Drying-Mediated Self-Assembly of Graphene for Inkjet Printing of High-Rate Micro-supercapacitors
Corresponding Author: Jiantong Li
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 40
Abstract
Scalable fabrication of high-rate micro-supercapacitors (MSCs) is highly desired for on-chip integration of energy storage components. By virtue of the special self-assembly behavior of 2D materials during drying thin films of their liquid dispersion, a new inkjet printing technique of passivated graphene micro-flakes is developed to directly print MSCs with 3D networked porous microstructure. The presence of macroscale through-thickness pores provides fast ion transport pathways and improves the rate capability of the devices even with solid-state electrolytes. During multiple-pass printing, the porous microstructure effectively absorbs the successively printed inks, allowing full printing of 3D structured MSCs comprising multiple vertically stacked cycles of current collectors, electrodes, and sold-state electrolytes. The all-solid-state heterogeneous 3D MSCs exhibit excellent vertical scalability and high areal energy density and power density, evidently outperforming the MSCs fabricated through general printing techniques.
Highlights:
1 Based on the drying-mediated self-assembly behavior of passivated graphene, a new kind of 2D micro-flake inks is developed to directly print high-resolution patterns with multiscale porous microstructure.
2 The new ink allows to directly print complex 3D structures comprising multiple layers of heterogeneous materials.
3 High-rate all-solid-state 3D micro-supercapacitors have been fully inkjet-printed with an areal capacitance surpassing 10 mF cm−2 at a high scan rate of 1 V s−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Amponsah Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12, 7–15 (2017). https://doi.org/10.1038/NNANO.2016.196
- Z.S. Wu, X. Feng, H.M. Cheng, Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Natl. Sci. Rev. 1, 277–292 (2014). https://doi.org/10.1093/nsr/nwt003
- M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7, 867–884 (2014). https://doi.org/10.1039/c3ee43526a
- C. Shen, S. Xu, Y. Xie, M. Sanghadasa, X. Wang, L. Lin, A review of on-chip micro supercapacitors for integrated self-powering systems. J. Microelectromech. Syst. 26, 949–965 (2017). https://doi.org/10.1109/JMEMS.2017.2723018
- J. Li, S. Sollami Delekta, P. Zhang, S. Yang, M.R. Lohe, X. Zhuang, X. Feng, M. Östling, Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing. ACS Nano 11, 8249–8256 (2017). https://doi.org/10.1021/acsnano.7b03354
- C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
- A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily et al., All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356, 69–73 (2017). https://doi.org/10.1126/science.aal4062
- G. Iannaccone, K. Kostarelos, D. McManus, V. Sanchez-Romaguera, G. Fiori et al., Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12, 343–350 (2017). https://doi.org/10.1038/nnano.2016.281
- T. Carey, S. Cacovich, G. Divitini, J. Ren, A. Mansouri et al., Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 8, 1202 (2017). https://doi.org/10.1038/s41467-017-01210-2
- M.-M. Laurila, H. Matsui, R. Shiwaku, M. Peltokangas, J. Verho et al., A fully printed ultra-thin charge amplifier for on-skin biosignal measurements. IEEE J. Electron Devices Soc. 7, 566–574 (2019). https://doi.org/10.1109/JEDS.2019.2915028
- P. Sundriyal, S. Bhattacharya, Inkjet-printed electrodes on A4 paper substrates for low-cost, disposable, and flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 9, 38507–38521 (2017). https://doi.org/10.1021/acsami.7b11262
- K.-H. Choi, J. Yoo, C.K. Lee, S.-Y. Lee, All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ. Sci. 9, 2812–2821 (2016). https://doi.org/10.1039/C6EE00966B
- J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, M. Östling, Efficient inkjet printing of graphene. Adv. Mater. 25, 3985–3992 (2013). https://doi.org/10.1002/adma.201300361
- L. Li, E.B. Secor, K.S. Chen, J. Zhu, X. Liu et al., High-performance solid-state supercapacitors and microsupercapacitors derived from printable graphene inks. Adv. Energy Mater. 6, 1600909 (2016). https://doi.org/10.1002/aenm.201600909
- D. Pech, M. Brunet, P.L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra, H. Durou, Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources 195, 1266–1269 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.085
- O. Kletenik-Edelman, E. Ploshnik, A. Salant, R. Shenhar, U. Banin, E. Rabani, Drying-mediated hierarchical self-assembly of nanoparticles: a dynamical coarse-grained approach. J. Phys. Chem. C 112, 4498–4506 (2008). https://doi.org/10.1021/jp709583u
- E. Rabani, D.R. Reichman, P.L. Geissler, L.E. Brus, Drying-mediated self-assembly of nanoparticles. Nature 426, 271–274 (2003). https://doi.org/10.1038/nature02087
- S. Sollami Delekta, K.H. Adolfsson, N. Benyahia Erdal, M. Hakkarainen, M. Östling, J. Li, Fully inkjet printed ultrathin microsupercapacitors based on graphene electrodes and a nano-graphene oxide electrolyte. Nanoscale 11, 10172–10177 (2019). https://doi.org/10.1039/c9nr01427f
- M.M. Laurila, B. Khorramdel, M. Mantysalo, Combination of E-jet and inkjet printing for additive fabrication of multilayer high-density RDL of silicon interposer. IEEE Trans. Electron Devices 64, 1217–1224 (2017). https://doi.org/10.1109/TED.2016.2644728
- Y. Xia, T.S. Mathis, M.Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
- F. Zhang, T. Liu, M. Li, M. Yu, Y. Luo, Y. Tong, Y. Li, Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097–3104 (2017). https://doi.org/10.1021/acs.nanolett.7b00533
- C. Zhu, T. Liu, F. Qian, T.Y.J. Han, E.B. Duoss et al., Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448–3456 (2016). https://doi.org/10.1021/acs.nanolett.5b04965
- M. Guo, Y. Li, K. Du, C. Qiu, G. Dou, G. Zhang, Fabricating hierarchically porous carbon with well-defined open pores via polymer dehalogenation for high-performance supercapacitor. Appl. Surf. Sci. 440, 606–613 (2018). https://doi.org/10.1016/j.apsusc.2018.01.215
- M.R. Lukatskaya, S. Kota, Z. Lin, M.Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 6, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- M.O. Blunt, C.P. Martin, M. Ahola-Tuomi, E. Pauliac-Vaujour, P. Sharp, P. Nativo, M. Brust, P.J. Moriarty, Coerced mechanical coarsening of nanoparticle assemblies. Nat. Nanotechnol. 2, 167–170 (2007). https://doi.org/10.1038/nnano.2007.25
- E. Pauliac-Vaujour, A. Stannard, C.P. Martin, M.O. Blunt, I. Notingher, P.J. Moriarty, I. Vancea, U. Thiele, Fingering instabilities in dewetting nanofluids. Phys. Rev. Lett. 100, 176102 (2008). https://doi.org/10.1103/PhysRevLett.100.176102
- C.P. Martin, M.O. Blunt, E. Pauliac-Vaujour, A. Stannard, P. Moriarty, Controlling pattern formation in nanoparticle assemblies via directed solvent dewetting. Phys. Rev. Lett. 99, 116103 (2007). https://doi.org/10.1103/PhysRevLett.99.116103
- C.G. Sztrum, O. Hod, E. Rabani, Self-assembly of nanoparticles in three-dimensions: formation of stalagmites. J. Phys. Chem. B 109, 6741–6747 (2005). https://doi.org/10.1021/jp044994h
- N. Yousefi, X. Lu, M. Elimelech, N. Tufenkji, Environmental performance of graphene-based 3D macrostructures. Nat. Nanotechnol. 14, 107–119 (2019). https://doi.org/10.1038/s41565-018-0325-6
- X. Zhang, A. Crivoi, F. Duan, Three-dimensional patterns from the thin-film drying of amino acid solutions. Sci. Rep. 5, 10926 (2015). https://doi.org/10.1038/srep10926
- J. Li, M.C. Lemme, M. Östling, Inkjet printing of 2D layered materials. ChemPhysChem 15, 3427–3434 (2014). https://doi.org/10.1002/cphc.201402103
- D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2, 925–932 (2014). https://doi.org/10.1039/C3TC31993H
- F. Torrisi, T. Hasan, W.P. Wu, Z.P. Sun, A. Lombardo et al., Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012). https://doi.org/10.1021/nn2044609
- K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014). https://doi.org/10.1021/ja5017156
- W.C. Lee, K. Kim, J. Park, J. Koo, H.Y. Jeong et al., Graphene-templated directional growth of an inorganic nanowire. Nat. Nanotechnol. 10, 423–428 (2015). https://doi.org/10.1038/nnano.2015.36
- R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997). https://doi.org/10.1038/39827
- A. Lafuma, D. Quéré, Superhydrophobic states. Nat. Mater. 2, 457–460 (2003). https://doi.org/10.1038/nmat924
- H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Transformation of a simple plastic into a superhydrophobic surface. Science 299, 1377–1380 (2003). https://doi.org/10.1126/science.1078365
- A. Eftekhari, L. Li, Y. Yang, Polyaniline supercapacitors. J. Power Sources 347, 86–107 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.054
- S. Yang, Z.-S. Wu, K. Müllen, Z. Liu, S. Liu, K. Parvez, S. Li, X. Feng, Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv. Mater. 27, 4054–4061 (2015). https://doi.org/10.1002/adma.201501643
- H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 6, 1185–1191 (2013). https://doi.org/10.1039/c2ee24203f
- T.M. Dinh, A. Achour, S. Vizireanu, G. Dinescu, L. Nistor, K. Armstrong, D. Guay, D. Pech, Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy 10, 288–294 (2014). https://doi.org/10.1016/j.nanoen.2014.10.003
- B.W. An, K. Kim, H. Lee, S.Y. Kim, Y. Shim, D.Y. Lee, J.Y. Song, J.U. Park, High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks. Adv. Mater. 27, 4322–4328 (2015). https://doi.org/10.1002/adma.201502092
- J.-U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair et al., High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782–789 (2007). https://doi.org/10.1038/nmat1974
- D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
- J.E. Yoo, K.S. Lee, A. Garcia, J. Tarver, E.D. Gomez et al., Directly patternable, highly conducting polymers for broad applications in organic electronics. Proc. Natl. Acad. Sci. USA 107, 5712–5717 (2010). https://doi.org/10.1073/pnas.0913879107
- P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo et al., On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351, 691–695 (2016). https://doi.org/10.1126/science.aad3345
- M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi et al., Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. USA 112, 4233–4238 (2015). https://doi.org/10.1073/pnas.1420398112
- M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
- H. Li, X. Li, J. Liang, Y. Chen, Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 9, 1803987 (2019). https://doi.org/10.1002/aenm.201803987
- Y.Y. Peng, B. Akuzum, N. Kurra, M.Q. Zhao, M. Alhabeb et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9, 2847–2854 (2016). https://doi.org/10.1039/c6ee01717g
References
N. Amponsah Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12, 7–15 (2017). https://doi.org/10.1038/NNANO.2016.196
Z.S. Wu, X. Feng, H.M. Cheng, Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Natl. Sci. Rev. 1, 277–292 (2014). https://doi.org/10.1093/nsr/nwt003
M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7, 867–884 (2014). https://doi.org/10.1039/c3ee43526a
C. Shen, S. Xu, Y. Xie, M. Sanghadasa, X. Wang, L. Lin, A review of on-chip micro supercapacitors for integrated self-powering systems. J. Microelectromech. Syst. 26, 949–965 (2017). https://doi.org/10.1109/JMEMS.2017.2723018
J. Li, S. Sollami Delekta, P. Zhang, S. Yang, M.R. Lohe, X. Zhuang, X. Feng, M. Östling, Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing. ACS Nano 11, 8249–8256 (2017). https://doi.org/10.1021/acsnano.7b03354
C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily et al., All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356, 69–73 (2017). https://doi.org/10.1126/science.aal4062
G. Iannaccone, K. Kostarelos, D. McManus, V. Sanchez-Romaguera, G. Fiori et al., Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12, 343–350 (2017). https://doi.org/10.1038/nnano.2016.281
T. Carey, S. Cacovich, G. Divitini, J. Ren, A. Mansouri et al., Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 8, 1202 (2017). https://doi.org/10.1038/s41467-017-01210-2
M.-M. Laurila, H. Matsui, R. Shiwaku, M. Peltokangas, J. Verho et al., A fully printed ultra-thin charge amplifier for on-skin biosignal measurements. IEEE J. Electron Devices Soc. 7, 566–574 (2019). https://doi.org/10.1109/JEDS.2019.2915028
P. Sundriyal, S. Bhattacharya, Inkjet-printed electrodes on A4 paper substrates for low-cost, disposable, and flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 9, 38507–38521 (2017). https://doi.org/10.1021/acsami.7b11262
K.-H. Choi, J. Yoo, C.K. Lee, S.-Y. Lee, All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ. Sci. 9, 2812–2821 (2016). https://doi.org/10.1039/C6EE00966B
J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, M. Östling, Efficient inkjet printing of graphene. Adv. Mater. 25, 3985–3992 (2013). https://doi.org/10.1002/adma.201300361
L. Li, E.B. Secor, K.S. Chen, J. Zhu, X. Liu et al., High-performance solid-state supercapacitors and microsupercapacitors derived from printable graphene inks. Adv. Energy Mater. 6, 1600909 (2016). https://doi.org/10.1002/aenm.201600909
D. Pech, M. Brunet, P.L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra, H. Durou, Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources 195, 1266–1269 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.085
O. Kletenik-Edelman, E. Ploshnik, A. Salant, R. Shenhar, U. Banin, E. Rabani, Drying-mediated hierarchical self-assembly of nanoparticles: a dynamical coarse-grained approach. J. Phys. Chem. C 112, 4498–4506 (2008). https://doi.org/10.1021/jp709583u
E. Rabani, D.R. Reichman, P.L. Geissler, L.E. Brus, Drying-mediated self-assembly of nanoparticles. Nature 426, 271–274 (2003). https://doi.org/10.1038/nature02087
S. Sollami Delekta, K.H. Adolfsson, N. Benyahia Erdal, M. Hakkarainen, M. Östling, J. Li, Fully inkjet printed ultrathin microsupercapacitors based on graphene electrodes and a nano-graphene oxide electrolyte. Nanoscale 11, 10172–10177 (2019). https://doi.org/10.1039/c9nr01427f
M.M. Laurila, B. Khorramdel, M. Mantysalo, Combination of E-jet and inkjet printing for additive fabrication of multilayer high-density RDL of silicon interposer. IEEE Trans. Electron Devices 64, 1217–1224 (2017). https://doi.org/10.1109/TED.2016.2644728
Y. Xia, T.S. Mathis, M.Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
F. Zhang, T. Liu, M. Li, M. Yu, Y. Luo, Y. Tong, Y. Li, Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097–3104 (2017). https://doi.org/10.1021/acs.nanolett.7b00533
C. Zhu, T. Liu, F. Qian, T.Y.J. Han, E.B. Duoss et al., Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448–3456 (2016). https://doi.org/10.1021/acs.nanolett.5b04965
M. Guo, Y. Li, K. Du, C. Qiu, G. Dou, G. Zhang, Fabricating hierarchically porous carbon with well-defined open pores via polymer dehalogenation for high-performance supercapacitor. Appl. Surf. Sci. 440, 606–613 (2018). https://doi.org/10.1016/j.apsusc.2018.01.215
M.R. Lukatskaya, S. Kota, Z. Lin, M.Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 6, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
M.O. Blunt, C.P. Martin, M. Ahola-Tuomi, E. Pauliac-Vaujour, P. Sharp, P. Nativo, M. Brust, P.J. Moriarty, Coerced mechanical coarsening of nanoparticle assemblies. Nat. Nanotechnol. 2, 167–170 (2007). https://doi.org/10.1038/nnano.2007.25
E. Pauliac-Vaujour, A. Stannard, C.P. Martin, M.O. Blunt, I. Notingher, P.J. Moriarty, I. Vancea, U. Thiele, Fingering instabilities in dewetting nanofluids. Phys. Rev. Lett. 100, 176102 (2008). https://doi.org/10.1103/PhysRevLett.100.176102
C.P. Martin, M.O. Blunt, E. Pauliac-Vaujour, A. Stannard, P. Moriarty, Controlling pattern formation in nanoparticle assemblies via directed solvent dewetting. Phys. Rev. Lett. 99, 116103 (2007). https://doi.org/10.1103/PhysRevLett.99.116103
C.G. Sztrum, O. Hod, E. Rabani, Self-assembly of nanoparticles in three-dimensions: formation of stalagmites. J. Phys. Chem. B 109, 6741–6747 (2005). https://doi.org/10.1021/jp044994h
N. Yousefi, X. Lu, M. Elimelech, N. Tufenkji, Environmental performance of graphene-based 3D macrostructures. Nat. Nanotechnol. 14, 107–119 (2019). https://doi.org/10.1038/s41565-018-0325-6
X. Zhang, A. Crivoi, F. Duan, Three-dimensional patterns from the thin-film drying of amino acid solutions. Sci. Rep. 5, 10926 (2015). https://doi.org/10.1038/srep10926
J. Li, M.C. Lemme, M. Östling, Inkjet printing of 2D layered materials. ChemPhysChem 15, 3427–3434 (2014). https://doi.org/10.1002/cphc.201402103
D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2, 925–932 (2014). https://doi.org/10.1039/C3TC31993H
F. Torrisi, T. Hasan, W.P. Wu, Z.P. Sun, A. Lombardo et al., Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012). https://doi.org/10.1021/nn2044609
K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014). https://doi.org/10.1021/ja5017156
W.C. Lee, K. Kim, J. Park, J. Koo, H.Y. Jeong et al., Graphene-templated directional growth of an inorganic nanowire. Nat. Nanotechnol. 10, 423–428 (2015). https://doi.org/10.1038/nnano.2015.36
R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997). https://doi.org/10.1038/39827
A. Lafuma, D. Quéré, Superhydrophobic states. Nat. Mater. 2, 457–460 (2003). https://doi.org/10.1038/nmat924
H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Transformation of a simple plastic into a superhydrophobic surface. Science 299, 1377–1380 (2003). https://doi.org/10.1126/science.1078365
A. Eftekhari, L. Li, Y. Yang, Polyaniline supercapacitors. J. Power Sources 347, 86–107 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.054
S. Yang, Z.-S. Wu, K. Müllen, Z. Liu, S. Liu, K. Parvez, S. Li, X. Feng, Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv. Mater. 27, 4054–4061 (2015). https://doi.org/10.1002/adma.201501643
H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 6, 1185–1191 (2013). https://doi.org/10.1039/c2ee24203f
T.M. Dinh, A. Achour, S. Vizireanu, G. Dinescu, L. Nistor, K. Armstrong, D. Guay, D. Pech, Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy 10, 288–294 (2014). https://doi.org/10.1016/j.nanoen.2014.10.003
B.W. An, K. Kim, H. Lee, S.Y. Kim, Y. Shim, D.Y. Lee, J.Y. Song, J.U. Park, High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks. Adv. Mater. 27, 4322–4328 (2015). https://doi.org/10.1002/adma.201502092
J.-U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair et al., High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782–789 (2007). https://doi.org/10.1038/nmat1974
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
J.E. Yoo, K.S. Lee, A. Garcia, J. Tarver, E.D. Gomez et al., Directly patternable, highly conducting polymers for broad applications in organic electronics. Proc. Natl. Acad. Sci. USA 107, 5712–5717 (2010). https://doi.org/10.1073/pnas.0913879107
P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo et al., On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351, 691–695 (2016). https://doi.org/10.1126/science.aad3345
M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi et al., Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. USA 112, 4233–4238 (2015). https://doi.org/10.1073/pnas.1420398112
M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
H. Li, X. Li, J. Liang, Y. Chen, Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 9, 1803987 (2019). https://doi.org/10.1002/aenm.201803987
Y.Y. Peng, B. Akuzum, N. Kurra, M.Q. Zhao, M. Alhabeb et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9, 2847–2854 (2016). https://doi.org/10.1039/c6ee01717g