Versatile Functionalization of Carbon Nanomaterials by Ferrate(VI)
Corresponding Author: Tao Li
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 32
Abstract
As a high-valent iron compound with Fe in the highest accessible oxidation state, ferrate(VI) brings unique opportunities for a number of areas where chemical oxidation is essential. Recently, it is emerging as a novel oxidizing agent for materials chemistry, especially for the oxidation of carbon materials. However, the reported reactivity in liquid phase (H2SO4 medium) is confusing, which ranges from aggressive to moderate, and even incompetent. Meanwhile, the solid-state reactivity underlying the “dry” chemistry of ferrate(VI) remains poorly understood. Herein, we scrutinize the reactivity of K2FeO4 using fullerene C60 and various nanocarbons as substrates. The results unravel a modest reactivity in liquid phase that only oxidizes the active defects on carbon surface and a powerful oxidizing ability in solid state that can open the inert C=C bonds in carbon lattice. We also discuss respective benefit and limitation of the wet and dry approaches. Our work provides a rational understanding on the oxidizing ability of ferrate(VI) and can guide its application in functionalization/transformation of carbons and also other kinds of materials.
Highlights:
1 Various forms of carbon nanomaterials are selected as substrates to clear the mist in understanding the reactivity/utility of ferrate(VI) in oxidizing carbon nanomaterials.
2 It unravels a modest reactivity of ferrate(VI) in liquid phase that only oxidizes the active defects on carbon surface and a powerful oxidizing ability in solid state that can open the inert C=C bonds in carbon lattice.
3 Respective benefit and limitation of the wet and dry approaches using ferrate(VI) in functionalizing carbon nanomaterials are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.F. Berry, E. Bill, E. Bothe, S.D. George, B. Mienert, F. Neese, K. Wieghardt, An octahedral coordination complex of iron(VI). Science 312(5782), 1937–1941 (2006). https://doi.org/10.1126/science.1128506
- J.J. Scepaniak, C.S. Vogel, M.M. Khusniyarov, F.W. Heinemann, K. Meyer, J.M. Smith, Synthesis, structure, and reactivity of an iron(V) nitride. Science 331(6020), 1049–1052 (2011). https://doi.org/10.1126/science.1198315
- J. Hohenberger, K. Ray, K. Meyer, The biology and chemistry of high-valent iron-oxo and iron-nitrido complexes. Nat. Commun. 3, 720 (2012). https://doi.org/10.1038/ncomms1718
- V.K. Sharma, Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism. Coord. Chem. Rev. 257(2), 495–510 (2013). https://doi.org/10.1016/j.ccr.2012.04.014
- J. Torres-Alacan, U. Das, A.C. Filippou, P. Vohringer, Observing the formation and the reactivity of an octahedral iron(V) nitrido complex in real time. Angew. Chem. Int. Ed. 52(49), 12833–12837 (2013). https://doi.org/10.1002/anie.201306621
- M. Ghosh, K.K. Singh, C. Panda, A. Weitz, M.P. Hendrich, T.J. Collins, B.B. Dhar, S. Sen Gupta, Formation of a room temperature stable Fe(V)(O) complex: reactivity toward unactivated C–H bonds. J. Am. Chem. Soc. 136(27), 9524–9527 (2014). https://doi.org/10.1021/ja412537m
- P.J. Chirik, An FeVI nitride: there is plenty of room at the top! Angew. Chem. Int. Ed. 45(42), 6956–6959 (2006). https://doi.org/10.1002/anie.200603056
- H. Schmidbaur, The history and the current revival of the oxo chemistry of iron in its highest oxidation states: FeVI–FeVIII. Z. Anorg. Allg. Chem. 644(12–13), 536–559 (2018). https://doi.org/10.1002/zaac.201800036
- D. Ghernaout, M.W. Naceur, Ferrate(VI): in situ generation and water treatment—a review. Desalin. Water Treat. 30(1–3), 319–332 (2012). https://doi.org/10.5004/dwt.2011.2217
- V.K. Sharma, Oxidation of inorganic contaminants by ferrates (VI, V, and IV)—kinetics and mechanisms: a review. J. Environ. Manag. 92(4), 1051–1073 (2011). https://doi.org/10.1016/j.jenvman.2010.11.026
- J.-Q. Jiang, B. Lloyd, Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res. 36(6), 1397–1408 (2002). https://doi.org/10.1016/S0043-1354(01)00358-X
- R.H. Wood, The heat, free energy and entropy of the ferrate(VI) ion. J. Am. Chem. Soc. 80(9), 2038–2041 (1958). https://doi.org/10.1021/ja01542a002
- V.K. Sharma, R. Zboril, R.S. Varma, Ferrates: greener oxidants with multimodal action in water treatment technologies. Acc. Chem. Res. 48(2), 182–191 (2015). https://doi.org/10.1021/ar5004219
- J.-Q. Jiang, Advances in the development and application of ferrate(VI) for water and wastewater treatment. J. Chem. Technol. Biotechnol. 89(2), 165–177 (2014). https://doi.org/10.1002/jctb.4214
- V.K. Sharma, Potassium ferrate(VI): an environmentally friendly oxidant. Adv. Environ. Res. 6(2), 143–156 (2002). https://doi.org/10.1016/s1093-0191(01)00119-8
- M. Feng, C. Jinadatha, T.J. McDonald, V.K. Sharma, Accelerated oxidation of organic contaminants by ferrate(VI): the overlooked role of reducing additives. Environ. Sci. Technol. 52(19), 11319–11327 (2018). https://doi.org/10.1021/acs.est.8b03770
- M. Feng, J.C. Baum, N. Nesnas, Y. Lee, C.-H. Huang, V.K. Sharma, Oxidation of sulfonamide antibiotics of six-membered heterocyclic moiety by Ferrate(VI): kinetics and mechanistic insight into SO2 extrusion. Environ. Sci. Technol. 53(5), 2695–2704 (2019). https://doi.org/10.1021/acs.est.8b06535
- V.K. Sharma, L. Chen, R. Zboril, Review on high valent FeVI (Ferrate): a sustainable green oxidant in organic chemistry and transformation of pharmaceuticals. ACS Sustain. Chem. Eng. 4(1), 18–34 (2016). https://doi.org/10.1021/acssuschemeng.5b01202
- L. Delaude, P. Laszlo, A novel oxidizing reagent based on potassium ferrate(VI). J. Org. Chem. 61(18), 6360–6370 (1996). https://doi.org/10.1021/jo960633p
- P.K. Tandon, S.B. Singh, M. Srivastava, Synthesis of some aromatic aldehydes and acids by sodium ferrate in presence of copper nano-particles adsorbed on K 10 montmorillonite using microwave irradiation. Appl. Organomet. Chem. 21(4), 264–267 (2007). https://doi.org/10.1002/aoc.1198
- J. Zhang, J. Li, Y. Tang, L. Lin, M. Long, F. Yang, Selective conversion of biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by ferrate (VI) oxidation. J. Biobased Mater. Bio. 9(5), 502–508 (2015). https://doi.org/10.1166/jbmb.2015.1547
- S. Licht, Energetic iron(VI) chemistry: the super-iron battery. Science 285(5430), 1039–1042 (1999). https://doi.org/10.1126/science.285.5430.1039
- S. Licht, A high capacity Li-ion cathode: the Fe(III/VI) super-iron cathode. Energies 3(5), 960–972 (2010). https://doi.org/10.3390/en3050960
- M.V. Simičić, M.I. Čekerevac, L.N. Nikolić-Bujanović, I.Z. Veljković, M.Z. Zdravković, M.M. Tomić, Influence of non-stoichiometric binary titanium oxides addition on the electrochemical properties of the barium ferrate plastic-bonded cathode for super-iron battery. Electrochim. Acta 247, 516–523 (2017). https://doi.org/10.1016/j.electacta.2017.07.056
- R. Sarma, A.M. Angeles-Boza, D.W. Brinkley, J.P. Roth, Studies of the di-iron(VI) intermediate in ferrate-dependent oxygen evolution from water. J. Am. Chem. Soc. 134(37), 15371–15386 (2012). https://doi.org/10.1021/ja304786s
- L. Ma, W.W. Lam, P.K. Lo, K.C. Lau, T.C. Lau, Ca2+ -induced oxygen generation by FeO4 2− at pH 9-10. Angew. Chem. Int. Ed. 55(9), 3012–3016 (2016). https://doi.org/10.1002/anie.201510156
- G. Chen, W.W.Y. Lam, P.K. Lo, W.L. Man, L. Chen, K.C. Lau, T.C. Lau, Mechanism of water oxidation by ferrate(VI) at pH 7-9. Chem. Eur. J. 24(70), 18735–18742 (2018). https://doi.org/10.1002/chem.201803757
- J.S. Greer, Oxygen generating candles. U.S. Patent 5049306 (Sep. 17, 1991)
- B.F. Monzyk, Apparatus and methods of providing diatomic oxygen (O2) using ferrate(VI)-containing compositions. U.S. Patent 8944048 B2 (Feb. 3, 2015)
- M.B. Sassin, A.N. Mansour, K.A. Pettigrew, D.R. Rolison, J.W. Long, Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage. ACS Nano 4(8), 4505–4514 (2010). https://doi.org/10.1021/nn100572a
- H. Wang, J. Wang, Q. Zou, W. Liu, C. Wang, W. Huang, Surface treatment using potassium ferrate for separation of polycarbonate and polystyrene waste plastics by froth flotation. Appl. Surf. Sci. 448, 219–229 (2018). https://doi.org/10.1016/j.apsusc.2018.04.091
- Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19(17), 4132–4140 (2017). https://doi.org/10.1039/c7gc01681f
- M.M. Najafpour, S.M. Hosseini, Toward a nanosized iron based water-oxidizing catalyst. Int. J. Hydrogen Energy 41(48), 22635–22642 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.106
- X. Duan, D. Wang, G. Qian, J.C. Walmsley, A. Holmen, D. Chen, X. Zhou, Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer–Tropsch synthesis of lower olefins. J. Energy Chem. 25(2), 311–317 (2016). https://doi.org/10.1016/j.jechem.2016.01.003
- L. Peng, Z. Xu, Z. Liu, Y. Wei, H. Sun, Z. Li, X. Zhao, C. Gao, An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 6, 5716 (2015). https://doi.org/10.1038/ncomms6716
- Z. Sofer, J. Luxa, O. Jankovsky, D. Sedmidubsky, T. Bystron, M. Pumera, Synthesis of graphene oxide by oxidation of graphite with ferrate(VI) compounds: myth or reality? Angew. Chem. Int. Ed. 55(39), 11965–11969 (2016). https://doi.org/10.1002/anie.201603496
- S. Mura, Y. Jiang, I. Vassalini, A. Gianoncelli, I. Alessandri et al., Graphene oxide/iron oxide nanocomposites for water remediation. ACS Appl. Nano Mater. 1(12), 6724–6732 (2018). https://doi.org/10.1021/acsanm.8b01540
- A. Romero, M.P. Lavin-Lopez, L. Sanchez-Silva, J.L. Valverde, A. Paton-Carrero, Comparative study of different scalable routes to synthesize graphene oxide and reduced graphene oxide. Mater. Chem. Phys. 203, 284–292 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.013
- Z.Y. Zhang, X.C. Xu, Nondestructive covalent functionalization of carbon nanotubes by selective oxidation of the original defects with K2FeO4. Appl. Surf. Sci. 346, 520–527 (2015). https://doi.org/10.1016/j.apsusc.2015.04.026
- H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016). https://doi.org/10.1038/srep36143
- H. Yu, D. Ye, T. Butburee, L. Wang, M. Dargusch, Green synthesis of porous three-dimensional nitrogen-doped graphene foam for electrochemical applications. ACS Appl. Mater. Interfaces 8(4), 2505–2510 (2016). https://doi.org/10.1021/acsami.5b09030
- Z.Y. Zhang, D. Ji, W. Mao, Y. Cui, Q. Wang et al., Dry chemistry of ferrate(VI): a solvent-free mchanochemical way for versatile green oxidation. Angew. Chem. Int. Ed. 57, 10949 (2018). https://doi.org/10.1002/anie.201805998
- C. Li, X.Z. Li, N. Graham, A study of the preparation and reactivity of potassium ferrate. Chemosphere 61(4), 537–543 (2005). https://doi.org/10.1016/j.chemosphere.2005.02.027
- R.C. Haddon, L.E. Brus, K. Raghavachari, Electronic structure and bonding in icosahedral C60. Chem. Phys. Lett. 125(5), 459–464 (1986). https://doi.org/10.1016/0009-2614(86)87079-8
- S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M.E. Itkis, R.C. Haddon, Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35(12), 1105–1113 (2002). https://doi.org/10.1021/ar010155r
- S.A. Hodge, M.K. Bayazit, K.S. Coleman, M.S. Shaffer, Unweaving the rainbow: a review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity. Chem. Soc. Rev. 41(12), 4409–4429 (2012). https://doi.org/10.1039/c2cs15334c
- K. Kokubo, K. Matsubayashi, H. Tategaki, H. Takada, T. Oshima, Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2(2), 327–333 (2008). https://doi.org/10.1021/nn700151z
- J.C. Charlier, Defects in carbon nanotubes. Acc. Chem. Res. 35(12), 1063–1069 (2002). https://doi.org/10.1021/ar010166k
- Z. Yongsheng, Z. Yingchun, X. Bingshe, Z. Xueji, A.A.-G. Khalid, M. Shahid, Cobalt sulfide confined in N-doped porous branched carbon nanotubes for lithium-ion batteries. Nano-Micro Lett. 11, 29 (2019). https://doi.org/10.1007/s40820-019-0259-z
- T. Zhang, Z.S. Yuan, L.H. Tan, Exact geometric relationships, symmetry breaking and structural stability for single-walled carbon nanotubes. Nano-Micro Lett. 3(4), 228–235 (2011). https://doi.org/10.3786/nml.v3i4.p228-235
- C. Gao, J. Han, Functionalization of carbon nanotubes and other nanocarbons by azide chemistry. Nano-Micro Lett. 2(3), 213–226 (2010). https://doi.org/10.1007/bf03353643
- J. Huang, Y. Liu, T. You, Carbon nanofiber based electrochemical biosensors: a review. Anal. Methods 2(3), 202 (2010). https://doi.org/10.1039/b9ay00312f
- Z. Tang, Y. Zhao, Q. Lai, J. Zhong, Y. Liang, Stepwise fabrication of Co-embedded porous multichannel carbon nanofibers for high-efficiency oxygen reduction. Nano-Micro Lett. 11, 33 (2019). https://doi.org/10.1007/s40820-019-0264-2
- S.-H. Yoon, S. Lim, S.-H. Hong, I. Mochida, B. An, K. Yokogawa, Carbon nano-rod as a structural unit of carbon nanofibers. Carbon 42(15), 3087–3095 (2004). https://doi.org/10.1016/j.carbon.2004.07.022
References
J.F. Berry, E. Bill, E. Bothe, S.D. George, B. Mienert, F. Neese, K. Wieghardt, An octahedral coordination complex of iron(VI). Science 312(5782), 1937–1941 (2006). https://doi.org/10.1126/science.1128506
J.J. Scepaniak, C.S. Vogel, M.M. Khusniyarov, F.W. Heinemann, K. Meyer, J.M. Smith, Synthesis, structure, and reactivity of an iron(V) nitride. Science 331(6020), 1049–1052 (2011). https://doi.org/10.1126/science.1198315
J. Hohenberger, K. Ray, K. Meyer, The biology and chemistry of high-valent iron-oxo and iron-nitrido complexes. Nat. Commun. 3, 720 (2012). https://doi.org/10.1038/ncomms1718
V.K. Sharma, Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism. Coord. Chem. Rev. 257(2), 495–510 (2013). https://doi.org/10.1016/j.ccr.2012.04.014
J. Torres-Alacan, U. Das, A.C. Filippou, P. Vohringer, Observing the formation and the reactivity of an octahedral iron(V) nitrido complex in real time. Angew. Chem. Int. Ed. 52(49), 12833–12837 (2013). https://doi.org/10.1002/anie.201306621
M. Ghosh, K.K. Singh, C. Panda, A. Weitz, M.P. Hendrich, T.J. Collins, B.B. Dhar, S. Sen Gupta, Formation of a room temperature stable Fe(V)(O) complex: reactivity toward unactivated C–H bonds. J. Am. Chem. Soc. 136(27), 9524–9527 (2014). https://doi.org/10.1021/ja412537m
P.J. Chirik, An FeVI nitride: there is plenty of room at the top! Angew. Chem. Int. Ed. 45(42), 6956–6959 (2006). https://doi.org/10.1002/anie.200603056
H. Schmidbaur, The history and the current revival of the oxo chemistry of iron in its highest oxidation states: FeVI–FeVIII. Z. Anorg. Allg. Chem. 644(12–13), 536–559 (2018). https://doi.org/10.1002/zaac.201800036
D. Ghernaout, M.W. Naceur, Ferrate(VI): in situ generation and water treatment—a review. Desalin. Water Treat. 30(1–3), 319–332 (2012). https://doi.org/10.5004/dwt.2011.2217
V.K. Sharma, Oxidation of inorganic contaminants by ferrates (VI, V, and IV)—kinetics and mechanisms: a review. J. Environ. Manag. 92(4), 1051–1073 (2011). https://doi.org/10.1016/j.jenvman.2010.11.026
J.-Q. Jiang, B. Lloyd, Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res. 36(6), 1397–1408 (2002). https://doi.org/10.1016/S0043-1354(01)00358-X
R.H. Wood, The heat, free energy and entropy of the ferrate(VI) ion. J. Am. Chem. Soc. 80(9), 2038–2041 (1958). https://doi.org/10.1021/ja01542a002
V.K. Sharma, R. Zboril, R.S. Varma, Ferrates: greener oxidants with multimodal action in water treatment technologies. Acc. Chem. Res. 48(2), 182–191 (2015). https://doi.org/10.1021/ar5004219
J.-Q. Jiang, Advances in the development and application of ferrate(VI) for water and wastewater treatment. J. Chem. Technol. Biotechnol. 89(2), 165–177 (2014). https://doi.org/10.1002/jctb.4214
V.K. Sharma, Potassium ferrate(VI): an environmentally friendly oxidant. Adv. Environ. Res. 6(2), 143–156 (2002). https://doi.org/10.1016/s1093-0191(01)00119-8
M. Feng, C. Jinadatha, T.J. McDonald, V.K. Sharma, Accelerated oxidation of organic contaminants by ferrate(VI): the overlooked role of reducing additives. Environ. Sci. Technol. 52(19), 11319–11327 (2018). https://doi.org/10.1021/acs.est.8b03770
M. Feng, J.C. Baum, N. Nesnas, Y. Lee, C.-H. Huang, V.K. Sharma, Oxidation of sulfonamide antibiotics of six-membered heterocyclic moiety by Ferrate(VI): kinetics and mechanistic insight into SO2 extrusion. Environ. Sci. Technol. 53(5), 2695–2704 (2019). https://doi.org/10.1021/acs.est.8b06535
V.K. Sharma, L. Chen, R. Zboril, Review on high valent FeVI (Ferrate): a sustainable green oxidant in organic chemistry and transformation of pharmaceuticals. ACS Sustain. Chem. Eng. 4(1), 18–34 (2016). https://doi.org/10.1021/acssuschemeng.5b01202
L. Delaude, P. Laszlo, A novel oxidizing reagent based on potassium ferrate(VI). J. Org. Chem. 61(18), 6360–6370 (1996). https://doi.org/10.1021/jo960633p
P.K. Tandon, S.B. Singh, M. Srivastava, Synthesis of some aromatic aldehydes and acids by sodium ferrate in presence of copper nano-particles adsorbed on K 10 montmorillonite using microwave irradiation. Appl. Organomet. Chem. 21(4), 264–267 (2007). https://doi.org/10.1002/aoc.1198
J. Zhang, J. Li, Y. Tang, L. Lin, M. Long, F. Yang, Selective conversion of biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by ferrate (VI) oxidation. J. Biobased Mater. Bio. 9(5), 502–508 (2015). https://doi.org/10.1166/jbmb.2015.1547
S. Licht, Energetic iron(VI) chemistry: the super-iron battery. Science 285(5430), 1039–1042 (1999). https://doi.org/10.1126/science.285.5430.1039
S. Licht, A high capacity Li-ion cathode: the Fe(III/VI) super-iron cathode. Energies 3(5), 960–972 (2010). https://doi.org/10.3390/en3050960
M.V. Simičić, M.I. Čekerevac, L.N. Nikolić-Bujanović, I.Z. Veljković, M.Z. Zdravković, M.M. Tomić, Influence of non-stoichiometric binary titanium oxides addition on the electrochemical properties of the barium ferrate plastic-bonded cathode for super-iron battery. Electrochim. Acta 247, 516–523 (2017). https://doi.org/10.1016/j.electacta.2017.07.056
R. Sarma, A.M. Angeles-Boza, D.W. Brinkley, J.P. Roth, Studies of the di-iron(VI) intermediate in ferrate-dependent oxygen evolution from water. J. Am. Chem. Soc. 134(37), 15371–15386 (2012). https://doi.org/10.1021/ja304786s
L. Ma, W.W. Lam, P.K. Lo, K.C. Lau, T.C. Lau, Ca2+ -induced oxygen generation by FeO4 2− at pH 9-10. Angew. Chem. Int. Ed. 55(9), 3012–3016 (2016). https://doi.org/10.1002/anie.201510156
G. Chen, W.W.Y. Lam, P.K. Lo, W.L. Man, L. Chen, K.C. Lau, T.C. Lau, Mechanism of water oxidation by ferrate(VI) at pH 7-9. Chem. Eur. J. 24(70), 18735–18742 (2018). https://doi.org/10.1002/chem.201803757
J.S. Greer, Oxygen generating candles. U.S. Patent 5049306 (Sep. 17, 1991)
B.F. Monzyk, Apparatus and methods of providing diatomic oxygen (O2) using ferrate(VI)-containing compositions. U.S. Patent 8944048 B2 (Feb. 3, 2015)
M.B. Sassin, A.N. Mansour, K.A. Pettigrew, D.R. Rolison, J.W. Long, Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage. ACS Nano 4(8), 4505–4514 (2010). https://doi.org/10.1021/nn100572a
H. Wang, J. Wang, Q. Zou, W. Liu, C. Wang, W. Huang, Surface treatment using potassium ferrate for separation of polycarbonate and polystyrene waste plastics by froth flotation. Appl. Surf. Sci. 448, 219–229 (2018). https://doi.org/10.1016/j.apsusc.2018.04.091
Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19(17), 4132–4140 (2017). https://doi.org/10.1039/c7gc01681f
M.M. Najafpour, S.M. Hosseini, Toward a nanosized iron based water-oxidizing catalyst. Int. J. Hydrogen Energy 41(48), 22635–22642 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.106
X. Duan, D. Wang, G. Qian, J.C. Walmsley, A. Holmen, D. Chen, X. Zhou, Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer–Tropsch synthesis of lower olefins. J. Energy Chem. 25(2), 311–317 (2016). https://doi.org/10.1016/j.jechem.2016.01.003
L. Peng, Z. Xu, Z. Liu, Y. Wei, H. Sun, Z. Li, X. Zhao, C. Gao, An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 6, 5716 (2015). https://doi.org/10.1038/ncomms6716
Z. Sofer, J. Luxa, O. Jankovsky, D. Sedmidubsky, T. Bystron, M. Pumera, Synthesis of graphene oxide by oxidation of graphite with ferrate(VI) compounds: myth or reality? Angew. Chem. Int. Ed. 55(39), 11965–11969 (2016). https://doi.org/10.1002/anie.201603496
S. Mura, Y. Jiang, I. Vassalini, A. Gianoncelli, I. Alessandri et al., Graphene oxide/iron oxide nanocomposites for water remediation. ACS Appl. Nano Mater. 1(12), 6724–6732 (2018). https://doi.org/10.1021/acsanm.8b01540
A. Romero, M.P. Lavin-Lopez, L. Sanchez-Silva, J.L. Valverde, A. Paton-Carrero, Comparative study of different scalable routes to synthesize graphene oxide and reduced graphene oxide. Mater. Chem. Phys. 203, 284–292 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.013
Z.Y. Zhang, X.C. Xu, Nondestructive covalent functionalization of carbon nanotubes by selective oxidation of the original defects with K2FeO4. Appl. Surf. Sci. 346, 520–527 (2015). https://doi.org/10.1016/j.apsusc.2015.04.026
H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016). https://doi.org/10.1038/srep36143
H. Yu, D. Ye, T. Butburee, L. Wang, M. Dargusch, Green synthesis of porous three-dimensional nitrogen-doped graphene foam for electrochemical applications. ACS Appl. Mater. Interfaces 8(4), 2505–2510 (2016). https://doi.org/10.1021/acsami.5b09030
Z.Y. Zhang, D. Ji, W. Mao, Y. Cui, Q. Wang et al., Dry chemistry of ferrate(VI): a solvent-free mchanochemical way for versatile green oxidation. Angew. Chem. Int. Ed. 57, 10949 (2018). https://doi.org/10.1002/anie.201805998
C. Li, X.Z. Li, N. Graham, A study of the preparation and reactivity of potassium ferrate. Chemosphere 61(4), 537–543 (2005). https://doi.org/10.1016/j.chemosphere.2005.02.027
R.C. Haddon, L.E. Brus, K. Raghavachari, Electronic structure and bonding in icosahedral C60. Chem. Phys. Lett. 125(5), 459–464 (1986). https://doi.org/10.1016/0009-2614(86)87079-8
S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M.E. Itkis, R.C. Haddon, Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35(12), 1105–1113 (2002). https://doi.org/10.1021/ar010155r
S.A. Hodge, M.K. Bayazit, K.S. Coleman, M.S. Shaffer, Unweaving the rainbow: a review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity. Chem. Soc. Rev. 41(12), 4409–4429 (2012). https://doi.org/10.1039/c2cs15334c
K. Kokubo, K. Matsubayashi, H. Tategaki, H. Takada, T. Oshima, Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2(2), 327–333 (2008). https://doi.org/10.1021/nn700151z
J.C. Charlier, Defects in carbon nanotubes. Acc. Chem. Res. 35(12), 1063–1069 (2002). https://doi.org/10.1021/ar010166k
Z. Yongsheng, Z. Yingchun, X. Bingshe, Z. Xueji, A.A.-G. Khalid, M. Shahid, Cobalt sulfide confined in N-doped porous branched carbon nanotubes for lithium-ion batteries. Nano-Micro Lett. 11, 29 (2019). https://doi.org/10.1007/s40820-019-0259-z
T. Zhang, Z.S. Yuan, L.H. Tan, Exact geometric relationships, symmetry breaking and structural stability for single-walled carbon nanotubes. Nano-Micro Lett. 3(4), 228–235 (2011). https://doi.org/10.3786/nml.v3i4.p228-235
C. Gao, J. Han, Functionalization of carbon nanotubes and other nanocarbons by azide chemistry. Nano-Micro Lett. 2(3), 213–226 (2010). https://doi.org/10.1007/bf03353643
J. Huang, Y. Liu, T. You, Carbon nanofiber based electrochemical biosensors: a review. Anal. Methods 2(3), 202 (2010). https://doi.org/10.1039/b9ay00312f
Z. Tang, Y. Zhao, Q. Lai, J. Zhong, Y. Liang, Stepwise fabrication of Co-embedded porous multichannel carbon nanofibers for high-efficiency oxygen reduction. Nano-Micro Lett. 11, 33 (2019). https://doi.org/10.1007/s40820-019-0264-2
S.-H. Yoon, S. Lim, S.-H. Hong, I. Mochida, B. An, K. Yokogawa, Carbon nano-rod as a structural unit of carbon nanofibers. Carbon 42(15), 3087–3095 (2004). https://doi.org/10.1016/j.carbon.2004.07.022