Progress on Transition Metal Ions Dissolution Suppression Strategies in Prussian Blue Analogs for Aqueous Sodium-/Potassium-Ion Batteries
Corresponding Author: Xuanpeng Wang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 128
Abstract
Aqueous sodium-ion batteries (ASIBs) and aqueous potassium-ion batteries (APIBs) present significant potential for large-scale energy storage due to their cost-effectiveness, safety, and environmental compatibility. Nonetheless, the intricate energy storage mechanisms in aqueous electrolytes place stringent requirements on the host materials. Prussian blue analogs (PBAs), with their open three-dimensional framework and facile synthesis, stand out as leading candidates for aqueous energy storage. However, PBAs possess a swift capacity fade and limited cycle longevity, for their structural integrity is compromised by the pronounced dissolution of transition metal (TM) ions in the aqueous milieu. This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs. The dissolution mechanisms of TM ions in PBAs, informed by their structural attributes and redox processes, are thoroughly examined. Moreover, this study delves into innovative design tactics to alleviate the dissolution issue of TM ions. In conclusion, the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.
Highlights:
1 Comprehensive insights into Prussian blue analogs for aqueous sodium- and potassium-ion batteries.
2 Unveiling the dissolution mechanism of transition metal ions in Prussian blue analogs.
3 Innovative solutions to suppression transition metal ion dissolution, spanning electrolyte engineering, transition metal doping/substitution, minimize defects, and composite materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi et al., Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011). https://doi.org/10.1021/cr100290v
- D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015). https://doi.org/10.1038/nchem.2085
- X.-T. Wang, Z.-Y. Gu, E.H. Ang, X.-X. Zhao, X.-L. Wu et al., Prospects for managing end-of-life lithium-ion batteries: present and future. Interdiscip. Mater. 1, 417–433 (2022). https://doi.org/10.1002/idm2.12041
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
- N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
- K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
- H.-J. Liang, Z.-Y. Gu, X.-X. Zhao, J.-Z. Guo, J.-L. Yang et al., Advanced flame-retardant electrolyte for highly stabilized K-ion storage in graphite anode. Sci. Bull. 67, 1581–1588 (2022). https://doi.org/10.1016/j.scib.2022.07.002
- R.Y. Wang, C.D. Wessells, R.A. Huggins, Y. Cui, Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13, 5748–5752 (2013). https://doi.org/10.1021/nl403669a
- K. Wang, H. Li, Z. Xu, H. Wang, M. Ge et al., Emerging photo-integrated rechargeable aqueous zinc-ion batteries and capacitors toward direct solar energy conversion and storage. Carbon Neutr. 2, 37–53 (2023). https://doi.org/10.1002/cnl2.41
- M. Zhu, H. Wang, W. Lin, D. Chan, H. Li et al., Amphipathic molecules endowing highly structure robust and fast kinetic vanadium-based cathode for high-performance zinc-ion batteries. Small Struct. 3, 2200016 (2022). https://doi.org/10.1002/sstr.202200016
- H. Wang, H. Li, Y. Tang, Z. Xu, K. Wang et al., Stabilizing Zn anode interface by simultaneously manipulating the thermodynamics of Zn nucleation and overpotential of hydrogen evolution. Adv. Funct. Mater. 32, 2270271 (2022). https://doi.org/10.1002/adfm.202270271
- D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao et al., ZnF2-Riched inorganic/organic hybrid Sei: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202216934 (2023). https://doi.org/10.1002/anie.202216934
- J. Jiang, J. Liu, Iron anode-based aqueous electrochemical energy storage devices: recent advances and future perspectives. Interdiscip. Mater. 1, 116–139 (2022). https://doi.org/10.1002/idm2.12007
- J.-L. Yang, J.-M. Cao, X.-X. Zhao, K.-Y. Zhang, S.-H. Zheng et al., Advanced aqueous proton batteries: working mechanism, key materials, challenges and prospects. EnergyChem 4, 100092 (2022). https://doi.org/10.1016/j.enchem.2022.100092
- G. Yang, Y. Zhu, Q. Zhao, Z. Hao, Y. Lu et al., Advanced organic electrode materials for aqueous rechargeable batteries. Sci. China Chem. (2023). https://doi.org/10.1007/s11426-023-1654-5
- C. Deng, Y. Li, J. Huang, Building smarter aqueous batteries. Small. Methods (2023). https://doi.org/10.1002/smtd.202300832
- W. Li, J.R. Dahn, D.S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994). https://doi.org/10.1126/science.264.5162.1115
- K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Towards K-ion and Na-ion batteries as “beyond Li-ion.” Chem. Rec. 18, 459–479 (2018). https://doi.org/10.1002/tcr.201700057
- T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120, 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463
- F. Wan, Z. Niu, Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58, 16358–16367 (2019). https://doi.org/10.1002/anie.201903941
- Y. Lu, X. Wu, Z. Li, H. Jiang, L. Liu et al., Na+/K+-codoped amorphous manganese oxide with enhanced performance for aqueous sodium-ion battery. J. Alloys Compd. 937, 168344 (2023). https://doi.org/10.1016/j.jallcom.2022.168344
- C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling et al., Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020). https://doi.org/10.1126/science.aay9972
- X. Zhang, X. Yang, G. Sun, S. Yao, Y. Xie et al., Hydration enables air-stable and high-performance layered cathode materials for both organic and aqueous potassium-ion batteries. Adv. Funct. Mater. 32, 2204318 (2022). https://doi.org/10.1002/adfm.202204318
- L. Sharma, A. Manthiram, Polyanionic insertion hosts for aqueous rechargeable batteries. J. Mater. Chem. A 10, 6376–6396 (2022). https://doi.org/10.1039/D1TA11080B
- H. Zhang, X. Tan, H. Li, S. Passerini, W. Huang, Assessment and progress of polyanionic cathodes in aqueous sodium batteries. Energy Environ. Sci. 14, 5788–5800 (2021). https://doi.org/10.1039/D1EE01392K
- K.-Y. Zhang, Z.-Y. Gu, E.H. Ang, J.-Z. Guo, X.-T. Wang et al., Advanced polyanionic electrode materials for potassium-ion batteries: progresses, challenges and application prospects. Mater. Today 54, 189–201 (2022). https://doi.org/10.1016/j.mattod.2022.02.013
- K. Holguin, M. Mohammadiroudbari, K. Qin, C. Luo, Organic electrode materials for non-aqueous, aqueous, and all-solid-state Na-ion batteries. J. Mater. Chem. A 9, 19083–19115 (2021). https://doi.org/10.1039/D1TA00528F
- S. Zhang, C. Zhao, K. Zhu, J. Zhao, Y. Gao et al., An environment-friendly high-performance aqueous Mg-Na hybrid-ion battery using an organic polymer anode. Energy Environ. Mater. 6, 12388 (2023). https://doi.org/10.1002/eem2.12388
- R. Wang, M. Shi, L. Li, Y. Zhao, L. Zhao et al., In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries. Chem. Eng. J. 451, 138652 (2023). https://doi.org/10.1016/j.cej.2022.138652
- K. Nakamoto, R. Sakamoto, Y. Sawada, M. Ito, S. Okada, Over 2 V aqueous sodium-ion battery with Prussian blue-type electrodes. Small Meth. 3, 1800220 (2019). https://doi.org/10.1002/smtd.201800220
- L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4, 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0
- J. Ge, L. Fan, A.M. Rao, J. Zhou, B. Lu, Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 5, 225–234 (2022). https://doi.org/10.1038/s41893-021-00810-7
- C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13, 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
- A. Simonov, T. De Baerdemaeker, H.L.B. Boström, M.L. Ríos Gómez, H.J. Gray et al., Hidden diversity of vacancy networks in Prussian blue analogues. Nature 578, 256–260 (2020). https://doi.org/10.1038/s41586-020-1980-y
- J. Peng, W. Zhang, Q. Liu, J. Wang, S. Chou et al., Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34, e2108384 (2022). https://doi.org/10.1002/adma.202108384
- P.N. Le Pham, R. Wernert, M. Cahu, M.T. Sougrati, G. Aquilanti et al., Prussian blue analogues for potassium-ion batteries: insights into the electrochemical mechanisms. J. Mater. Chem. A 11, 3091–3104 (2023). https://doi.org/10.1039/d2ta08439b
- Z. Wang, W. Zhuo, J. Li, L. Ma, S. Tan et al., Regulation of ferric iron vacancy for Prussian blue analogue cathode to realize high-performance potassium ion storage. Nano Energy 98, 107243 (2022). https://doi.org/10.1016/j.nanoen.2022.107243
- C. Ding, Z. Chen, C. Cao, Y. Liu, Y. Gao, Advances in Mn-based electrode materials for aqueous sodium-ion batteries. Nano-Micro Lett. 15, 192 (2023). https://doi.org/10.1007/s40820-023-01162-x
- W. Zhuo, J. Li, X. Li, L. Ma, G. Yan et al., Improving rechargeability of Prussian blue cathode by graphene as conductive agent for sodium ion batteries. Surf. Interfaces 23, 100911 (2021). https://doi.org/10.1016/j.surfin.2020.100911
- W. Shu, C. Han, X. Wang, Prussian blue analogues cathodes for nonaqueous potassium-ion batteries: past, present, and future. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202309636
- V.D. Neff, Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 125, 886–887 (1978). https://doi.org/10.1149/1.2131575
- D. Ellis, M. Eckhoff, V.D. Neff, Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J. Phys. Chem. 85, 1225–1231 (1981). https://doi.org/10.1021/j150609a026
- K. Itaya, T. Ataka, S. Toshima, Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J. Am. Chem. Soc. 104(18), 4767–4772 (1982). https://doi.org/10.1021/ja00382a006
- A.A. Karyakin, Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13, 813–819 (2001). https://doi.org/10.1002/1521-4109
- M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012). https://doi.org/10.1038/ncomms2139
- C.D. Wessells, R.A. Huggins, Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011). https://doi.org/10.1038/ncomms1563
- G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13, 5635–5645 (2019). https://doi.org/10.1021/acsnano.9b00816
- J. Li, P. Ruan, X. Chen, S. Lei, B. Lu et al., Aqueous batteries for human body electronic devices. ACS Energy Lett. 8, 2904–2918 (2023). https://doi.org/10.1021/acsenergylett.3c00678
- S. Qiu, Y. Xu, X. Wu, X. Ji, Prussian blue analogues as electrodes for aqueous monovalent ion batteries. Electrochem. Energy Rev. 5, 242–262 (2022). https://doi.org/10.1007/s41918-020-00088-x
- A. Zhou, W. Cheng, W. Wang, Q. Zhao, J. Xie et al., Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 11, 2000943 (2021). https://doi.org/10.1002/aenm.202000943
- D. Kim, T. Hwang, J.-M. Lim, M.-S. Park, M. Cho et al., Hexacyanometallates for sodium-ion batteries: insights into higher redox potentials using d electronic spin configurations. Phys. Chem. Chem. Phys. 19, 10443–10452 (2017). https://doi.org/10.1039/c7cp00378a
- A. Kumar, S.M. Yusuf, L. Keller, Structural and magnetic properties of Fe[Fe(CN)6]·4H2O. Phys. Rev. B 71, 054414 (2005). https://doi.org/10.1103/PhysRevB.71.054414
- N. Shimamoto, S.-I. Ohkoshi, O. Sato, K. Hashimoto, Control of charge-transfer-induced spin transition temperature on cobalt-iron Prussian blue analogues. Inorg. Chem. 41, 678–684 (2002). https://doi.org/10.1021/ic010915u
- A. Paolella, C. Faure, V. Timoshevskii, S. Marras, G. Bertoni et al., A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. J. Mater. Chem. A 5, 18919–18932 (2017). https://doi.org/10.1039/C7TA05121B
- H.J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O. Inorg. Chem. 16, 2704–2710 (1977). https://doi.org/10.1021/ic50177a008
- J. Sun, H. Ye, J.A.S. Oh, A. Plewa, Y. Sun et al., Elevating the discharge plateau of Prussian blue analogs through low-spin fe redox induced intercalation pseudocapacitance. Energy Storage Mater. 43, 182–189 (2021). https://doi.org/10.1016/j.ensm.2021.09.004
- M. Jiang, Z. Hou, L. Ren, Y. Zhang, J.-G. Wang, Prussian blue and its analogues for aqueous energy storage: from fundamentals to advanced devices. Energy Storage Mater. 50, 618–640 (2022). https://doi.org/10.1016/j.ensm.2022.06.006
- L.-P. Wang, P.-F. Wang, T.-S. Wang, Y.-X. Yin, Y.-G. Guo et al., Prussian blue nanocubes as cathode materials for aqueous Na-Zn hybrid batteries. J. Power. Sources 355, 18–22 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.049
- Z. Wang, Y. Huang, D. Chu, C. Li, Y. Zhang et al., Continuous conductive networks built by Prussian blue cubes and mesoporous carbon lead to enhanced sodium-ion storage performances. ACS Appl. Mater. Interfaces 13, 38202–38212 (2021). https://doi.org/10.1021/acsami.1c06634
- T. Shao, C. Li, C. Liu, W. Deng, W. Wang et al., Electrolyte regulation enhances the stability of Prussian blue analogues in aqueous Na-ion storage. J. Mater. Chem. A 7, 1749–1755 (2019). https://doi.org/10.1039/C8TA10860A
- X. Wu, M. Sun, S. Guo, J. Qian, Y. Liu et al., Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. ChemNanoMat 1, 188–193 (2015). https://doi.org/10.1002/cnma.201500021
- L. Wang, J. Song, R. Qiao, L.A. Wray, M.A. Hossain et al., Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 137, 2548–2554 (2015). https://doi.org/10.1021/ja510347s
- M. Qin, W. Ren, J. Meng, X. Wang, X. Yao et al., Realizing superior Prussian blue positive electrode for potassium storage via ultrathin nanosheet assembly. ACS Sustain. Chem. Eng. 7, 11564–11570 (2019). https://doi.org/10.1021/acssuschemeng.9b01454
- A. Zhou, Z. Xu, H. Gao, L. Xue, J. Li et al., Size-, water-, and defect-regulated potassium manganese hexacyanoferrate with superior cycling stability and rate capability for low-cost sodium-ion batteries. Small 15, e1902420 (2019). https://doi.org/10.1002/smll.201902420
- L. Deng, J. Qu, X. Niu, J. Liu, J. Zhang et al., Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries. Nat. Commun. 12, 2167 (2021). https://doi.org/10.1038/s41467-021-22499-0
- Y. Shang, X. Li, J. Song, S. Huang, Z. Yang et al., Unconventional Mn vacancies in Mn-Fe Prussian blue analogs: suppressing jahn-teller distortion for ultrastable sodium storage. Chem 6, 1804–1818 (2020). https://doi.org/10.1016/j.chempr.2020.05.004
- F. Gebert, D.L. Cortie, J.C. Bouwer, W. Wang, Z. Yan et al., Epitaxial nickel ferrocyanide stabilizes jahn-teller distortions of manganese ferrocyanide for sodium-ion batteries. Angew. Chem. Int. Ed. 60, 18519–18526 (2021). https://doi.org/10.1002/anie.202106240
- L. Shen, Y. Jiang, Y. Liu, J. Ma, T. Sun et al., High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chem. Eng. J. 388, 124228 (2020). https://doi.org/10.1016/j.cej.2020.124228
- W. Ren, X. Chen, C. Zhao, Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage. Adv. Energy Mater. 8, 1801413 (2018). https://doi.org/10.1002/aenm.201801413
- S.-B. Son, Z. Zhang, J. Gim, C.S. Johnson, Y. Tsai et al., Transition metal dissolution in lithium-ion cells: a piece of the puzzle. J. Phys. Chem. C 127, 1767–1775 (2023). https://doi.org/10.1021/acs.jpcc.2c08234
- Y. Zhang, A. Hu, D. Xia, S. Hwang, S. Sainio et al., Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surface. Nat. Nanotechnol. 18, 790–797 (2023). https://doi.org/10.1038/s41565-023-01367-6
- D.H. Jang, Y.J. Shin, S.M. Oh, Dissolution of spinel oxides and capacity losses in 4 V Li / Li x Mn2 O 4 cells. J. Electrochem. Soc. 143, 2204–2211 (1996). https://doi.org/10.1149/1.1836981
- X. Gao, Y.H. Ikuhara, C.A.J. Fisher, R. Huang, A. Kuwabara et al., Oxygen loss and surface degradation during electrochemical cycling of lithium-ion battery cathode material LiMn2O4. J. Mater. Chem. A 7, 8845–8854 (2019). https://doi.org/10.1039/C8TA08083F
- T. Liu, A. Dai, J. Lu, Y. Yuan, Y. Xiao et al., Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat. Commun. 10, 4721 (2019). https://doi.org/10.1038/s41467-019-12626-3
- H. Yaghoobnejad Asl, A. Manthiram, Proton-induced disproportionation of jahn–teller-active transition-metal ions in oxides due to electronically driven lattice instability. J. Am. Chem. Soc. 142, 21122–21130 (2020). https://doi.org/10.1021/jacs.0c10044
- W. Li, Review—an unpredictable hazard in lithium-ion batteries from transition metal ions: dissolution from cathodes, deposition on anodes and elimination strategies. J. Electrochem. Soc. 167, 090514 (2020). https://doi.org/10.1149/1945-7111/ab847f
- Z. Zhao, W. Zhang, M. Liu, S.J. Yoo, N. Yue et al., Ultrafast nucleation reverses dissolution of transition metal ions for robust aqueous batteries. Nano Lett. 23(11), 5307–5316 (2023). https://doi.org/10.1021/acs.nanolett.3c01435
- C. Zhan, T. Wu, J. Lu, K. Amine, Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes–a critical review. Energy Environ. Sci. 11, 243–257 (2018). https://doi.org/10.1039/C7EE03122J
- L. Chen, W. Sun, K. Xu, Q. Dong, L. Zheng et al., How Prussian blue analogues can be stable in concentrated aqueous electrolytes. ACS Energy Lett. 7, 1672–1678 (2022). https://doi.org/10.1021/acsenergylett.2c00292
- J. Agrisuelas, J.J. García-Jareño, D. Gimenez-Romero, F. Vicente, Insights on the mechanism of insoluble-to-soluble Prussian blue transformation. J. Electrochem. Soc. 156, P149 (2009). https://doi.org/10.1149/1.3177258
- Y. Huang, S. Ren, Multifunctional Prussian blue analogue magnets: emerging opportunities. Appl. Mater. Today 22, 100886 (2021). https://doi.org/10.1016/j.apmt.2020.100886
- C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 6, 1015–1033 (2021). https://doi.org/10.1021/acsenergylett.0c02684
- F. Wang, W. Sun, Z. Shadike, E. Hu, X. Ji et al., How water accelerates bivalent ion diffusion at the electrolyte/electrode interface. Angew. Chem. Int. Ed. 57, 11978–11981 (2018). https://doi.org/10.1002/anie.201806748
- J. Yue, L. Lin, L. Jiang, Q. Zhang, Y. Tong et al., Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte. Adv. Energy Mater. 10, 2000665 (2020). https://doi.org/10.1002/aenm.202000665
- X. Dong, Y.-G. Wang, Y. Xia, Promoting rechargeable batteries operated at low temperature. Acc. Chem. Res. 54, 3883–3894 (2021). https://doi.org/10.1021/acs.accounts.1c00420
- H.Y. Asl, A. Manthiram, Reining in dissolved transition-metal ions. Science 369, 140–141 (2020). https://doi.org/10.1126/science.abc5454
- J. Cattermull, M. Pasta, A.L. Goodwin, Structural complexity in Prussian blue analogues. Mater. Horiz. 8, 3178–3186 (2021). https://doi.org/10.1039/d1mh01124c
- Z. Caixiang, J. Hao, J. Zhou, X. Yu, B. Lu, Interlayer-engineering and surface-substituting manganese-based self-evolution for high-performance potassium cathode. Adv. Energy Mater. 13, 2203126 (2023). https://doi.org/10.1002/aenm.202203126
- B. Liu, Q. Zhang, U. Ali, Y. Li, Y. Hao et al., Solid-solution reaction suppresses the Jahn-Teller effect of potassium manganese hexacyanoferrate in potassium-ion batteries. Chem. Sci. 13, 10846–10855 (2022). https://doi.org/10.1039/d2sc03824b
- F.D. Speck, A. Zagalskaya, V. Alexandrov, S. Cherevko, Periodicity in the electrochemical dissolution of transition metals. Angew. Chem. Int. Ed. 60, 13343–13349 (2021). https://doi.org/10.1002/anie.202100337
- T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13, 4625–4665 (2020). https://doi.org/10.1039/D0EE02620D
- Z. Xing, G. Xu, J. Han, G. Chen, B. Lu et al., Facing the capacity fading of vanadium-based zinc-ion batteries. Trends Chem. 5, 380–392 (2023). https://doi.org/10.1016/j.trechm.2023.02.008
- K. Nakamoto, R. Sakamoto, M. Ito, A. Kitajou, S. Okada, Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85, 179–185 (2017). https://doi.org/10.5796/electrochemistry.85.179
- D.P. Leonard, Z. Wei, G. Chen, F. Du, X. Ji, Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3, 373–374 (2018). https://doi.org/10.1021/acsenergylett.8b00009
- J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. ChemSusChem 11, 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
- L. Jiang, L. Liu, J. Yue, Q. Zhang, A. Zhou et al., High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv. Mater. 32, e1904427 (2020). https://doi.org/10.1002/adma.201904427
- Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5, 730–738 (2017). https://doi.org/10.1039/C6TA08736A
- Z. Liang, F. Tian, G. Yang, C. Wang, Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive. Nat. Commun. 14, 3591 (2023). https://doi.org/10.1038/s41467-023-39385-6
- J. Chen, S. Lei, S. Zhang, C. Zhu, Q. Liu et al., Dilute aqueous hybrid electrolyte with regulated core-shell-solvation structure endows safe and low-cost potassium-ion energy storage devices. Adv. Funct. Mater. 33, 2215027 (2023). https://doi.org/10.1002/adfm.202215027
- D. Zhang, L. Sun, C. Wang, Q. Xue, J. Feng et al., An open-framework structured material: [Ni(en)2]3[Fe(CN)6]2 as a cathode material for aqueous sodium- and potassium-ion batteries. ACS Appl. Mater. Interfaces 14, 16197–16203 (2022). https://doi.org/10.1021/acsami.2c00143
- J. Chen, C. Liu, Z. Yu, J. Qu, C. Wang et al., High-energy-density aqueous sodium-ion batteries enabled by chromium hexacycnochromate anodes. Chem. Eng. J. 415, 129003 (2021). https://doi.org/10.1016/j.cej.2021.129003
- J.-H. Lee, G. Ali, D.H. Kim, K.Y. Chung, Metal-organic framework cathodes based on a vanadium hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries. Adv. Energy Mater. 7, 1601491 (2017). https://doi.org/10.1002/aenm.201601491
- J. Xie, L. Ma, J. Li, X. Yin, Z. Wen et al., Self-healing of Prussian blue analogues with electrochemically driven morphological rejuvenation. Adv. Mater. 34, e2205625 (2022). https://doi.org/10.1002/adma.202205625
- U. Ali, B. Liu, H. Jia, Y. Li, Y. Li et al., In situ Fe-substituted hexacyanoferrate for high-performance aqueous potassium ion batteries. Small (2023). https://doi.org/10.1002/smll.202305866
- M.A. Oliver-Tolentino, J. Vázquez-Samperio, S.N. Arellano-Ahumada, A. Guzmán-Vargas, D. Ramírez-Rosales et al., Enhancement of stability by positive disruptive effect on Mn-Fe charge transfer in vacancy-free Mn-co hexacyanoferrate through a charge/discharge process in aqueous Na-ion batteries. J. Phys. Chem. C 122, 20602–20610 (2018). https://doi.org/10.1021/acs.jpcc.8b05506
- Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang et al., High-entropy metal–organic frameworks for highly reversible sodium storage. Adv. Mater. 33, 2101342 (2021). https://doi.org/10.1002/adma.202101342
- M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61, e202209350 (2022). https://doi.org/10.1002/anie.202209350
- J. Xing, Y. Zhang, Y. Jin, Q. Jin, Active cation-integration high-entropy Prussian blue analogues cathodes for efficient Zn storage. Nano Res. 16, 2486–2494 (2023). https://doi.org/10.1007/s12274-022-5020-0
- X. Zhao, Z. Xing, C. Huang, Investigation of high-entropy Prussian blue analog as cathode material for aqueous sodium-ion batteries. J. Mater. Chem. A 11, 22835–22844 (2023). https://doi.org/10.1039/D3TA04349E
- B. Wenger, P.K. Nayak, X. Wen, S.V. Kesava, N.K. Noel et al., Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals. Nat. Commun. 8, 590 (2017). https://doi.org/10.1038/s41467-017-00567-8
- M. Xue, Y. Wang, X. Wang, X. Huang, J. Ji, Single-crystal-conjugated polymers with extremely high electron sensitivity through template-assisted in situ polymerization. Adv. Mater. 27, 5923–5929 (2015). https://doi.org/10.1002/adma.201502511
- H. Liang, X. Ma, Z. Yang, P. Wang, X. Zhang et al., Emergence of superconductivity in doped glassy-carbon. Carbon 99, 585–590 (2016). https://doi.org/10.1016/j.carbon.2015.12.046
- D. Su, A. McDonagh, S.-Z. Qiao, G. Wang, High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017). https://doi.org/10.1002/adma.201604007
- X. Wu, C. Wu, C. Wei, L. Hu, J. Qian et al., Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 5393–5399 (2016). https://doi.org/10.1021/acsami.5b12620
- D. Cai, X. Yang, B. Qu, T. Wang, Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries. Chem. Commun. 53, 6780–6783 (2017). https://doi.org/10.1039/C7CC02516E
- C. Li, X. Wang, W. Deng, C. Liu, J. Chen et al., Size engineering and crystallinity control enable high-capacity aqueous potassium-ion storage of Prussian white analogues. ChemElectroChem 5, 3887–3892 (2018). https://doi.org/10.1002/celc.201801277
- W. Zhang, L. Xia, C. Shi, R. Qi, M. Hu, ting and recycling of insoluble, labile single-crystal coordination polymer through reversible solid-liquid-solid transition. Matter 6, 3394–3412 (2023). https://doi.org/10.1016/j.matt.2023.05.024
- X. Liu, Y. Cao, J. Sun, Defect engineering in Prussian blue analogs for high-performance sodium-ion batteries. Adv. Energy Mater. 12, 2202532 (2022). https://doi.org/10.1002/aenm.202202532
- M. Wan, R. Zeng, J. Meng, Z. Cheng, W. Chen et al., Post-synthetic and in situ vacancy repairing of iron hexacyanoferrate toward highly stable cathodes for sodium-ion batteries. Nano-Micro Lett. 14, 9 (2021). https://doi.org/10.1007/s40820-021-00742-z
- F. Peng, L. Yu, S. Yuan, X.-Z. Liao, J. Wen et al., Enhanced electrochemical performance of sodium manganese ferrocyanide by Na3(VOPO4)2F coating for sodium-ion batteries. ACS Appl. Mater. Interfaces 11, 37685–37692 (2019). https://doi.org/10.1021/acsami.9b12041
- F. Feng, S. Chen, S. Zhao, W. Zhang, Y. Miao et al., Enhanced electrochemical performance of MnFe@NiFe Prussian blue analogue benefited from the inhibition of Mn ions dissolution for sodium-ion batteries. Chem. Eng. J. 411, 128518 (2021). https://doi.org/10.1016/j.cej.2021.128518
- C. Xu, Y. Ma, J. Zhao, P. Zhang, Z. Chen et al., Surface engineering stabilizes rhombohedral sodium manganese hexacyanoferrates for high-energy Na-ion batteries. Angew. Chem. Int. Ed. 62, e202217761 (2023). https://doi.org/10.1002/anie.202217761
- M. Lucero, D.B. Armitage, X. Yang, S.K. Sandstrom, M. Lyons et al., Ball milling-enabled Fe2.4+ to Fe3+ redox reaction in Prussian blue materials for long-life aqueous sodium-ion batteries. ACS Appl. Mater. Interfaces 15, 36366–36372 (2023). https://doi.org/10.1021/acsami.3c07304
- E. Nossol, V.H.R. Souza, A.J.G. Zarbin, Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery. J. Colloid Interface Sci. 478, 107–116 (2016). https://doi.org/10.1016/j.jcis.2016.05.056
- M. Morant-Giner, R. Sanchis-Gual, J. Romero, A. Alberola, L. García-Cruz et al., Prussian Blue@MoS2 layer composites as highly efficient cathodes for sodium-and potassium-ion batteries. Adv. Funct. Mater. 28, 1706125 (2018). https://doi.org/10.1002/adfm.201706125
- M. Zhang, T. Dong, D. Li, K. Wang, X. Wei et al., High-performance aqueous sodium-ion battery based on graphene-doped Na2MnFe(CN)6–zinc with a highly stable discharge platform and wide electrochemical stability. Energy Fuels 35, 10860–10868 (2021). https://doi.org/10.1021/acs.energyfuels.1c01095
- C.D. Wessells, S.V. Peddada, R.A. Huggins, Y. Cui, Nickel hexacyanoferrate nanop electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421–5425 (2011). https://doi.org/10.1021/nl203193q
- Y. Zhang, J. Xu, Z. Li, Y. Wang, S. Wang et al., All-climate aqueous Na-ion batteries using “water-in-salt” electrolyte. Sci. Bull. 67, 161–170 (2022). https://doi.org/10.1016/j.scib.2021.08.010
- T.Y. Pan, C.Y. Ruqia, C.S. Wu, S.G. Ni et al., Improvement in cycling stability of Prussian blue analog-based aqueous sodium-ion batteries by ligand substitution and electrolyte optimization. Electrochim. Acta 427, 140778 (2022). https://doi.org/10.1016/j.electacta.2022.140778
- J. Liu, C. Yang, B. Wen, B. Li, Y. Liu, Ultra-long cycle of Prussian blue analogs achieved by equilibrium electrolyte for aqueous sodium-ion batteries. Small 19, e2303896 (2023). https://doi.org/10.1002/smll.202303896
- S. Husmann, A.J.G. Zarbin, R.A.W. Dryfe, High-performance aqueous rechargeable potassium batteries prepared via interfacial synthesis of a Prussian blue-carbon nanotube composite. Electrochim. Acta 349, 136243 (2020). https://doi.org/10.1016/j.electacta.2020.136243
References
Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi et al., Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011). https://doi.org/10.1021/cr100290v
D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015). https://doi.org/10.1038/nchem.2085
X.-T. Wang, Z.-Y. Gu, E.H. Ang, X.-X. Zhao, X.-L. Wu et al., Prospects for managing end-of-life lithium-ion batteries: present and future. Interdiscip. Mater. 1, 417–433 (2022). https://doi.org/10.1002/idm2.12041
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
H.-J. Liang, Z.-Y. Gu, X.-X. Zhao, J.-Z. Guo, J.-L. Yang et al., Advanced flame-retardant electrolyte for highly stabilized K-ion storage in graphite anode. Sci. Bull. 67, 1581–1588 (2022). https://doi.org/10.1016/j.scib.2022.07.002
R.Y. Wang, C.D. Wessells, R.A. Huggins, Y. Cui, Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13, 5748–5752 (2013). https://doi.org/10.1021/nl403669a
K. Wang, H. Li, Z. Xu, H. Wang, M. Ge et al., Emerging photo-integrated rechargeable aqueous zinc-ion batteries and capacitors toward direct solar energy conversion and storage. Carbon Neutr. 2, 37–53 (2023). https://doi.org/10.1002/cnl2.41
M. Zhu, H. Wang, W. Lin, D. Chan, H. Li et al., Amphipathic molecules endowing highly structure robust and fast kinetic vanadium-based cathode for high-performance zinc-ion batteries. Small Struct. 3, 2200016 (2022). https://doi.org/10.1002/sstr.202200016
H. Wang, H. Li, Y. Tang, Z. Xu, K. Wang et al., Stabilizing Zn anode interface by simultaneously manipulating the thermodynamics of Zn nucleation and overpotential of hydrogen evolution. Adv. Funct. Mater. 32, 2270271 (2022). https://doi.org/10.1002/adfm.202270271
D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao et al., ZnF2-Riched inorganic/organic hybrid Sei: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202216934 (2023). https://doi.org/10.1002/anie.202216934
J. Jiang, J. Liu, Iron anode-based aqueous electrochemical energy storage devices: recent advances and future perspectives. Interdiscip. Mater. 1, 116–139 (2022). https://doi.org/10.1002/idm2.12007
J.-L. Yang, J.-M. Cao, X.-X. Zhao, K.-Y. Zhang, S.-H. Zheng et al., Advanced aqueous proton batteries: working mechanism, key materials, challenges and prospects. EnergyChem 4, 100092 (2022). https://doi.org/10.1016/j.enchem.2022.100092
G. Yang, Y. Zhu, Q. Zhao, Z. Hao, Y. Lu et al., Advanced organic electrode materials for aqueous rechargeable batteries. Sci. China Chem. (2023). https://doi.org/10.1007/s11426-023-1654-5
C. Deng, Y. Li, J. Huang, Building smarter aqueous batteries. Small. Methods (2023). https://doi.org/10.1002/smtd.202300832
W. Li, J.R. Dahn, D.S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994). https://doi.org/10.1126/science.264.5162.1115
K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Towards K-ion and Na-ion batteries as “beyond Li-ion.” Chem. Rec. 18, 459–479 (2018). https://doi.org/10.1002/tcr.201700057
T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120, 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463
F. Wan, Z. Niu, Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58, 16358–16367 (2019). https://doi.org/10.1002/anie.201903941
Y. Lu, X. Wu, Z. Li, H. Jiang, L. Liu et al., Na+/K+-codoped amorphous manganese oxide with enhanced performance for aqueous sodium-ion battery. J. Alloys Compd. 937, 168344 (2023). https://doi.org/10.1016/j.jallcom.2022.168344
C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling et al., Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020). https://doi.org/10.1126/science.aay9972
X. Zhang, X. Yang, G. Sun, S. Yao, Y. Xie et al., Hydration enables air-stable and high-performance layered cathode materials for both organic and aqueous potassium-ion batteries. Adv. Funct. Mater. 32, 2204318 (2022). https://doi.org/10.1002/adfm.202204318
L. Sharma, A. Manthiram, Polyanionic insertion hosts for aqueous rechargeable batteries. J. Mater. Chem. A 10, 6376–6396 (2022). https://doi.org/10.1039/D1TA11080B
H. Zhang, X. Tan, H. Li, S. Passerini, W. Huang, Assessment and progress of polyanionic cathodes in aqueous sodium batteries. Energy Environ. Sci. 14, 5788–5800 (2021). https://doi.org/10.1039/D1EE01392K
K.-Y. Zhang, Z.-Y. Gu, E.H. Ang, J.-Z. Guo, X.-T. Wang et al., Advanced polyanionic electrode materials for potassium-ion batteries: progresses, challenges and application prospects. Mater. Today 54, 189–201 (2022). https://doi.org/10.1016/j.mattod.2022.02.013
K. Holguin, M. Mohammadiroudbari, K. Qin, C. Luo, Organic electrode materials for non-aqueous, aqueous, and all-solid-state Na-ion batteries. J. Mater. Chem. A 9, 19083–19115 (2021). https://doi.org/10.1039/D1TA00528F
S. Zhang, C. Zhao, K. Zhu, J. Zhao, Y. Gao et al., An environment-friendly high-performance aqueous Mg-Na hybrid-ion battery using an organic polymer anode. Energy Environ. Mater. 6, 12388 (2023). https://doi.org/10.1002/eem2.12388
R. Wang, M. Shi, L. Li, Y. Zhao, L. Zhao et al., In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries. Chem. Eng. J. 451, 138652 (2023). https://doi.org/10.1016/j.cej.2022.138652
K. Nakamoto, R. Sakamoto, Y. Sawada, M. Ito, S. Okada, Over 2 V aqueous sodium-ion battery with Prussian blue-type electrodes. Small Meth. 3, 1800220 (2019). https://doi.org/10.1002/smtd.201800220
L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4, 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0
J. Ge, L. Fan, A.M. Rao, J. Zhou, B. Lu, Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 5, 225–234 (2022). https://doi.org/10.1038/s41893-021-00810-7
C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13, 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
A. Simonov, T. De Baerdemaeker, H.L.B. Boström, M.L. Ríos Gómez, H.J. Gray et al., Hidden diversity of vacancy networks in Prussian blue analogues. Nature 578, 256–260 (2020). https://doi.org/10.1038/s41586-020-1980-y
J. Peng, W. Zhang, Q. Liu, J. Wang, S. Chou et al., Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34, e2108384 (2022). https://doi.org/10.1002/adma.202108384
P.N. Le Pham, R. Wernert, M. Cahu, M.T. Sougrati, G. Aquilanti et al., Prussian blue analogues for potassium-ion batteries: insights into the electrochemical mechanisms. J. Mater. Chem. A 11, 3091–3104 (2023). https://doi.org/10.1039/d2ta08439b
Z. Wang, W. Zhuo, J. Li, L. Ma, S. Tan et al., Regulation of ferric iron vacancy for Prussian blue analogue cathode to realize high-performance potassium ion storage. Nano Energy 98, 107243 (2022). https://doi.org/10.1016/j.nanoen.2022.107243
C. Ding, Z. Chen, C. Cao, Y. Liu, Y. Gao, Advances in Mn-based electrode materials for aqueous sodium-ion batteries. Nano-Micro Lett. 15, 192 (2023). https://doi.org/10.1007/s40820-023-01162-x
W. Zhuo, J. Li, X. Li, L. Ma, G. Yan et al., Improving rechargeability of Prussian blue cathode by graphene as conductive agent for sodium ion batteries. Surf. Interfaces 23, 100911 (2021). https://doi.org/10.1016/j.surfin.2020.100911
W. Shu, C. Han, X. Wang, Prussian blue analogues cathodes for nonaqueous potassium-ion batteries: past, present, and future. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202309636
V.D. Neff, Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 125, 886–887 (1978). https://doi.org/10.1149/1.2131575
D. Ellis, M. Eckhoff, V.D. Neff, Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J. Phys. Chem. 85, 1225–1231 (1981). https://doi.org/10.1021/j150609a026
K. Itaya, T. Ataka, S. Toshima, Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J. Am. Chem. Soc. 104(18), 4767–4772 (1982). https://doi.org/10.1021/ja00382a006
A.A. Karyakin, Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13, 813–819 (2001). https://doi.org/10.1002/1521-4109
M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012). https://doi.org/10.1038/ncomms2139
C.D. Wessells, R.A. Huggins, Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011). https://doi.org/10.1038/ncomms1563
G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13, 5635–5645 (2019). https://doi.org/10.1021/acsnano.9b00816
J. Li, P. Ruan, X. Chen, S. Lei, B. Lu et al., Aqueous batteries for human body electronic devices. ACS Energy Lett. 8, 2904–2918 (2023). https://doi.org/10.1021/acsenergylett.3c00678
S. Qiu, Y. Xu, X. Wu, X. Ji, Prussian blue analogues as electrodes for aqueous monovalent ion batteries. Electrochem. Energy Rev. 5, 242–262 (2022). https://doi.org/10.1007/s41918-020-00088-x
A. Zhou, W. Cheng, W. Wang, Q. Zhao, J. Xie et al., Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 11, 2000943 (2021). https://doi.org/10.1002/aenm.202000943
D. Kim, T. Hwang, J.-M. Lim, M.-S. Park, M. Cho et al., Hexacyanometallates for sodium-ion batteries: insights into higher redox potentials using d electronic spin configurations. Phys. Chem. Chem. Phys. 19, 10443–10452 (2017). https://doi.org/10.1039/c7cp00378a
A. Kumar, S.M. Yusuf, L. Keller, Structural and magnetic properties of Fe[Fe(CN)6]·4H2O. Phys. Rev. B 71, 054414 (2005). https://doi.org/10.1103/PhysRevB.71.054414
N. Shimamoto, S.-I. Ohkoshi, O. Sato, K. Hashimoto, Control of charge-transfer-induced spin transition temperature on cobalt-iron Prussian blue analogues. Inorg. Chem. 41, 678–684 (2002). https://doi.org/10.1021/ic010915u
A. Paolella, C. Faure, V. Timoshevskii, S. Marras, G. Bertoni et al., A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. J. Mater. Chem. A 5, 18919–18932 (2017). https://doi.org/10.1039/C7TA05121B
H.J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O. Inorg. Chem. 16, 2704–2710 (1977). https://doi.org/10.1021/ic50177a008
J. Sun, H. Ye, J.A.S. Oh, A. Plewa, Y. Sun et al., Elevating the discharge plateau of Prussian blue analogs through low-spin fe redox induced intercalation pseudocapacitance. Energy Storage Mater. 43, 182–189 (2021). https://doi.org/10.1016/j.ensm.2021.09.004
M. Jiang, Z. Hou, L. Ren, Y. Zhang, J.-G. Wang, Prussian blue and its analogues for aqueous energy storage: from fundamentals to advanced devices. Energy Storage Mater. 50, 618–640 (2022). https://doi.org/10.1016/j.ensm.2022.06.006
L.-P. Wang, P.-F. Wang, T.-S. Wang, Y.-X. Yin, Y.-G. Guo et al., Prussian blue nanocubes as cathode materials for aqueous Na-Zn hybrid batteries. J. Power. Sources 355, 18–22 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.049
Z. Wang, Y. Huang, D. Chu, C. Li, Y. Zhang et al., Continuous conductive networks built by Prussian blue cubes and mesoporous carbon lead to enhanced sodium-ion storage performances. ACS Appl. Mater. Interfaces 13, 38202–38212 (2021). https://doi.org/10.1021/acsami.1c06634
T. Shao, C. Li, C. Liu, W. Deng, W. Wang et al., Electrolyte regulation enhances the stability of Prussian blue analogues in aqueous Na-ion storage. J. Mater. Chem. A 7, 1749–1755 (2019). https://doi.org/10.1039/C8TA10860A
X. Wu, M. Sun, S. Guo, J. Qian, Y. Liu et al., Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. ChemNanoMat 1, 188–193 (2015). https://doi.org/10.1002/cnma.201500021
L. Wang, J. Song, R. Qiao, L.A. Wray, M.A. Hossain et al., Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 137, 2548–2554 (2015). https://doi.org/10.1021/ja510347s
M. Qin, W. Ren, J. Meng, X. Wang, X. Yao et al., Realizing superior Prussian blue positive electrode for potassium storage via ultrathin nanosheet assembly. ACS Sustain. Chem. Eng. 7, 11564–11570 (2019). https://doi.org/10.1021/acssuschemeng.9b01454
A. Zhou, Z. Xu, H. Gao, L. Xue, J. Li et al., Size-, water-, and defect-regulated potassium manganese hexacyanoferrate with superior cycling stability and rate capability for low-cost sodium-ion batteries. Small 15, e1902420 (2019). https://doi.org/10.1002/smll.201902420
L. Deng, J. Qu, X. Niu, J. Liu, J. Zhang et al., Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries. Nat. Commun. 12, 2167 (2021). https://doi.org/10.1038/s41467-021-22499-0
Y. Shang, X. Li, J. Song, S. Huang, Z. Yang et al., Unconventional Mn vacancies in Mn-Fe Prussian blue analogs: suppressing jahn-teller distortion for ultrastable sodium storage. Chem 6, 1804–1818 (2020). https://doi.org/10.1016/j.chempr.2020.05.004
F. Gebert, D.L. Cortie, J.C. Bouwer, W. Wang, Z. Yan et al., Epitaxial nickel ferrocyanide stabilizes jahn-teller distortions of manganese ferrocyanide for sodium-ion batteries. Angew. Chem. Int. Ed. 60, 18519–18526 (2021). https://doi.org/10.1002/anie.202106240
L. Shen, Y. Jiang, Y. Liu, J. Ma, T. Sun et al., High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chem. Eng. J. 388, 124228 (2020). https://doi.org/10.1016/j.cej.2020.124228
W. Ren, X. Chen, C. Zhao, Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage. Adv. Energy Mater. 8, 1801413 (2018). https://doi.org/10.1002/aenm.201801413
S.-B. Son, Z. Zhang, J. Gim, C.S. Johnson, Y. Tsai et al., Transition metal dissolution in lithium-ion cells: a piece of the puzzle. J. Phys. Chem. C 127, 1767–1775 (2023). https://doi.org/10.1021/acs.jpcc.2c08234
Y. Zhang, A. Hu, D. Xia, S. Hwang, S. Sainio et al., Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surface. Nat. Nanotechnol. 18, 790–797 (2023). https://doi.org/10.1038/s41565-023-01367-6
D.H. Jang, Y.J. Shin, S.M. Oh, Dissolution of spinel oxides and capacity losses in 4 V Li / Li x Mn2 O 4 cells. J. Electrochem. Soc. 143, 2204–2211 (1996). https://doi.org/10.1149/1.1836981
X. Gao, Y.H. Ikuhara, C.A.J. Fisher, R. Huang, A. Kuwabara et al., Oxygen loss and surface degradation during electrochemical cycling of lithium-ion battery cathode material LiMn2O4. J. Mater. Chem. A 7, 8845–8854 (2019). https://doi.org/10.1039/C8TA08083F
T. Liu, A. Dai, J. Lu, Y. Yuan, Y. Xiao et al., Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat. Commun. 10, 4721 (2019). https://doi.org/10.1038/s41467-019-12626-3
H. Yaghoobnejad Asl, A. Manthiram, Proton-induced disproportionation of jahn–teller-active transition-metal ions in oxides due to electronically driven lattice instability. J. Am. Chem. Soc. 142, 21122–21130 (2020). https://doi.org/10.1021/jacs.0c10044
W. Li, Review—an unpredictable hazard in lithium-ion batteries from transition metal ions: dissolution from cathodes, deposition on anodes and elimination strategies. J. Electrochem. Soc. 167, 090514 (2020). https://doi.org/10.1149/1945-7111/ab847f
Z. Zhao, W. Zhang, M. Liu, S.J. Yoo, N. Yue et al., Ultrafast nucleation reverses dissolution of transition metal ions for robust aqueous batteries. Nano Lett. 23(11), 5307–5316 (2023). https://doi.org/10.1021/acs.nanolett.3c01435
C. Zhan, T. Wu, J. Lu, K. Amine, Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes–a critical review. Energy Environ. Sci. 11, 243–257 (2018). https://doi.org/10.1039/C7EE03122J
L. Chen, W. Sun, K. Xu, Q. Dong, L. Zheng et al., How Prussian blue analogues can be stable in concentrated aqueous electrolytes. ACS Energy Lett. 7, 1672–1678 (2022). https://doi.org/10.1021/acsenergylett.2c00292
J. Agrisuelas, J.J. García-Jareño, D. Gimenez-Romero, F. Vicente, Insights on the mechanism of insoluble-to-soluble Prussian blue transformation. J. Electrochem. Soc. 156, P149 (2009). https://doi.org/10.1149/1.3177258
Y. Huang, S. Ren, Multifunctional Prussian blue analogue magnets: emerging opportunities. Appl. Mater. Today 22, 100886 (2021). https://doi.org/10.1016/j.apmt.2020.100886
C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 6, 1015–1033 (2021). https://doi.org/10.1021/acsenergylett.0c02684
F. Wang, W. Sun, Z. Shadike, E. Hu, X. Ji et al., How water accelerates bivalent ion diffusion at the electrolyte/electrode interface. Angew. Chem. Int. Ed. 57, 11978–11981 (2018). https://doi.org/10.1002/anie.201806748
J. Yue, L. Lin, L. Jiang, Q. Zhang, Y. Tong et al., Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte. Adv. Energy Mater. 10, 2000665 (2020). https://doi.org/10.1002/aenm.202000665
X. Dong, Y.-G. Wang, Y. Xia, Promoting rechargeable batteries operated at low temperature. Acc. Chem. Res. 54, 3883–3894 (2021). https://doi.org/10.1021/acs.accounts.1c00420
H.Y. Asl, A. Manthiram, Reining in dissolved transition-metal ions. Science 369, 140–141 (2020). https://doi.org/10.1126/science.abc5454
J. Cattermull, M. Pasta, A.L. Goodwin, Structural complexity in Prussian blue analogues. Mater. Horiz. 8, 3178–3186 (2021). https://doi.org/10.1039/d1mh01124c
Z. Caixiang, J. Hao, J. Zhou, X. Yu, B. Lu, Interlayer-engineering and surface-substituting manganese-based self-evolution for high-performance potassium cathode. Adv. Energy Mater. 13, 2203126 (2023). https://doi.org/10.1002/aenm.202203126
B. Liu, Q. Zhang, U. Ali, Y. Li, Y. Hao et al., Solid-solution reaction suppresses the Jahn-Teller effect of potassium manganese hexacyanoferrate in potassium-ion batteries. Chem. Sci. 13, 10846–10855 (2022). https://doi.org/10.1039/d2sc03824b
F.D. Speck, A. Zagalskaya, V. Alexandrov, S. Cherevko, Periodicity in the electrochemical dissolution of transition metals. Angew. Chem. Int. Ed. 60, 13343–13349 (2021). https://doi.org/10.1002/anie.202100337
T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13, 4625–4665 (2020). https://doi.org/10.1039/D0EE02620D
Z. Xing, G. Xu, J. Han, G. Chen, B. Lu et al., Facing the capacity fading of vanadium-based zinc-ion batteries. Trends Chem. 5, 380–392 (2023). https://doi.org/10.1016/j.trechm.2023.02.008
K. Nakamoto, R. Sakamoto, M. Ito, A. Kitajou, S. Okada, Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85, 179–185 (2017). https://doi.org/10.5796/electrochemistry.85.179
D.P. Leonard, Z. Wei, G. Chen, F. Du, X. Ji, Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3, 373–374 (2018). https://doi.org/10.1021/acsenergylett.8b00009
J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. ChemSusChem 11, 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
L. Jiang, L. Liu, J. Yue, Q. Zhang, A. Zhou et al., High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv. Mater. 32, e1904427 (2020). https://doi.org/10.1002/adma.201904427
Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5, 730–738 (2017). https://doi.org/10.1039/C6TA08736A
Z. Liang, F. Tian, G. Yang, C. Wang, Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive. Nat. Commun. 14, 3591 (2023). https://doi.org/10.1038/s41467-023-39385-6
J. Chen, S. Lei, S. Zhang, C. Zhu, Q. Liu et al., Dilute aqueous hybrid electrolyte with regulated core-shell-solvation structure endows safe and low-cost potassium-ion energy storage devices. Adv. Funct. Mater. 33, 2215027 (2023). https://doi.org/10.1002/adfm.202215027
D. Zhang, L. Sun, C. Wang, Q. Xue, J. Feng et al., An open-framework structured material: [Ni(en)2]3[Fe(CN)6]2 as a cathode material for aqueous sodium- and potassium-ion batteries. ACS Appl. Mater. Interfaces 14, 16197–16203 (2022). https://doi.org/10.1021/acsami.2c00143
J. Chen, C. Liu, Z. Yu, J. Qu, C. Wang et al., High-energy-density aqueous sodium-ion batteries enabled by chromium hexacycnochromate anodes. Chem. Eng. J. 415, 129003 (2021). https://doi.org/10.1016/j.cej.2021.129003
J.-H. Lee, G. Ali, D.H. Kim, K.Y. Chung, Metal-organic framework cathodes based on a vanadium hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries. Adv. Energy Mater. 7, 1601491 (2017). https://doi.org/10.1002/aenm.201601491
J. Xie, L. Ma, J. Li, X. Yin, Z. Wen et al., Self-healing of Prussian blue analogues with electrochemically driven morphological rejuvenation. Adv. Mater. 34, e2205625 (2022). https://doi.org/10.1002/adma.202205625
U. Ali, B. Liu, H. Jia, Y. Li, Y. Li et al., In situ Fe-substituted hexacyanoferrate for high-performance aqueous potassium ion batteries. Small (2023). https://doi.org/10.1002/smll.202305866
M.A. Oliver-Tolentino, J. Vázquez-Samperio, S.N. Arellano-Ahumada, A. Guzmán-Vargas, D. Ramírez-Rosales et al., Enhancement of stability by positive disruptive effect on Mn-Fe charge transfer in vacancy-free Mn-co hexacyanoferrate through a charge/discharge process in aqueous Na-ion batteries. J. Phys. Chem. C 122, 20602–20610 (2018). https://doi.org/10.1021/acs.jpcc.8b05506
Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang et al., High-entropy metal–organic frameworks for highly reversible sodium storage. Adv. Mater. 33, 2101342 (2021). https://doi.org/10.1002/adma.202101342
M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61, e202209350 (2022). https://doi.org/10.1002/anie.202209350
J. Xing, Y. Zhang, Y. Jin, Q. Jin, Active cation-integration high-entropy Prussian blue analogues cathodes for efficient Zn storage. Nano Res. 16, 2486–2494 (2023). https://doi.org/10.1007/s12274-022-5020-0
X. Zhao, Z. Xing, C. Huang, Investigation of high-entropy Prussian blue analog as cathode material for aqueous sodium-ion batteries. J. Mater. Chem. A 11, 22835–22844 (2023). https://doi.org/10.1039/D3TA04349E
B. Wenger, P.K. Nayak, X. Wen, S.V. Kesava, N.K. Noel et al., Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals. Nat. Commun. 8, 590 (2017). https://doi.org/10.1038/s41467-017-00567-8
M. Xue, Y. Wang, X. Wang, X. Huang, J. Ji, Single-crystal-conjugated polymers with extremely high electron sensitivity through template-assisted in situ polymerization. Adv. Mater. 27, 5923–5929 (2015). https://doi.org/10.1002/adma.201502511
H. Liang, X. Ma, Z. Yang, P. Wang, X. Zhang et al., Emergence of superconductivity in doped glassy-carbon. Carbon 99, 585–590 (2016). https://doi.org/10.1016/j.carbon.2015.12.046
D. Su, A. McDonagh, S.-Z. Qiao, G. Wang, High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017). https://doi.org/10.1002/adma.201604007
X. Wu, C. Wu, C. Wei, L. Hu, J. Qian et al., Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 5393–5399 (2016). https://doi.org/10.1021/acsami.5b12620
D. Cai, X. Yang, B. Qu, T. Wang, Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries. Chem. Commun. 53, 6780–6783 (2017). https://doi.org/10.1039/C7CC02516E
C. Li, X. Wang, W. Deng, C. Liu, J. Chen et al., Size engineering and crystallinity control enable high-capacity aqueous potassium-ion storage of Prussian white analogues. ChemElectroChem 5, 3887–3892 (2018). https://doi.org/10.1002/celc.201801277
W. Zhang, L. Xia, C. Shi, R. Qi, M. Hu, ting and recycling of insoluble, labile single-crystal coordination polymer through reversible solid-liquid-solid transition. Matter 6, 3394–3412 (2023). https://doi.org/10.1016/j.matt.2023.05.024
X. Liu, Y. Cao, J. Sun, Defect engineering in Prussian blue analogs for high-performance sodium-ion batteries. Adv. Energy Mater. 12, 2202532 (2022). https://doi.org/10.1002/aenm.202202532
M. Wan, R. Zeng, J. Meng, Z. Cheng, W. Chen et al., Post-synthetic and in situ vacancy repairing of iron hexacyanoferrate toward highly stable cathodes for sodium-ion batteries. Nano-Micro Lett. 14, 9 (2021). https://doi.org/10.1007/s40820-021-00742-z
F. Peng, L. Yu, S. Yuan, X.-Z. Liao, J. Wen et al., Enhanced electrochemical performance of sodium manganese ferrocyanide by Na3(VOPO4)2F coating for sodium-ion batteries. ACS Appl. Mater. Interfaces 11, 37685–37692 (2019). https://doi.org/10.1021/acsami.9b12041
F. Feng, S. Chen, S. Zhao, W. Zhang, Y. Miao et al., Enhanced electrochemical performance of MnFe@NiFe Prussian blue analogue benefited from the inhibition of Mn ions dissolution for sodium-ion batteries. Chem. Eng. J. 411, 128518 (2021). https://doi.org/10.1016/j.cej.2021.128518
C. Xu, Y. Ma, J. Zhao, P. Zhang, Z. Chen et al., Surface engineering stabilizes rhombohedral sodium manganese hexacyanoferrates for high-energy Na-ion batteries. Angew. Chem. Int. Ed. 62, e202217761 (2023). https://doi.org/10.1002/anie.202217761
M. Lucero, D.B. Armitage, X. Yang, S.K. Sandstrom, M. Lyons et al., Ball milling-enabled Fe2.4+ to Fe3+ redox reaction in Prussian blue materials for long-life aqueous sodium-ion batteries. ACS Appl. Mater. Interfaces 15, 36366–36372 (2023). https://doi.org/10.1021/acsami.3c07304
E. Nossol, V.H.R. Souza, A.J.G. Zarbin, Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery. J. Colloid Interface Sci. 478, 107–116 (2016). https://doi.org/10.1016/j.jcis.2016.05.056
M. Morant-Giner, R. Sanchis-Gual, J. Romero, A. Alberola, L. García-Cruz et al., Prussian Blue@MoS2 layer composites as highly efficient cathodes for sodium-and potassium-ion batteries. Adv. Funct. Mater. 28, 1706125 (2018). https://doi.org/10.1002/adfm.201706125
M. Zhang, T. Dong, D. Li, K. Wang, X. Wei et al., High-performance aqueous sodium-ion battery based on graphene-doped Na2MnFe(CN)6–zinc with a highly stable discharge platform and wide electrochemical stability. Energy Fuels 35, 10860–10868 (2021). https://doi.org/10.1021/acs.energyfuels.1c01095
C.D. Wessells, S.V. Peddada, R.A. Huggins, Y. Cui, Nickel hexacyanoferrate nanop electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421–5425 (2011). https://doi.org/10.1021/nl203193q
Y. Zhang, J. Xu, Z. Li, Y. Wang, S. Wang et al., All-climate aqueous Na-ion batteries using “water-in-salt” electrolyte. Sci. Bull. 67, 161–170 (2022). https://doi.org/10.1016/j.scib.2021.08.010
T.Y. Pan, C.Y. Ruqia, C.S. Wu, S.G. Ni et al., Improvement in cycling stability of Prussian blue analog-based aqueous sodium-ion batteries by ligand substitution and electrolyte optimization. Electrochim. Acta 427, 140778 (2022). https://doi.org/10.1016/j.electacta.2022.140778
J. Liu, C. Yang, B. Wen, B. Li, Y. Liu, Ultra-long cycle of Prussian blue analogs achieved by equilibrium electrolyte for aqueous sodium-ion batteries. Small 19, e2303896 (2023). https://doi.org/10.1002/smll.202303896
S. Husmann, A.J.G. Zarbin, R.A.W. Dryfe, High-performance aqueous rechargeable potassium batteries prepared via interfacial synthesis of a Prussian blue-carbon nanotube composite. Electrochim. Acta 349, 136243 (2020). https://doi.org/10.1016/j.electacta.2020.136243