MOF-Transformed In2O3-x@C Nanocorn Electrocatalyst for Efficient CO2 Reduction to HCOOH
Corresponding Author: Shihe Yang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 167
Abstract
For electrochemical CO2 reduction to HCOOH, an ongoing challenge is to design energy efficient electrocatalysts that can deliver a high HCOOH current density (JHCOOH) at a low overpotential. Indium oxide is good HCOOH production catalyst but with low conductivity. In this work, we report a unique corn design of In2O3-x@C nanocatalyst, wherein In2O3-x nanocube as the fine grains dispersed uniformly on the carbon nanorod cob, resulting in the enhanced conductivity. Excellent performance is achieved with 84% Faradaic efficiency (FE) and 11 mA cm−2 JHCOOH at a low potential of − 0.4 V versus RHE. At the current density of 100 mA cm−2, the applied potential remained stable for more than 120 h with the FE above 90%. Density functional theory calculations reveal that the abundant oxygen vacancy in In2O3-x has exposed more In3+ sites with activated electroactivity, which facilitates the formation of HCOO* intermediate. Operando X-ray absorption spectroscopy also confirms In3+ as the active site and the key intermediate of HCOO* during the process of CO2 reduction to HCOOH.
Highlights:
1 The nanocorn design enables In2O3-x@C a high Faradaic efficiency of 98% and a high formate current density of 320 mA cm−2 at a low potential of -1.2 V versus hydrogen electrode without iR correction.
2 The rich O vacancy activates In3+ sites on the nanocube shell of In2O3-x@C and the carbon cob enhances conductivity.
3 Operando X-ray absorption spectroscopy unveils the active site of In3+ for formate production although reduction of In3+ to In is conceivable at the applied negative potentials during CO2 reduction reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Wagner, C.D. Sahm, E. Reisner, Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3(10), 775–786 (2020). https://doi.org/10.1038/s41929-020-00512-x
- F. Pan, Y. Yang, Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 13(8), 2275–2309 (2020). https://doi.org/10.1039/d0ee00900h
- M.B. Ross, P.D. Luna, Y. Li, C.T. Dinh, D. Kim et al., Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2(8), 648–658 (2019). https://doi.org/10.1038/s41929-019-0306-7
- C. Chen, J.F.K. Kotyk, S.W. Sheehan, Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4(11), 2571–2586 (2018). https://doi.org/10.1016/j.chempr.2018.08.019
- X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang et al., Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5(9), 684–692 (2020). https://doi.org/10.1038/s41560-020-0667-9
- J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
- D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
- N. Wang, R.K. Miao, G. Lee, A. Vomiero, D. Sinton, Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat 2(1), 12–16 (2021). https://doi.org/10.1002/smm2.1018
- N. Han, P. Ding, L. He, Y.Y. Li, Y.G. Li, Promises of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 10(11), 1902338 (2019). https://doi.org/10.1002/aenm.201902338
- X. Zu, X. Li, W. Liu, Y. Sun, J. Xu et al., Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites. Adv. Mater. 31(15), e1808135 (2019). https://doi.org/10.1002/adma.201808135
- J. Li, M. Zhu, Y.F. Han, Recent advances in electrochemical CO2 reduction on indium-based catalysts. ChemCatChem 13(2), 514–531 (2020). https://doi.org/10.1002/cctc.202001350
- Y.Y. Birdja, R.E. Vos, T.A. Wezendonk, L. Jiang, F. Kapteijn et al., Effects of substrate and polymer encapsulation on CO2 electroreduction by immobilized indium(III) protoporphyrin. ACS Catal. 8(5), 4420–4428 (2018). https://doi.org/10.1021/acscatal.7b03386
- I. Grigioni, L.K. Sagar, Y.C. Li, G. Lee, Y. Yan et al., CO2 electroreduction to formate at a partial current density of 930 mA cm–2 with inp colloidal quantum dot derived catalysts. ACS Energy Lett. 6(1), 79–84 (2020). https://doi.org/10.1021/acsenergylett.0c02165
- Z. Wang, Y. Zhou, C. Xia, W. Guo, B. You et al., Efficient electroconversion of carbon dioxide to formate by a reconstructed amino-functionalized indium-organic framework electrocatalyst. Angew. Chem. Int. Ed. 60(35), 19107–19112 (2021). https://doi.org/10.1002/anie.202107523
- J. Zhang, R. Yin, Q. Shao, T. Zhu, X. Huang, Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction. Angew. Chem. Int. Ed. 58(17), 5609–5613 (2019). https://doi.org/10.1002/anie.201900167
- X. Kang, B. Wang, K. Hu, K. Lyu, X. Han et al., Quantitative electro-reduction of CO2 to liquid fuel over electro-synthesized metal-organic frameworks. J. Am. Chem. Soc. 142(41), 17384–17392 (2020). https://doi.org/10.1021/jacs.0c05913
- Z. Zhang, F. Ahmad, W. Zhao, W. Yan, W. Zhang et al., Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide. Nano Lett. 19(6), 4029–4034 (2019). https://doi.org/10.1021/acs.nanolett.9b01393
- A. Dutta, I.Z. Montiel, K. Kiran, A. Rieder, V. Grozovski et al., A tandem (Bi2O3 → Bimet) catalyst for highly efficient ec-CO2 conversion into formate: operando raman spectroscopic evidence for a reaction pathway change. ACS Catal. 11(9), 4988–5003 (2021). https://doi.org/10.1021/acscatal.0c05317
- P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou et al., Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew. Chem. Int. Ed. 59(27), 10807–10813 (2020). https://doi.org/10.1002/anie.202000657
- D. Wu, G. Huo, W. Chen, X.Z. Fu, J.L. Luo, Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets. Appl. Catal. B Enivron. 271, 118957 (2020). https://doi.org/10.1016/j.apcatb.2020.118957
- Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10, 2807 (2019). https://doi.org/10.1038/s41467-019-10819-4
- J. Zou, C.Y. Lee, G.G. Wallace, Boosting formate production from CO2 at high current densities over a wide electrochemical potential window on a SnS catalyst. Adv. Sci. 8(15), e2004521 (2021). https://doi.org/10.1002/advs.202004521
- H.Q. Fu, J. Liu, N.M. Bedford, Y. Wang, J. Wright et al., Operando converting BiOCl into Bi2O2(CO3)xCly for efficient electrocatalytic reduction of carbon dioxide to formate. Nano-Micro Lett. 14, 121 (2022). https://doi.org/10.1007/s40820-022-00862-0
- D. Wu, R. Feng, C. Xu, P.F. Sui, J. Zhang et al., Regulating the electron localization of metallic bismuth for boosting CO2 electroreduction. Nano-Micro Lett. 14, 38 (2021). https://doi.org/10.1007/s40820-021-00772-7
- Y. Qi, L. Song, S. Ouyang, X. Liang, S. Ning et al., Photoinduced defect engineering: enhanced photothermal catalytic performance of 2D black In2O3-x nanosheets with bifunctional oxygen vacancies. Adv. Mater. 32(6), e1903915 (2020). https://doi.org/10.1002/adma.201903915
- J. Yu, J. Wang, X. Long, L. Chen, Q. Cao et al., Formation of feooh nanosheets induces substitutional doping of CeO2−x with high-valence Ni for efficient water oxidation. Adv. Energy Mater. 11(4), 2002731 (2021). https://doi.org/10.1002/aenm.202002731
- J. Yu, Z. Wang, J. Wang, W. Zhong, M. Ju et al., The role of ceria in a hybrid catalyst toward alkaline water oxidation. Chemsuschem 13(19), 5273–5279 (2020). https://doi.org/10.1002/cssc.202001542
- J. Yu, X. Du, H. Liu, C. Qiu, R. Yu et al., Mini review on active sites in Ce-based electrocatalysts for alkaline water splitting. Energy Fuels 35(23), 19000–19011 (2021). https://doi.org/10.1021/acs.energyfuels.1c02087
- S.M. Li, H. Duan, J. Yu, C. Qiu, R.X. Yu, Y.P. Chen, Y.P. Fang, X. Cai, S.H. Yang, Cu Vacancy induced product switching from formate to CO for CO2 reduction on copper sulfide. ACS Catal. 12(XXX), 9074–9082 (2020). https://doi.org/10.1021/acscatal.2c01750
- Y. Liang, W. Zhou, Y. Shi, C. Liu, B. Zhang, Unveiling in situ evolved In/In2O3− heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2 to formate. Sci. Bull. 65(18), 1547–1554 (2020). https://doi.org/10.1016/j.scib.2020.04.022
- Y.F. Cui, W. Jiang, S. Liang, L.F. Zhu, Y.W. Yao, MOF-derived synthesis of mesoporous In/Ga oxides and their ultra-sensitive ethanol-sensing properties. J. Mater. Chem. A 6(30), 14930–14938 (2018). https://doi.org/10.1039/c8ta00269j
- B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719
- S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert et al., First principles methods using castep. Z. Kristallogr. Cryst. Mater. 220(5–6), 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- P.J. Hasnip, C.J. Pickard, Electronic energy minimisation with ultrasoft pseudopotentials. Comput. Phys. Commun. 174(1), 24–29 (2006). https://doi.org/10.1016/j.cpc.2005.07.011
- J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671–6687 (1992). https://doi.org/10.1103/PhysRevB.46.6671
- J.D. Head, M.C. Zerner, A broyden—fletcher—goldfarb—shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 122(3), 264–270 (1985). https://doi.org/10.1016/0009-2614(85)80574-1
- Z. Cai, J. Dai, W. Li, K.B. Tan, Z. Huang et al., Pd supported on MIL-68(In)-derived In2O3 nanotubes as superior catalysts to boost CO2 hydrogenation to methanol. ACS Catal. 10(22), 13275–13289 (2020). https://doi.org/10.1021/acscatal.0c03372
- Y. Qi, J. Jiang, X. Liang, S. Ouyang, W. Mi et al., Fabrication of black In2O3 with dense oxygen vacancy through dual functional carbon doping for enhancing photothermal CO2 hydrogenation. Adv. Funct. Mater. 31(22), 2100908 (2021). https://doi.org/10.1002/adfm.202100908
- J. Yu, Q. Cao, Y. Li, X. Long, S. Yang et al., Defect-rich niceox electrocatalyst with ultrahigh stability and low overpotential for water oxidation. ACS Catal. 9(2), 1605–1611 (2019). https://doi.org/10.1021/acscatal.9b00191
- W. Luo, W. Xie, M. Li, J. Zhang, A. Züttel, 3D hierarchical porous indium catalyst for highly efficient electroreduction of CO2. J. Mater. Chem. A 7(9), 4505–4515 (2019). https://doi.org/10.1039/c8ta11645h
- M. Zhu, P. Tian, J. Li, J. Chen, J. Xu et al., Structure-tunable copper-indium catalysts for highly selective CO2 electroreduction to CO or HCOOH. Chemsuschem 12(17), 3955–3959 (2019). https://doi.org/10.1002/cssc.201901884
- X. Sun, L. Lu, Q. Zhu, C. Wu, D. Yang et al., MoP nanops supported on indium-doped porous carbon: Outstanding catalysts for highly efficient CO2 electroreduction. Angew. Chem. Int. Ed. 57(9), 2427–2431 (2018). https://doi.org/10.1002/anie.201712221
- S. Liu, X.F. Lu, J. Xiao, X. Wang, X.W.D. Lou, Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem. Int. Ed. 58(39), 13828–13833 (2019). https://doi.org/10.1002/anie.201907674
- L. Yi, J. Chen, P. Shao, J. Huang, X. Peng et al., Molten-salt-assisted synthesis of bismuth nanosheets for long-term continuous electrocatalytic conversion of CO2 to formate. Angew. Chem. Int. Ed. 59(45), 20112–20119 (2020). https://doi.org/10.1002/anie.202008316
- F. Li, G.H. Gu, C. Choi, P. Kolla, S. Hong et al., Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. Appl. Catal. B 277, 119241 (2020). https://doi.org/10.1016/j.apcatb.2020.119241
References
A. Wagner, C.D. Sahm, E. Reisner, Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3(10), 775–786 (2020). https://doi.org/10.1038/s41929-020-00512-x
F. Pan, Y. Yang, Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 13(8), 2275–2309 (2020). https://doi.org/10.1039/d0ee00900h
M.B. Ross, P.D. Luna, Y. Li, C.T. Dinh, D. Kim et al., Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2(8), 648–658 (2019). https://doi.org/10.1038/s41929-019-0306-7
C. Chen, J.F.K. Kotyk, S.W. Sheehan, Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4(11), 2571–2586 (2018). https://doi.org/10.1016/j.chempr.2018.08.019
X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang et al., Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5(9), 684–692 (2020). https://doi.org/10.1038/s41560-020-0667-9
J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
N. Wang, R.K. Miao, G. Lee, A. Vomiero, D. Sinton, Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat 2(1), 12–16 (2021). https://doi.org/10.1002/smm2.1018
N. Han, P. Ding, L. He, Y.Y. Li, Y.G. Li, Promises of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 10(11), 1902338 (2019). https://doi.org/10.1002/aenm.201902338
X. Zu, X. Li, W. Liu, Y. Sun, J. Xu et al., Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites. Adv. Mater. 31(15), e1808135 (2019). https://doi.org/10.1002/adma.201808135
J. Li, M. Zhu, Y.F. Han, Recent advances in electrochemical CO2 reduction on indium-based catalysts. ChemCatChem 13(2), 514–531 (2020). https://doi.org/10.1002/cctc.202001350
Y.Y. Birdja, R.E. Vos, T.A. Wezendonk, L. Jiang, F. Kapteijn et al., Effects of substrate and polymer encapsulation on CO2 electroreduction by immobilized indium(III) protoporphyrin. ACS Catal. 8(5), 4420–4428 (2018). https://doi.org/10.1021/acscatal.7b03386
I. Grigioni, L.K. Sagar, Y.C. Li, G. Lee, Y. Yan et al., CO2 electroreduction to formate at a partial current density of 930 mA cm–2 with inp colloidal quantum dot derived catalysts. ACS Energy Lett. 6(1), 79–84 (2020). https://doi.org/10.1021/acsenergylett.0c02165
Z. Wang, Y. Zhou, C. Xia, W. Guo, B. You et al., Efficient electroconversion of carbon dioxide to formate by a reconstructed amino-functionalized indium-organic framework electrocatalyst. Angew. Chem. Int. Ed. 60(35), 19107–19112 (2021). https://doi.org/10.1002/anie.202107523
J. Zhang, R. Yin, Q. Shao, T. Zhu, X. Huang, Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction. Angew. Chem. Int. Ed. 58(17), 5609–5613 (2019). https://doi.org/10.1002/anie.201900167
X. Kang, B. Wang, K. Hu, K. Lyu, X. Han et al., Quantitative electro-reduction of CO2 to liquid fuel over electro-synthesized metal-organic frameworks. J. Am. Chem. Soc. 142(41), 17384–17392 (2020). https://doi.org/10.1021/jacs.0c05913
Z. Zhang, F. Ahmad, W. Zhao, W. Yan, W. Zhang et al., Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide. Nano Lett. 19(6), 4029–4034 (2019). https://doi.org/10.1021/acs.nanolett.9b01393
A. Dutta, I.Z. Montiel, K. Kiran, A. Rieder, V. Grozovski et al., A tandem (Bi2O3 → Bimet) catalyst for highly efficient ec-CO2 conversion into formate: operando raman spectroscopic evidence for a reaction pathway change. ACS Catal. 11(9), 4988–5003 (2021). https://doi.org/10.1021/acscatal.0c05317
P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou et al., Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew. Chem. Int. Ed. 59(27), 10807–10813 (2020). https://doi.org/10.1002/anie.202000657
D. Wu, G. Huo, W. Chen, X.Z. Fu, J.L. Luo, Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets. Appl. Catal. B Enivron. 271, 118957 (2020). https://doi.org/10.1016/j.apcatb.2020.118957
Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10, 2807 (2019). https://doi.org/10.1038/s41467-019-10819-4
J. Zou, C.Y. Lee, G.G. Wallace, Boosting formate production from CO2 at high current densities over a wide electrochemical potential window on a SnS catalyst. Adv. Sci. 8(15), e2004521 (2021). https://doi.org/10.1002/advs.202004521
H.Q. Fu, J. Liu, N.M. Bedford, Y. Wang, J. Wright et al., Operando converting BiOCl into Bi2O2(CO3)xCly for efficient electrocatalytic reduction of carbon dioxide to formate. Nano-Micro Lett. 14, 121 (2022). https://doi.org/10.1007/s40820-022-00862-0
D. Wu, R. Feng, C. Xu, P.F. Sui, J. Zhang et al., Regulating the electron localization of metallic bismuth for boosting CO2 electroreduction. Nano-Micro Lett. 14, 38 (2021). https://doi.org/10.1007/s40820-021-00772-7
Y. Qi, L. Song, S. Ouyang, X. Liang, S. Ning et al., Photoinduced defect engineering: enhanced photothermal catalytic performance of 2D black In2O3-x nanosheets with bifunctional oxygen vacancies. Adv. Mater. 32(6), e1903915 (2020). https://doi.org/10.1002/adma.201903915
J. Yu, J. Wang, X. Long, L. Chen, Q. Cao et al., Formation of feooh nanosheets induces substitutional doping of CeO2−x with high-valence Ni for efficient water oxidation. Adv. Energy Mater. 11(4), 2002731 (2021). https://doi.org/10.1002/aenm.202002731
J. Yu, Z. Wang, J. Wang, W. Zhong, M. Ju et al., The role of ceria in a hybrid catalyst toward alkaline water oxidation. Chemsuschem 13(19), 5273–5279 (2020). https://doi.org/10.1002/cssc.202001542
J. Yu, X. Du, H. Liu, C. Qiu, R. Yu et al., Mini review on active sites in Ce-based electrocatalysts for alkaline water splitting. Energy Fuels 35(23), 19000–19011 (2021). https://doi.org/10.1021/acs.energyfuels.1c02087
S.M. Li, H. Duan, J. Yu, C. Qiu, R.X. Yu, Y.P. Chen, Y.P. Fang, X. Cai, S.H. Yang, Cu Vacancy induced product switching from formate to CO for CO2 reduction on copper sulfide. ACS Catal. 12(XXX), 9074–9082 (2020). https://doi.org/10.1021/acscatal.2c01750
Y. Liang, W. Zhou, Y. Shi, C. Liu, B. Zhang, Unveiling in situ evolved In/In2O3− heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2 to formate. Sci. Bull. 65(18), 1547–1554 (2020). https://doi.org/10.1016/j.scib.2020.04.022
Y.F. Cui, W. Jiang, S. Liang, L.F. Zhu, Y.W. Yao, MOF-derived synthesis of mesoporous In/Ga oxides and their ultra-sensitive ethanol-sensing properties. J. Mater. Chem. A 6(30), 14930–14938 (2018). https://doi.org/10.1039/c8ta00269j
B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert et al., First principles methods using castep. Z. Kristallogr. Cryst. Mater. 220(5–6), 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
P.J. Hasnip, C.J. Pickard, Electronic energy minimisation with ultrasoft pseudopotentials. Comput. Phys. Commun. 174(1), 24–29 (2006). https://doi.org/10.1016/j.cpc.2005.07.011
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671–6687 (1992). https://doi.org/10.1103/PhysRevB.46.6671
J.D. Head, M.C. Zerner, A broyden—fletcher—goldfarb—shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 122(3), 264–270 (1985). https://doi.org/10.1016/0009-2614(85)80574-1
Z. Cai, J. Dai, W. Li, K.B. Tan, Z. Huang et al., Pd supported on MIL-68(In)-derived In2O3 nanotubes as superior catalysts to boost CO2 hydrogenation to methanol. ACS Catal. 10(22), 13275–13289 (2020). https://doi.org/10.1021/acscatal.0c03372
Y. Qi, J. Jiang, X. Liang, S. Ouyang, W. Mi et al., Fabrication of black In2O3 with dense oxygen vacancy through dual functional carbon doping for enhancing photothermal CO2 hydrogenation. Adv. Funct. Mater. 31(22), 2100908 (2021). https://doi.org/10.1002/adfm.202100908
J. Yu, Q. Cao, Y. Li, X. Long, S. Yang et al., Defect-rich niceox electrocatalyst with ultrahigh stability and low overpotential for water oxidation. ACS Catal. 9(2), 1605–1611 (2019). https://doi.org/10.1021/acscatal.9b00191
W. Luo, W. Xie, M. Li, J. Zhang, A. Züttel, 3D hierarchical porous indium catalyst for highly efficient electroreduction of CO2. J. Mater. Chem. A 7(9), 4505–4515 (2019). https://doi.org/10.1039/c8ta11645h
M. Zhu, P. Tian, J. Li, J. Chen, J. Xu et al., Structure-tunable copper-indium catalysts for highly selective CO2 electroreduction to CO or HCOOH. Chemsuschem 12(17), 3955–3959 (2019). https://doi.org/10.1002/cssc.201901884
X. Sun, L. Lu, Q. Zhu, C. Wu, D. Yang et al., MoP nanops supported on indium-doped porous carbon: Outstanding catalysts for highly efficient CO2 electroreduction. Angew. Chem. Int. Ed. 57(9), 2427–2431 (2018). https://doi.org/10.1002/anie.201712221
S. Liu, X.F. Lu, J. Xiao, X. Wang, X.W.D. Lou, Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem. Int. Ed. 58(39), 13828–13833 (2019). https://doi.org/10.1002/anie.201907674
L. Yi, J. Chen, P. Shao, J. Huang, X. Peng et al., Molten-salt-assisted synthesis of bismuth nanosheets for long-term continuous electrocatalytic conversion of CO2 to formate. Angew. Chem. Int. Ed. 59(45), 20112–20119 (2020). https://doi.org/10.1002/anie.202008316
F. Li, G.H. Gu, C. Choi, P. Kolla, S. Hong et al., Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. Appl. Catal. B 277, 119241 (2020). https://doi.org/10.1016/j.apcatb.2020.119241