A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins
Corresponding Author: Kun Qian
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 52
Abstract
Nutriology relies on advanced analytical tools to study the molecular compositions of food and provide key information on sample quality/safety. Small nutrients detection is challenging due to the high diversity and broad dynamic range of molecules in food samples, and a further issue is to track low abundance toxins. Herein, we developed a novel plasmonic matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) approach to detect small nutrients and toxins in complex biological emulsion samples. Silver nanoshells (SiO2@Ag) with optimized structures were used as matrices and achieved direct analysis of ~ 6 nL of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol (for melamine) and reaction time shortened to minutes, which is superior to the conventional biochemical method currently in use. The developed approach contributes to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real-case bio-analysis.
Highlights:
1 New materials-based methods. Sensitive detection of small nutrients and toxins (~ pmol) was performed based on plasmonic nanoparticles.
2 Advanced analytical performance. Fast quantitation and identification of target molecules (in minutes) were directly achieved in complex emulsion samples.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Gallo, P. Ferranti, The evolution of analytical chemistry methods in foodomics. J. Chromatogr. A 1428, 3–15 (2016). https://doi.org/10.1016/j.chroma.2015.09.007
- R.J. McGorrin, One hundred years of progress in food analysis. J. Agric. Food Chem. 57(18), 8076–8088 (2009). https://doi.org/10.1021/jf900189s
- J.H. Cummings, A.M. Stephen, Carbohydrate terminology and classification. Eur. J. Clin. Nutr. 61, S5–S18 (2007). https://doi.org/10.1038/sj.ejcn.1602936
- W.J. Craig, A.R. Mangels, Ada, Position of the American dietetic association: vegetarian diets. J. Am. Diet. Assoc. 109(7), 1266–1282 (2009). https://doi.org/10.1016/j.jada.2009.05.027
- J.E. Arsenault, K.H. Brown, Effects of protein or amino-acid supplementation on the physical growth of young children in low-income countries. Nutr. Rev. 75(9), 699–717 (2017). https://doi.org/10.1093/nutrit/nux027
- J.R. Ingelfinger, Melamine and the global implications of food contamination. N. Engl. J. Med. 359(26), 2745–2748 (2008). https://doi.org/10.1056/NEJMp0808410
- H.M. Lam, J. Remais, M.C. Fung, L. Xu, S.S.M. Sun, Food supply and food safety issues in China. Lancet 381(9882), 2044–2053 (2013). https://doi.org/10.1016/S0140-6736(13)60776-X
- X. Sun, J.J. Wan, K. Qian, Designed microdevices for in vitro diagnostics. Small Methods 1(10), 1700196 (2017). https://doi.org/10.1002/smtd.201700196
- H.V. Botitsi, S.D. Garbis, A. Economou, D.F. Tsipi, Current mass spectrometry strategies for the analysis of pesticides and their metabolites in food and water materices. Mass Spectrom. Rev. 30(5), 907–939 (2011). https://doi.org/10.1002/mas.20307
- M. Herrero, C. Simo, V. Garcia-Canas, E. Ibanez, A. Cifuentes, Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom. Rev. 31(1), 49–69 (2012). https://doi.org/10.1002/mas.20335
- V. Kasicka, Recent developments in capillary and microchip electroseparations of peptides (2013–middle 2015). Electrophoresis 37(1), 162–188 (2016). https://doi.org/10.1002/elps.201500329
- C. Rejeeth, X. Pang, R. Zhang, W. Xu, X. Sun et al., Extraction, detection, and profiling of serum biomarkers using designed Fe3O4@SiO2@HA core–shell particles. Nano Res. 11(1), 68–79 (2018). https://doi.org/10.1007/s12274-017-1591-6
- B. Liu, Y. Li, H. Wan, L. Wang, W. Xu et al., High performance, multiplexed lung cancer biomarker detection on a plasmonic gold chip. Adv. Funct. Mater. 26(44), 7994–8002 (2016). https://doi.org/10.1002/adfm.201603547
- R. Zenobi, Single-cell metabolomics: analytical and biological perspectives. Science 342(6163), 1243259 (2013). https://doi.org/10.1126/science.1243259
- L. Huang, J. Wan, X. Wei, Y. Liu, J. Huang et al., Plasmonic silver nanoshells for drug and metabolite detection. Nat. Commun. 8, 220 (2017). https://doi.org/10.1038/s41467-017-00220-4
- Y. Li, L. Yan, Y. Liu, K. Qian, B. Liu, P. Yang, B. Liu, High-efficiency nano/micro-reactors for protein analysis. RSC Adv. 5(2), 1331–1342 (2015). https://doi.org/10.1039/c4ra12333f
- M. Karas, D. Bachmann, U. Bahr, F. Hillenkamp, Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process. 78, 53–68 (1987). https://doi.org/10.1016/0168-1176(87)87041-6
- K. Wu, J. Chen, J.R. McBride, T. Lian, Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349(6248), 632–635 (2015). https://doi.org/10.1126/science.aac5443
- M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10(1), 25–34 (2015). https://doi.org/10.1038/nnano.2014.311
- C. Lei, K. Qian, O. Noonan, A. Nouwensa, C. Yu, Applications of nanomaterials in mass spectrometry analysis. Nanoscale 5(24), 12033–12042 (2013). https://doi.org/10.1039/c3nr04194h
- I. Ocsoy, B. Gulbakan, M.I. Shukoor, X. Xiong, T. Chen, D.H. Powell, W. Tan, Aptamer-conjugated multifunctional nanoflowers as a platform for targeting, capture, and detection in laser desorption ionization mass spectrometry. ACS Nano 7(1), 417–427 (2013). https://doi.org/10.1021/nn304458m
- Y.C. Liu, C.K. Chiang, H.T. Chang, Y.F. Lee, C.C. Huang, Using a functional nanogold membrane coupled with laser desorption/ionization mass spectrometry to detect lead ions in biofluids. Adv. Funct. Mater. 21(23), 4448–4455 (2011). https://doi.org/10.1002/adfm.201101248
- K. Qian, L. Zhou, J. Liu, J. Yang, H. Xu et al., Laser engineered graphene paper for mass spectrometry imaging. Sci. Rep. 3, 1415 (2013). https://doi.org/10.1038/srep01415
- T. Liu, L. Qu, K. Qian, J. Liu, Q. Zhang, L. Liu, S. Liu, Raspberry-like hollow carbon nanospheres with enhanced matrix-free peptide detection profiles. Chem. Commun. 52(8), 1709–1712 (2016). https://doi.org/10.1039/c5cc07912h
- G. Lim, Z. Chen, J. Clark, R.G.S. Goh, W. Ng, H. Tan, R.H. Friend, P.K.H. Ho, L. Chua, Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat. Photonics 5(9), 554–560 (2011). https://doi.org/10.1038/nphoton.2011.177
- Y. Hu, K. Qian, P. Yuan, Y. Wang, C. Yu, Synthesis of large-pore periodic mesoporous organosilica. Mater. Lett. 65(1), 21–23 (2011). https://doi.org/10.1016/j.matlet.2010.08.078
- S.A. Stopka, C. Rong, A.R. Korte, S. Yadavilli, J. Nazarian, T.T. Razunguzwa, N.J. Morris, A. Vertes, Molecular imaging of biological samples on nanophotonic laser desorption ionization platforms. Angew. Chem. Int. Ed. 55(14), 4482–4486 (2016). https://doi.org/10.1002/anie.201511691
- K.P. Law, J.R. Larkin, Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal. Bioanal. Chem. 399(8), 2597–2622 (2011). https://doi.org/10.1007/s00216-010-4063-3
- X. Wei, Z. Liu, X. Jin, L. Huang, D.D. Gurav, X. Sun, B. Liu, J. Ye, K. Qian, Plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry for detection of serum metabolites. Anal. Chim. Acta 950, 147–155 (2017). https://doi.org/10.1016/j.aca.2016.11.017
- J. Gan, X. Wei, Y. Li, J. Wu, K. Qian, B. Liu, Designer SiO2@Au nanoshells towards sensitive and selective detection of small molecules in laser desorption ionization mass spectrometry. Nanomedicine 11(7), 1715–1723 (2015). https://doi.org/10.1016/j.nano.2015.06.010
- C.K. Chiang, W.T. Chen, H.T. Chang, Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem. Soc. Rev. 40(3), 1269–1281 (2011). https://doi.org/10.1039/c0cs00050g
- J. Wu, X. Wei, J.R. Gan, L. Huang, T. Shen, J.T. Lou, B.H. Liu, J.X.J. Zhang, K. Qian, Multifunctional magnetic particles for combined circulating tumor cells isolation and cellular metabolism detection. Adv. Funct. Mater. 26(22), 4016–4025 (2016). https://doi.org/10.1002/adfm.201504184
- X. Sun, L. Huang, R. Zhang, W. Xu, J. Huang et al., Metabolic fingerprinting on a plasmonic gold chip for mass spectrometry based in vitro diagnostics. ACS Cent. Sci. 4(2), 223–229 (2018). https://doi.org/10.1021/acscentsci.7b00546
- W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
- P.C. Lee, D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86(17), 3391–3395 (1982). https://doi.org/10.1021/j100214a025
- K. Fujioka, T. Shibamoto, Quantitation of volatiles and nonvolatile acids in an extract from coffee beverages: correlation with antioxidant activity. J. Agric. Food Chem. 54(16), 6054–6058 (2006). https://doi.org/10.1021/jf060460x
- F. Rincon, B. Martinez, J.M. Delgado, Detection of factors influencing nitrite determination in meat. Meat Sci. 65(4), 1421–1427 (2003). https://doi.org/10.1016/s0309-1740(03)00065-2
- Z. Deng, M. Chen, L. Wu, Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced Raman scattering properties. J. Phys. Chem. C 111(31), 11692–11698 (2007). https://doi.org/10.1021/jp073632h
- Y. Cai, X. Piao, W. Gao, Z. Zhang, E. Nie, Z. Sun, Large-scale and facile synthesis of silver nanoparticles via a microwave method for a conductive pen. RSC Adv. 7(54), 34041–34048 (2017). https://doi.org/10.1039/c7ra05125e
- W. Zhang, Y. Liu, R. Cao, Z. Li, Y. Zhang, Y. Tang, K. Fan, Synergy between crystal strain and surface energy in morphological evolution of five-fold-twinned silver crystals. J. Am. Chem. Soc. 130(46), 15581–15588 (2008). https://doi.org/10.1021/ja805606q
- S.H. Yu, X.J. Cui, L.L. Li, K. Li, B. Yu, M. Antonietti, H. Colfen, From starch to metal/carbon hybrid nanostructures: hydrothermal metal-catalyzed carbonization. Adv. Mater. 16(18), 1636–1640 (2004). https://doi.org/10.1002/adma.200400522
- S.A. Mcluckey, A.E. Schoen, R.G. Cooks, Silver ion affinities of alcohols as ordered by mass spectrometry/mass spectrometry. J. Am. Chem. Soc. 104(3), 848–850 (1982). https://doi.org/10.1021/ja00367a035
- D. Zakett, A.E. Schoen, R.G. Cooks, P.H. Hemberger, Laser-desorption mass spectrometry/mass spectrometry and the mechanism of desorption ionization. J. Am. Chem. Soc. 12(25), 1295–1297 (1981). https://doi.org/10.1021/ja00395a086
- L.I. Grace, A. Abo-Riziq, M.S. de Vries, An in situ silver cationization method for hydrocarbon mass spectrometry. J. Am. Soc. Mass Spectrom. 16(4), 437–440 (2005). https://doi.org/10.1016/j.jasms.2004.12.011
- A.U. Jackson, T. Shum, E. Sokol, A. Dill, R.G. Cooks, Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes. Anal. Bioanal. Chem. 399(1), 367–376 (2011). https://doi.org/10.1007/s00216-010-4349-5
- K. Qian, W. Gu, P. Yuan, F. Liu, Y. Wang, M. Monteiro, C. Yu, Enrichment and detection of peptides from biological systems using designed periodic mesoporous organosilica microspheres. Small 8(2), 231–236 (2012). https://doi.org/10.1002/smll.201101770
- K. Qian, F. Liu, J. Yang, X. Huang, W. Gu, S. Jambhrunkar, P. Yuan, C. Yu, Pore size-optimized periodic mesoporous organosilicas for the enrichment of peptides and polymers. RSC Adv. 3(34), 14466–14472 (2013). https://doi.org/10.1039/c3ra41332b
- A. Trani, G. Gambacorta, P. Loizzo, A. Cassone, C. Fasciano, A.V. Zambrini, M. Faccia, Comparison of HPLC-RI, LC/MS-MS and enzymatic assays for the analysis of residual lactose in lactose-free milk. Food Chem. 233, 385–390 (2017). https://doi.org/10.1016/j.foodchem.2017.04.134
- L. Li, B.X. Li, Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst 134(7), 1361–1365 (2009). https://doi.org/10.1039/b819842j
- X. Liang, H. Wei, Z. Cui, J. Deng, Z. Zhang, X. You, X.E. Zhang, Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles. Analyst 136(1), 179–183 (2011). https://doi.org/10.1039/c0an00432d
- S. Zhang, Z. Yu, N. Hu, Y. Sun, Y. Suo, J. You, Sensitive determination of melamine leached from tableware by reversed phase high-performance liquid chromatography using 10-methyl-acridone-2-sulfonyl chloride as a pre-column fluorescent labeling reagent. Food Control 39, 25–29 (2014). https://doi.org/10.1016/j.foodcont.2013.10.037
- H. Miao, S. Fan, Y.N. Wu, L. Zhang, P.P. Zhou, J.G. Li, H.J. Chen, Y.F. Zhao, Simultaneous determination of melamine, ammelide, ammeline, and cyanuric acid in milk and milk products by gas chromatography-tandem mass spectrometry. Biomed. Environ. Sci. 22(2), 87–94 (2009). https://doi.org/10.1016/S0895-3988(09)60027-1
- A. Desmarchelier, M.G. Cuadra, T. Delatour, P. Mottier, Simultaneous quantitative determination of melamine and cyanuric acid in cow’s milk and milk-based infant formula by liquid chromatography–electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 57(16), 7186–7193 (2009). https://doi.org/10.1021/jf901355v
- S. Yang, J. Ding, J. Zheng, B. Hu, J. Li, H. Chen, Z. Zhou, X. Qiao, Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry. Anal. Chem. 81(7), 2426–2436 (2009). https://doi.org/10.1021/ac900063u
References
M. Gallo, P. Ferranti, The evolution of analytical chemistry methods in foodomics. J. Chromatogr. A 1428, 3–15 (2016). https://doi.org/10.1016/j.chroma.2015.09.007
R.J. McGorrin, One hundred years of progress in food analysis. J. Agric. Food Chem. 57(18), 8076–8088 (2009). https://doi.org/10.1021/jf900189s
J.H. Cummings, A.M. Stephen, Carbohydrate terminology and classification. Eur. J. Clin. Nutr. 61, S5–S18 (2007). https://doi.org/10.1038/sj.ejcn.1602936
W.J. Craig, A.R. Mangels, Ada, Position of the American dietetic association: vegetarian diets. J. Am. Diet. Assoc. 109(7), 1266–1282 (2009). https://doi.org/10.1016/j.jada.2009.05.027
J.E. Arsenault, K.H. Brown, Effects of protein or amino-acid supplementation on the physical growth of young children in low-income countries. Nutr. Rev. 75(9), 699–717 (2017). https://doi.org/10.1093/nutrit/nux027
J.R. Ingelfinger, Melamine and the global implications of food contamination. N. Engl. J. Med. 359(26), 2745–2748 (2008). https://doi.org/10.1056/NEJMp0808410
H.M. Lam, J. Remais, M.C. Fung, L. Xu, S.S.M. Sun, Food supply and food safety issues in China. Lancet 381(9882), 2044–2053 (2013). https://doi.org/10.1016/S0140-6736(13)60776-X
X. Sun, J.J. Wan, K. Qian, Designed microdevices for in vitro diagnostics. Small Methods 1(10), 1700196 (2017). https://doi.org/10.1002/smtd.201700196
H.V. Botitsi, S.D. Garbis, A. Economou, D.F. Tsipi, Current mass spectrometry strategies for the analysis of pesticides and their metabolites in food and water materices. Mass Spectrom. Rev. 30(5), 907–939 (2011). https://doi.org/10.1002/mas.20307
M. Herrero, C. Simo, V. Garcia-Canas, E. Ibanez, A. Cifuentes, Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom. Rev. 31(1), 49–69 (2012). https://doi.org/10.1002/mas.20335
V. Kasicka, Recent developments in capillary and microchip electroseparations of peptides (2013–middle 2015). Electrophoresis 37(1), 162–188 (2016). https://doi.org/10.1002/elps.201500329
C. Rejeeth, X. Pang, R. Zhang, W. Xu, X. Sun et al., Extraction, detection, and profiling of serum biomarkers using designed Fe3O4@SiO2@HA core–shell particles. Nano Res. 11(1), 68–79 (2018). https://doi.org/10.1007/s12274-017-1591-6
B. Liu, Y. Li, H. Wan, L. Wang, W. Xu et al., High performance, multiplexed lung cancer biomarker detection on a plasmonic gold chip. Adv. Funct. Mater. 26(44), 7994–8002 (2016). https://doi.org/10.1002/adfm.201603547
R. Zenobi, Single-cell metabolomics: analytical and biological perspectives. Science 342(6163), 1243259 (2013). https://doi.org/10.1126/science.1243259
L. Huang, J. Wan, X. Wei, Y. Liu, J. Huang et al., Plasmonic silver nanoshells for drug and metabolite detection. Nat. Commun. 8, 220 (2017). https://doi.org/10.1038/s41467-017-00220-4
Y. Li, L. Yan, Y. Liu, K. Qian, B. Liu, P. Yang, B. Liu, High-efficiency nano/micro-reactors for protein analysis. RSC Adv. 5(2), 1331–1342 (2015). https://doi.org/10.1039/c4ra12333f
M. Karas, D. Bachmann, U. Bahr, F. Hillenkamp, Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process. 78, 53–68 (1987). https://doi.org/10.1016/0168-1176(87)87041-6
K. Wu, J. Chen, J.R. McBride, T. Lian, Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349(6248), 632–635 (2015). https://doi.org/10.1126/science.aac5443
M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10(1), 25–34 (2015). https://doi.org/10.1038/nnano.2014.311
C. Lei, K. Qian, O. Noonan, A. Nouwensa, C. Yu, Applications of nanomaterials in mass spectrometry analysis. Nanoscale 5(24), 12033–12042 (2013). https://doi.org/10.1039/c3nr04194h
I. Ocsoy, B. Gulbakan, M.I. Shukoor, X. Xiong, T. Chen, D.H. Powell, W. Tan, Aptamer-conjugated multifunctional nanoflowers as a platform for targeting, capture, and detection in laser desorption ionization mass spectrometry. ACS Nano 7(1), 417–427 (2013). https://doi.org/10.1021/nn304458m
Y.C. Liu, C.K. Chiang, H.T. Chang, Y.F. Lee, C.C. Huang, Using a functional nanogold membrane coupled with laser desorption/ionization mass spectrometry to detect lead ions in biofluids. Adv. Funct. Mater. 21(23), 4448–4455 (2011). https://doi.org/10.1002/adfm.201101248
K. Qian, L. Zhou, J. Liu, J. Yang, H. Xu et al., Laser engineered graphene paper for mass spectrometry imaging. Sci. Rep. 3, 1415 (2013). https://doi.org/10.1038/srep01415
T. Liu, L. Qu, K. Qian, J. Liu, Q. Zhang, L. Liu, S. Liu, Raspberry-like hollow carbon nanospheres with enhanced matrix-free peptide detection profiles. Chem. Commun. 52(8), 1709–1712 (2016). https://doi.org/10.1039/c5cc07912h
G. Lim, Z. Chen, J. Clark, R.G.S. Goh, W. Ng, H. Tan, R.H. Friend, P.K.H. Ho, L. Chua, Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat. Photonics 5(9), 554–560 (2011). https://doi.org/10.1038/nphoton.2011.177
Y. Hu, K. Qian, P. Yuan, Y. Wang, C. Yu, Synthesis of large-pore periodic mesoporous organosilica. Mater. Lett. 65(1), 21–23 (2011). https://doi.org/10.1016/j.matlet.2010.08.078
S.A. Stopka, C. Rong, A.R. Korte, S. Yadavilli, J. Nazarian, T.T. Razunguzwa, N.J. Morris, A. Vertes, Molecular imaging of biological samples on nanophotonic laser desorption ionization platforms. Angew. Chem. Int. Ed. 55(14), 4482–4486 (2016). https://doi.org/10.1002/anie.201511691
K.P. Law, J.R. Larkin, Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal. Bioanal. Chem. 399(8), 2597–2622 (2011). https://doi.org/10.1007/s00216-010-4063-3
X. Wei, Z. Liu, X. Jin, L. Huang, D.D. Gurav, X. Sun, B. Liu, J. Ye, K. Qian, Plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry for detection of serum metabolites. Anal. Chim. Acta 950, 147–155 (2017). https://doi.org/10.1016/j.aca.2016.11.017
J. Gan, X. Wei, Y. Li, J. Wu, K. Qian, B. Liu, Designer SiO2@Au nanoshells towards sensitive and selective detection of small molecules in laser desorption ionization mass spectrometry. Nanomedicine 11(7), 1715–1723 (2015). https://doi.org/10.1016/j.nano.2015.06.010
C.K. Chiang, W.T. Chen, H.T. Chang, Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem. Soc. Rev. 40(3), 1269–1281 (2011). https://doi.org/10.1039/c0cs00050g
J. Wu, X. Wei, J.R. Gan, L. Huang, T. Shen, J.T. Lou, B.H. Liu, J.X.J. Zhang, K. Qian, Multifunctional magnetic particles for combined circulating tumor cells isolation and cellular metabolism detection. Adv. Funct. Mater. 26(22), 4016–4025 (2016). https://doi.org/10.1002/adfm.201504184
X. Sun, L. Huang, R. Zhang, W. Xu, J. Huang et al., Metabolic fingerprinting on a plasmonic gold chip for mass spectrometry based in vitro diagnostics. ACS Cent. Sci. 4(2), 223–229 (2018). https://doi.org/10.1021/acscentsci.7b00546
W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
P.C. Lee, D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86(17), 3391–3395 (1982). https://doi.org/10.1021/j100214a025
K. Fujioka, T. Shibamoto, Quantitation of volatiles and nonvolatile acids in an extract from coffee beverages: correlation with antioxidant activity. J. Agric. Food Chem. 54(16), 6054–6058 (2006). https://doi.org/10.1021/jf060460x
F. Rincon, B. Martinez, J.M. Delgado, Detection of factors influencing nitrite determination in meat. Meat Sci. 65(4), 1421–1427 (2003). https://doi.org/10.1016/s0309-1740(03)00065-2
Z. Deng, M. Chen, L. Wu, Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced Raman scattering properties. J. Phys. Chem. C 111(31), 11692–11698 (2007). https://doi.org/10.1021/jp073632h
Y. Cai, X. Piao, W. Gao, Z. Zhang, E. Nie, Z. Sun, Large-scale and facile synthesis of silver nanoparticles via a microwave method for a conductive pen. RSC Adv. 7(54), 34041–34048 (2017). https://doi.org/10.1039/c7ra05125e
W. Zhang, Y. Liu, R. Cao, Z. Li, Y. Zhang, Y. Tang, K. Fan, Synergy between crystal strain and surface energy in morphological evolution of five-fold-twinned silver crystals. J. Am. Chem. Soc. 130(46), 15581–15588 (2008). https://doi.org/10.1021/ja805606q
S.H. Yu, X.J. Cui, L.L. Li, K. Li, B. Yu, M. Antonietti, H. Colfen, From starch to metal/carbon hybrid nanostructures: hydrothermal metal-catalyzed carbonization. Adv. Mater. 16(18), 1636–1640 (2004). https://doi.org/10.1002/adma.200400522
S.A. Mcluckey, A.E. Schoen, R.G. Cooks, Silver ion affinities of alcohols as ordered by mass spectrometry/mass spectrometry. J. Am. Chem. Soc. 104(3), 848–850 (1982). https://doi.org/10.1021/ja00367a035
D. Zakett, A.E. Schoen, R.G. Cooks, P.H. Hemberger, Laser-desorption mass spectrometry/mass spectrometry and the mechanism of desorption ionization. J. Am. Chem. Soc. 12(25), 1295–1297 (1981). https://doi.org/10.1021/ja00395a086
L.I. Grace, A. Abo-Riziq, M.S. de Vries, An in situ silver cationization method for hydrocarbon mass spectrometry. J. Am. Soc. Mass Spectrom. 16(4), 437–440 (2005). https://doi.org/10.1016/j.jasms.2004.12.011
A.U. Jackson, T. Shum, E. Sokol, A. Dill, R.G. Cooks, Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes. Anal. Bioanal. Chem. 399(1), 367–376 (2011). https://doi.org/10.1007/s00216-010-4349-5
K. Qian, W. Gu, P. Yuan, F. Liu, Y. Wang, M. Monteiro, C. Yu, Enrichment and detection of peptides from biological systems using designed periodic mesoporous organosilica microspheres. Small 8(2), 231–236 (2012). https://doi.org/10.1002/smll.201101770
K. Qian, F. Liu, J. Yang, X. Huang, W. Gu, S. Jambhrunkar, P. Yuan, C. Yu, Pore size-optimized periodic mesoporous organosilicas for the enrichment of peptides and polymers. RSC Adv. 3(34), 14466–14472 (2013). https://doi.org/10.1039/c3ra41332b
A. Trani, G. Gambacorta, P. Loizzo, A. Cassone, C. Fasciano, A.V. Zambrini, M. Faccia, Comparison of HPLC-RI, LC/MS-MS and enzymatic assays for the analysis of residual lactose in lactose-free milk. Food Chem. 233, 385–390 (2017). https://doi.org/10.1016/j.foodchem.2017.04.134
L. Li, B.X. Li, Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst 134(7), 1361–1365 (2009). https://doi.org/10.1039/b819842j
X. Liang, H. Wei, Z. Cui, J. Deng, Z. Zhang, X. You, X.E. Zhang, Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles. Analyst 136(1), 179–183 (2011). https://doi.org/10.1039/c0an00432d
S. Zhang, Z. Yu, N. Hu, Y. Sun, Y. Suo, J. You, Sensitive determination of melamine leached from tableware by reversed phase high-performance liquid chromatography using 10-methyl-acridone-2-sulfonyl chloride as a pre-column fluorescent labeling reagent. Food Control 39, 25–29 (2014). https://doi.org/10.1016/j.foodcont.2013.10.037
H. Miao, S. Fan, Y.N. Wu, L. Zhang, P.P. Zhou, J.G. Li, H.J. Chen, Y.F. Zhao, Simultaneous determination of melamine, ammelide, ammeline, and cyanuric acid in milk and milk products by gas chromatography-tandem mass spectrometry. Biomed. Environ. Sci. 22(2), 87–94 (2009). https://doi.org/10.1016/S0895-3988(09)60027-1
A. Desmarchelier, M.G. Cuadra, T. Delatour, P. Mottier, Simultaneous quantitative determination of melamine and cyanuric acid in cow’s milk and milk-based infant formula by liquid chromatography–electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 57(16), 7186–7193 (2009). https://doi.org/10.1021/jf901355v
S. Yang, J. Ding, J. Zheng, B. Hu, J. Li, H. Chen, Z. Zhou, X. Qiao, Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry. Anal. Chem. 81(7), 2426–2436 (2009). https://doi.org/10.1021/ac900063u