mater. Chem. A 10, 12092–12103 (2022). https://doi.org/10.1039/D2TA01503J
Y.M. Chi, T.-P. Jung, G. Cauwenberghs, Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3, 106–119 (2010). https://doi.org/10.1109/RBME.2010.2084078
S. Ha, C. Kim, Y.M. Chi, A. Akinin, C. Maier et al., Integrated circuits and electrode interfaces for noninvasive physiological monitoring. IEEE Trans. Biomed. Eng. 61, 1522–1537 (2014). https://doi.org/10.1109/TBME.2014.2308552
M. Lopez-Gordo, D. Sanchez-Morillo, F. Valle, Dry EEG electrodes. Sensors 14, 12847–12870 (2014). https://doi.org/10.3390/s140712847
K.E. ewson, T.J.L. Harrison, S.A.D. Kizuk, High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Psychophysiology 54, 74–82 (2017). https://doi.org/10.1111/psyp.12536
M. Li, Y. Zhang, L. Lian, K. Liu, M. Lu et al., Flexible accelerated-wound-healing antibacterial MXene-based epidermic sensor for intelligent wearable human-machine interaction. Adv. Funct. Mater. 32, 2208141 (2022). https://doi.org/10.1002/adfm.202208141
Y. Zhao, S. Zhang, T. Yu, Y. Zhang, G. Ye et al., Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat. Commun. 12, 4880 (2021). https://doi.org/10.1038/s41467-021-25152-y
R. Yin, Z. Xu, M. Mei, Z. Chen, K. Wang et al., Soft transparent graphene contact lens electrodes for conformal full-Cornea recording of electroretinogram. Nat. Commun. 9, 2334 (2018). https://doi.org/10.1038/s41467-018-04781-w
W.H. Lee, J. Park, Y. Kim, K.S. Kim, B.H. Hong et al., Control of graphene field-effect transistors by interfacial hydrophobic self-assembled monolayers. Adv. Mater. 23, 3460–3464 (2011). https://doi.org/10.1002/adma.201101340
F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011). https://doi.org/10.1038/nmat3064
H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao et al., Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008). https://doi.org/10.1021/nn700375n
N. Liu, A. Chortos, T. Lei, L. Jin, T.R. Kim et al., Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3, e1700159 (2017). https://doi.org/10.1126/sciadv.1700159
P.S. Das, M.F. Hossain, J.Y. Park, Chemically reduced graphene oxide-based dry electrodes as touch sensor for electrocardiograph measurement. Microelectron. Eng. 180, 45–51 (2017). https://doi.org/10.1016/j.mee.2017.05.048
P.S. Das, S.H. Park, K.Y. Baik, J.W. Lee, J.Y. Park, Thermally reduced graphene oxide-nylon membrane based epidermal sensor using vacuum filtration for wearable electrophysiological signals and human motion monitoring. Carbon 158, 386–393 (2020). https://doi.org/10.1016/j.carbon.2019.11.001
Q. Yu, L.A. Jauregui, W. Wu, R. Colby, J. Tian et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011). https://doi.org/10.1038/nmat3010
J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008). https://doi.org/10.1038/nnano.2008.58
S. Deng, V. Berry, Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19, 197–212 (2016). https://doi.org/10.1016/j.mattod.2015.10.002
M.K. Blees, A.W. Barnard, P.A. Rose, S.P. Roberts, K.L. McGill et al., Graphene kirigami. Nature 524, 204–207 (2015). https://doi.org/10.1038/nature14588
R. You, Y.-Q. Liu, Y.-L. Hao, D.-D. Han, Y.-L. Zhang et al., Laser fabrication of graphene-based flexible electronics. Adv. Mater. 32, 1901981 (2020). https://doi.org/10.1002/adma.201901981
H. Jang, Y.J. Park, X. Chen, T. Das, M.-S. Kim et al., Graphene-based flexible and stretchable electronics. Adv. Mater. 28, 4184–4202 (2016). https://doi.org/10.1002/adma.201504245
J. Kim, A.S. Campbell, B.E.-F. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
Y.J. Yun, J. Ju, J.H. Lee, S.-H. Moon, S.-J. Park et al., Highly elastic graphene-based electronics toward electronic skin. Adv. Funct. Mater. 27, 1701513 (2017). https://doi.org/10.1002/adfm.201701513
Y. Wei, Y. Qiao, G. Jiang, Y. Wang, F. Wang et al., A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 13, 8639–8647 (2019). https://doi.org/10.1021/acsnano.9b03218
X. Du, W. Jiang, Y. Zhang, J. Qiu, Y. Zhao et al., Transparent and stretchable graphene electrode by intercalation doping for epidermal electrophysiology. ACS Appl. Mater. Interfaces 12, 56361–56371 (2020). https://doi.org/10.1021/acsami.0c17658
B. Sun, R.N. McCay, S. Goswami, Y. Xu, C. Zhang et al., Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 30, e1804327 (2018). https://doi.org/10.1002/adma.201804327
X. Li, L. He, Y. Li, M. Chao, M. Li et al., Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors. ACS Nano 15, 7765–7773 (2021). https://doi.org/10.1021/acsnano.1c01751
Q.-L. Zhao, Z.-M. Wang, J.-H. Chen, S.-Q. Liu, Y.-K. Wang et al., A highly conductive self-assembled multilayer graphene nanosheet film for electronic tattoos in the applications of human electrophysiology and strain sensing. Nanoscale 13, 10798–10806 (2021). https://doi.org/10.1039/D0NR08032B
S. Lee, D.H. Ho, J. Jekal, S.Y. Cho, Y.J. Choi et al., Fabric-based Lamina emergent MXene-based electrode for electrophysiological monitoring. Nat. Commun. 15, 5974 (2024). https://doi.org/10.1038/s41467-024-49939-x
C. Lim, C. Park, S.H. Sunwoo, Y.G. Kim, S. Lee et al., Facile and scalable synthesis of whiskered gold nanosheets for stretchable, conductive, and biocompatible nanocomposites. ACS Nano 16, 10431–10442 (2022). https://doi.org/10.1021/acsnano.2c00880
D. Gan, Z. Huang, X. Wang, L. Jiang, C. Wang et al., Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv. Funct. Mater. 30, 1907678 (2020). https://doi.org/10.1002/adfm.201907678
M. Park, W. Yang, J.W. Kim, Y. Choi, S. Kim et al., A fully self-healing patch of integrated bio-signal monitoring sensors with self-healing microporous foam and Au nanosheet electrodes. Adv. Funct. Mater. 34, 2402508 (2024). https://doi.org/10.1002/adfm.202402508
T. Cui, Y. Qiao, D. Li, X. Huang, L. Yang et al., Multifunctional, breathable MXene-PU mesh electronic skin for wearable intelligent 12-lead ECG monitoring system. Chem. Eng. J. 455, 140690 (2023). https://doi.org/10.1016/j.cej.2022.140690
Q. Wang, X. Pan, C. Lin, H. Gao, S. Cao et al., Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Chem. Eng. J. 401, 126129 (2020). https://doi.org/10.1016/j.cej.2020.126129
S. Jeong, S. Heo, M. Kang, H.-J. Kim, Mechanical durability enhancement of gold-nanosheet stretchable electrodes for wearable human bio-signal detection. Mater. Des. 196, 109178 (2020). https://doi.org/10.1016/j.matdes.2020.109178
R.A. Potyrailo, S. Go, D. Sexton, X. Li, N. Alkadi et al., Extraordinary performance of semiconducting metal oxide gas sensors using dielectric excitation. Nat. Electron. 3, 280–289 (2020). https://doi.org/10.1038/s41928-020-0402-3
J. Wang, Y. Ren, H. Liu, Z. Li, X. Liu et al., Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature. Adv. Mater. 34, 2104958 (2022). https://doi.org/10.1002/adma.202104958
M.A. Al Mamun, M.R. Yuce, Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications. Adv. Funct. Mater. 30, 2005703 (2020). https://doi.org/10.1002/adfm.202005703
C. Figueres, P.J. Landrigan, R. Fuller, Tackling air pollution, climate change, and NCDs: time to pull together. Lancet 392, 1502–1503 (2018). https://doi.org/10.1016/S0140-6736(18)32740-5
X. Han, H.G.W. Godfrey, L. Briggs, A.J. Davies, Y. Cheng et al., Reversible adsorption of nitrogen dioxide within a robust porous metal-organic framework. Nat. Mater. 17, 691–696 (2018). https://doi.org/10.1038/s41563-018-0104-7
M. Guarnieri, J.R. Balmes, Outdoor air pollution and asthma. Lancet 383, 1581–1592 (2014). https://doi.org/10.1016/S0140-6736(14)60617-6
Z. Wu, H. Wang, Q. Ding, K. Tao, W. Shi et al., A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. 33, 2300046 (2023). https://doi.org/10.1002/adfm.202300046
A.T. Güntner, S. Abegg, K. Königstein, P.A. Gerber, A. Schmidt-Trucksäss et al., Breath sensors for health monitoring. ACS Sens. 4, 268–280 (2019). https://doi.org/10.1021/acssensors.8b00937
Y. Luo, J. Li, Q. Ding, H. Wang, C. Liu et al., Functionalized hydrogel-based wearable gas and humidity sensors. Nano-Micro Lett. 15, 136 (2023). https://doi.org/10.1007/s40820-023-01109-2
K. Deshmukh, T. Kovářík, S.K. Khadheer Pasha, State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: a comprehensive review. Coord. Chem. Rev. 424, 213514 (2020). https://doi.org/10.1016/j.ccr.2020.213514
X. Huang, Z. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42, 1934–1946 (2013). https://doi.org/10.1039/C2CS35387C
Z. Meng, R.M. Stolz, L. Mendecki, K.A. Mirica, Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119, 478–598 (2019). https://doi.org/10.1021/acs.chemrev.8b00311
C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski et al., Chemical sensing with 2D materials. Chem. Soc. Rev. 47, 4860–4908 (2018). https://doi.org/10.1039/c8cs00417j
T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen et al., Flexible transparent electronic gas sensors. Small 12, 3748–3756 (2016). https://doi.org/10.1002/smll.201601049
C. Han, X. Li, Y. Liu, Y. Tang, M. Liu et al., Flexible all-inorganic room-temperature chemiresistors based on fibrous ceramic substrate and visible-light-powered semiconductor sensing layer. Adv. Sci. 8, e2102471 (2021). https://doi.org/10.1002/advs.202102471
Z. Wang, X. Jing, S. Duan, C. Liu, D. Kang et al., 2D PtSe2 enabled wireless wearable gas monitoring circuits with distinctive strain-enhanced performance. ACS Nano 17, 11557–11566 (2023). https://doi.org/10.1021/acsnano.3c01582
Y. Huang, F. Yang, S. Liu, R. Wang, J. Guo et al., Liquid metal-based epidermal flexible sensor for wireless breath monitoring and diagnosis enabled by highly sensitive SnS2 nanosheets. Research 2021, 9847285 (2021). https://doi.org/10.34133/2021/9847285
S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: a review. Nano Energy 79, 105369 (2021). https://doi.org/10.1016/j.nanoen.2020.105369
R.A. Potyrailo, Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial Internet. Chem. Rev. 116, 11877–11923 (2016). https://doi.org/10.1021/acs.chemrev.6b00187
M. Chen, M. Zhang, Z. Yang, C. Zhou, D. Cui et al., AI-driven wearable mask-inspired self-healing sensor array for detection and identification of volatile organic compounds. Adv. Funct. Mater. 34, 2309732 (2024). https://doi.org/10.1002/adfm.202309732
H. Yuan, N. Li, W. Fan, H. Cai, D. Zhao, Metal-organic framework based gas sensors. Adv. Sci. 9, 2104374 (2022). https://doi.org/10.1002/advs.202104374
Z. Wu, Q. Ding, H. Wang, J. Ye, Y. Luo et al., A humidity-resistant, sensitive, and stretchable hydrogel-based oxygen sensor for wireless health and environmental monitoring. Adv. Funct. Mater. 34, 2308280 (2024). https://doi.org/10.1002/adfm.202308280
W. Li, R. Chen, W. Qi, L. Cai, Y. Sun et al., Reduced graphene oxide/mesoporous ZnO NSs hybrid fibers for flexible, stretchable, twisted, and wearable NO2 E-textile gas sensor. ACS Sens. 4, 2809–2818 (2019). https://doi.org/10.1021/acssensors.9b01509
S.-J. Choi, J.-S. Jang, H.J. Park, I.-D. Kim, Optically sintered 2D RuO2 nanosheets: temperature-controlled NO2 reaction. Adv. Funct. Mater. 27, 1606026 (2017). https://doi.org/10.1002/adfm.201606026
X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2021). https://doi.org/10.1007/s40820-021-00740-1
J. He, X. Yan, A. Liu, R. You, F. Liu et al., A rapid-response room-temperature planar type gas sensor based on DPA-Ph-DBPzDCN for the sensitive detection of NH3. J. Mater. Chem. A 7, 4744–4750 (2019). https://doi.org/10.1039/C8TA10840D
X. Xing, L. Du, D. Feng, C. Wang, Y. Tian et al., Twistable and tailorable V2O5/PANI/GO nanocomposites textile for wearable ammonia sensing. Sens. Actuat. B Chem. 351, 130944 (2022). https://doi.org/10.1016/j.snb.2021.130944
A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 42, 15119–15141 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145
T. Chvojka, V. Vrkoslav, I. Jelinek, J. Jindrich, M. Lorenc et al., Mechanisms of photoluminescence sensor response of porous silicon for organic species in gas and liquid phases. Sens. Actuat. B Chem. 100, 246–249 (2004). https://doi.org/10.1016/j.snb.2003.12.040
H. Ma, Y. Jiang, J. Ma, X. Ma, M. Xue et al., Highly selective wearable smartsensors for vapor/liquid amphibious methanol monitoring. Anal. Chem. 92, 5897–5903 (2020). https://doi.org/10.1021/acs.analchem.9b05728
X. Chen, J. Zhao, J. Zhao, Y. He, L. Wang et al., Contrasting sludge toxicity under various starting modes (shocking or acclimating) and original organics (with or without N, N-dimethylformamide (DMF)). Int. Biodeterior. Biodegrad. 104, 435–442 (2015). https://doi.org/10.1016/j.ibiod.2015.07.002
T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang et al., A flexible transparent colorimetric wrist strap sensor. Nanoscale 9, 869–874 (2017). https://doi.org/10.1039/c6nr08265c
P.-G. Su, Z.-H. Liao, Fabrication of a flexible single-yarn NH3 gas sensor by layer-by-layer self-assembly of graphene oxide. Mater. Chem. Phys. 224, 349–356 (2019). https://doi.org/10.1016/j.matchemphys.2018.12.043
P.G. Choi, N. Izu, N. Shirahata, Y. Masuda, SnO2 nanosheets for selective alkene gas sensing. ACS Appl. Nano Mater. 2, 1820–1827 (2019). https://doi.org/10.1021/acsanm.8b01945
Q. Zhang, C. An, S. Fan, S. Shi, R. Zhang et al., Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection. Nanotechnology 29, 285501 (2018). https://doi.org/10.1088/1361-6528/aabf2f
Y.J. Yun, D.Y. Kim, W.G. Hong, D.H. Ha, Y. Jun et al., Highly stretchable, mechanically stable, and weavable reduced graphene oxide yarn with high NO2 sensitivity for wearable gas sensors. RSC Adv. 8, 7615–7621 (2018). https://doi.org/10.1039/c7ra12760j
F. Li, H. Peng, D. Xia, J. Yang, K. Yang et al., Highly sensitive, selective, and flexible NO2 chemiresistors based on multilevel structured three-dimensional reduced graphene oxide fiber scaffold modified with aminoanthroquinone moieties and Ag nanops. ACS Appl. Mater. Interfaces 11, 9309–9316 (2019). https://doi.org/10.1021/acsami.8b20462
H. Guo, C. Lan, Z. Zhou, P. Sun, D. Wei et al., Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 9, 6246–6253 (2017). https://doi.org/10.1039/c7nr01016h
Y.J. Yun, W.G. Hong, D.Y. Kim, H.J. Kim, Y. Jun et al., E-textile gas sensors composed of molybdenum disulfide and reduced graphene oxide for high response and reliability. Sens. Actuat. B Chem. 248, 829–835 (2017). https://doi.org/10.1016/j.snb.2016.12.028
S.-J. Choi, S.-J. Kim, I.-D. Kim, Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. NPG Asia Mater. 8, e315 (2016). https://doi.org/10.1038/am.2016.150
S.-J. Choi, S.-J. Kim, J.-S. Jang, J.-H. Lee, I.-D. Kim, Silver nanowire embedded colorless polyimide heater for wearable chemical sensors: improved reversible reaction kinetics of optically reduced graphene oxide. Small 12, 5826–5835 (2016). https://doi.org/10.1002/smll.201602230
Y.H. Kim, S.J. Kim, Y.J. Kim, Y.S. Shim, S.Y. Kim et al., Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9, 10453–10460 (2015). https://doi.org/10.1021/acsnano.5b04680
Y.J. Yun, W.G. Hong, N.J. Choi, B.H. Kim, Y. Jun et al., Ultrasensitive and highly selective graphene-based single yarn for use in wearable gas sensor. Sci. Rep. 5, 10904 (2015). https://doi.org/10.1038/srep10904
L.T. Duy, T.Q. Trung, V.Q. Dang, B.-U. Hwang, S. Siddiqui et al., Flexible transparent reduced graphene oxide sensor coupled with organic dye molecules for rapid dual-mode ammonia gas detection. Adv. Funct. Mater. 26, 4329–4338 (2016). https://doi.org/10.1002/adfm.201505477
B. Cho, A.R. Kim, D.J. Kim, H.-S. Chung, S.Y. Choi et al., Two-dimensional atomic-layered alloy junctions for high-performance wearable chemical sensor. ACS Appl. Mater. Interfaces 8, 19635–19642 (2016). https://doi.org/10.1021/acsami.6b05943
L. Yang, N. Yi, J. Zhu, Z. Cheng, X. Yin et al., Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. J. Mater. Chem. A 8, 6487–6500 (2020). https://doi.org/10.1039/C9TA07855J
Z. Song, Z. Huang, J. Liu, Z. Hu, J. Zhang et al., Fully stretchable and humidity-resistant quantum dot gas sensors. ACS Sens. 3, 1048–1055 (2018). https://doi.org/10.1021/acssensors.8b00263
H.Y. Nyein, W. Gao, Z. Shahpar, S. Emaminejad, S. Challa et al., A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 10, 7216–7224 (2016). https://doi.org/10.1021/acsnano.6b04005
Y.Y. Broza, X. Zhou, M. Yuan, D. Qu, Y. Zheng et al., Disease detection with molecular biomarkers: from chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev. 119, 11761–11817 (2019). https://doi.org/10.1021/acs.chemrev.9b00437
F. Wen, T. He, H. Liu, H.-Y. Chen, T. Zhang et al., Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era. Nano Energy 78, 105155 (2020). https://doi.org/10.1016/j.nanoen.2020.105155
N. Mishra, N.T. Garland, K.A. Hewett, M. Shamsi, M.D. Dickey et al., A soft wearable microfluidic patch with finger-actuated pumps and valves for on-demand, longitudinal, and multianalyte sweat sensing. ACS Sens. 7, 3169–3180 (2022). https://doi.org/10.1021/acssensors.2c01669
J.R. Sempionatto, J.A. Lasalde-Ramírez, K. Mahato, J. Wang, W. Gao, Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022). https://doi.org/10.1038/s41570-022-00439-w
F. Tehrani, H. Teymourian, B. Wuerstle, J. Kavner, R. Patel et al., An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022). https://doi.org/10.1038/s41551-022-00887-1
J.R. Sempionatto, M. Lin, L. Yin, E. De la Paz, K. Pei et al., An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021). https://doi.org/10.1038/s41551-021-00685-1
S. Imani, A.J. Bandodkar, A.M. Mohan, R. Kumar, S. Yu et al., A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016). https://doi.org/10.1038/ncomms11650
H. Lee, C. Song, Y.S. Hong, M. Kim, H.R. Cho et al., Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3, e1601314 (2017). https://doi.org/10.1126/sciadv.1601314
M. Bariya, H.Y.Y. Nyein, A. Javey, Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018). https://doi.org/10.1038/s41928-018-0043-y
A.J. Bandodkar, J. Wang, Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363–371 (2014). https://doi.org/10.1016/j.tibtech.2014.04.005
M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan et al., Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012). https://doi.org/10.1038/ncomms1767
J. Heikenfeld, Bioanalytical devices: technological leap for sweat sensing. Nature 529, 475–476 (2016). https://doi.org/10.1038/529475a
C.L. Tan, Z.A. Knight, Regulation of body temperature by the nervous system. Neuron 98, 31–48 (2018). https://doi.org/10.1016/j.neuron.2018.02.022
M. Dervisevic, M. Alba, B. Prieto-Simon, N.H. Voelcker, Skin in the diagnostics game: wearable biosensor nano- and microsystems for medical diagnostics. Nano Today 30, 100828 (2020). https://doi.org/10.1016/j.nantod.2019.100828
J. Choi, R. Ghaffari, L.B. Baker, J.A. Rogers, Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 4, eaar3921 (2018). https://doi.org/10.1126/sciadv.aar3921
A.J. Bandodkar, I. Jeerapan, J. Wang, Wearable chemical sensors: present challenges and future prospects. ACS Sens. 1, 464–482 (2016). https://doi.org/10.1021/acssensors.6b00250
K.K. Yeung, J. Li, T. Huang, I.I. Hosseini, R. Al Mahdi et al., Utilizing gradient porous graphene substrate as the solid-contact layer to enhance wearable electrochemical sweat sensor sensitivity. Nano Lett. 22, 6647–6654 (2022). https://doi.org/10.1021/acs.nanolett.2c01969
Y. Lei, W. Zhao, Y. Zhang, Q. Jiang, J.H. He et al., A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small 15, e1901190 (2019). https://doi.org/10.1002/smll.201901190
Z. Wang, Z. Hao, X. Wang, C. Huang, Q. Lin et al., A flexible and regenerative aptameric graphene–nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications. Adv. Funct. Mater. 31, 2005958 (2021). https://doi.org/10.1002/adfm.202005958
L.B. Baker, A.S. Wolfe, Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol. 120, 719–752 (2020). https://doi.org/10.1007/s00421-020-04323-7
H.J. Park, J.-M. Jeong, S.G. Son, S.J. Kim, M. Lee et al., Fluid-dynamics-processed highly stretchable, conductive, and printable graphene inks for real-time monitoring sweat during stretching exercise. Adv. Funct. Mater. 31, 2011059 (2021). https://doi.org/10.1002/adfm.202011059
M. Sharifuzzaman, A. Chhetry, M.A. Zahed, S.H. Yoon, C.I. Park et al., Smart bandage with integrated multifunctional sensors based on MXene-functionalized porous graphene scaffold for chronic wound care management. Biosens. Bioelectron. 169, 112637 (2020). https://doi.org/10.1016/j.bios.2020.112637
L. Zhang, L. Wang, J. Li, C. Cui, Z. Zhou et al., Surface engineering of laser-induced graphene enables long-term monitoring of on-body uric acid and pH simultaneously. Nano Lett. 22, 5451–5458 (2022). https://doi.org/10.1021/acs.nanolett.2c01500
T. Hu, Z. Gu, G.R. Williams, M. Strimaite, J. Zha et al., Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 51, 6126–6176 (2022). https://doi.org/10.1039/d2cs00236a
S. Lukasiak, C. Schiller, P. Oehlschlaeger, G. Schmidtke, P. Krause et al., Proinflammatory cytokines cause FAT10 upregulation in cancers of liver and colon. Oncogene 27, 6068–6074 (2008). https://doi.org/10.1038/onc.2008.201
J. Heikenfeld, Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016. Electroanalysis 28, 1242–1249 (2016). https://doi.org/10.1002/elan.201600018
C.J. Harvey, R.F. LeBouf, A.B. Stefaniak, Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol. In Vitro 24, 1790–1796 (2010). https://doi.org/10.1016/j.tiv.2010.06.016
X. Luo, L. Zhu, Y.-C. Wang, J. Li, J. Nie et al., A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 31, 2104928 (2021). https://doi.org/10.1002/adfm.202104928
Y. Yu, J. Nassar, C. Xu, J. Min, Y. Yang et al., Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 5, eaaz7946 (2020). https://doi.org/10.1126/scirobotics.aaz7946
S. Li, Y. Zhang, X. Liang, H. Wang, H. Lu et al., Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat. Commun. 13, 5416 (2022). https://doi.org/10.1038/s41467-022-33133-y
J.-L. Xu, Y.-H. Liu, X. Gao, S. Shen, S.-D. Wang, Toward wearable electronics: a lightweight all-solid-state supercapacitor with outstanding transparency, foldability and breathability. Energy Storage Mater. 22, 402–409 (2019). https://doi.org/10.1016/j.ensm.2019.02.013
S. Long, Y. Feng, F. He, J. Zhao, T. Bai et al., Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 85, 105973 (2021). https://doi.org/10.1016/j.nanoen.2021.105973
Y. Lu, K. Jiang, D. Chen, G. Shen, Wearable sweat monitoring system with integrated micro-supercapacitors. Nano Energy 58, 624–632 (2019). https://doi.org/10.1016/j.nanoen.2019.01.084
Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 19, 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
T. Zhao, C. Zhao, W. Xu, Y. Liu, H. Gao et al., Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx MXenes floating gate. Adv. Funct. Mater. 31, 2106000 (2021). https://doi.org/10.1002/adfm.202106000
M.K. Choi, I. Park, D.C. Kim, E. Joh, O.K. Park et al., Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system. Adv. Funct. Mater. 25, 7109–7118 (2015). https://doi.org/10.1002/adfm.201502956
X. Jin, S. Wang, C. Sang, Y. Yue, X. Xu et al., Patternable nanocellulose/Ti3C2Tx flexible films with tunable photoresponsive and electromagnetic interference shielding performances. ACS Appl. Mater. Interfaces 14, 35040–35052 (2022). https://doi.org/10.1021/acsami.2c11567
H. Lee, E. Kim, Y. Lee, H. Kim, J. Lee et al., Toward all-day wearable health monitoring: an ultralow-power, reflective organic pulse oximetry sensing patch. Sci. Adv. 4, eaas9530 (2018). https://doi.org/10.1126/sciadv.aas9530
N. Driscoll, A.G. Richardson, K. Maleski, B. Anasori, O. Adewole et al., Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano 12, 10419–10429 (2018). https://doi.org/10.1021/acsnano.8b06014
Y. Yang, N. Sun, Z. Wen, P. Cheng, H. Zheng et al., Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 12, 2027–2034 (2018). https://doi.org/10.1021/acsnano.8b00147
Q. Zhao, Y. Jiang, Z. Duan, Z. Yuan, J. Zha et al., A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing. Chem. Eng. J. 438, 135588 (2022). https://doi.org/10.1016/j.cej.2022.135588
J. Chen, S.K. Oh, N. Nabulsi, H. Johnson, W. Wang et al., Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator. Nano Energy 57, 670–679 (2019). https://doi.org/10.1016/j.nanoen.2018.12.080
T. Wu, X. Wu, L. Li, M. Hao, G. Wu et al., Anisotropic boron-carbon hetero-nanosheets for ultrahigh energy density supercapacitors. Angew. Chem. Int. Ed. 59, 23800–23809 (2020). https://doi.org/10.1002/anie.202011523
H. Ryu, H.-J. Yoon, S.-W. Kim, Hybrid energy harvesters: toward sustainable energy harvesting. Adv. Mater. 31, 1802898 (2019). https://doi.org/10.1002/adma.201802898
M. Han, H. Wang, Y. Yang, C. Liang, W. Bai et al., Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2, 26–35 (2019). https://doi.org/10.1038/s41928-018-0189-7
R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi et al., Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019). https://doi.org/10.1126/