Long-Chain Gemini Surfactant-Assisted Blade Coating Enables Large-Area Carbon-Based Perovskite Solar Modules with Record Performance
Corresponding Author: Shihe Yang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 182
Abstract
Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in ambient air. However, scaling up to high-efficiency carbon-based solar modules hinges on reliable deposition of uniform defect-free perovskite films over large areas, which is an unsettled but urgent issue. In this work, a long-chain gemini surfactant is introduced into perovskite precursor ink to enforce self-assembly into a network structure, considerably enhancing the coverage and smoothness of the perovskite films. The long gemini surfactant plays a distinctively synergistic role in perovskite film construction, crystallization kinetics modulation and defect passivation, leading to a certified record power conversion efficiency of 15.46% with Voc of 1.13 V and Jsc of 22.92 mA cm−2 for this type of modules. Importantly, all of the functional layers of the module are printed through a simple and high-speed (300 cm min−1) blade coating strategy in ambient atmosphere. These results mark a significant step toward the commercialization of all-printable carbon-based perovskite solar modules.
Highlights:
1 Trace amounts of long-chain gemini surfactants are essential for blade-coating of high-quality perovskite films, enabling a 17.05% efficient full printed carbon-based module (50 cm2 active area).
2 Only when the surfactant chain is over a critical length will the gemini surfactant be effective for blade-coating of perovskite films.
3 The surfactants increase the capillary number of perovskite precursor solution, reduce the local disturbance and combat inhomogeneous solidification during blade coating, thus allowing high-quality perovskite films to be formed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- NREL. Best research-cell efficiency chart (2023). https://www.nrel.gov/pv/cell-efficiency.html
- M. Kim, J. Jeong, H.Z. Lu, T.K. Lee, F.T. Eickemeyer et al., Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375(6578), 302–306 (2022). https://doi.org/10.1126/science.abh1885
- Y. Ding, B. Ding, H. Kanda, O.J. Usiobo, T. Gallet et al., Single-crystalline TiO2 nanops for stable and efficient perovskite modules. Nat. Nanotechnol. 17(6), 598–605 (2022). https://doi.org/10.1038/s41565-022-01108-1
- Y. Li, Z. Lin, J. Wang, R. Xu, K. Zhang et al., Amine salts vapor healing perfected perovskite layers for niox based p-i-n solar cells. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202203995
- Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376(6591), 416–420 (2022). https://doi.org/10.1126/science.abm8566
- P. Calado, A.M. Telford, D. Bryant, X. Li, J. Nelson et al., Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831 (2016). https://doi.org/10.1038/ncomms13831
- Y.B. Yuan, J.S. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49(2), 286–293 (2016). https://doi.org/10.1021/acs.accounts.5b00420
- Y. Kato, L.K. Ono, M.V. Lee, S. Wang, S.R. Raga et al., Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2(13), 1500195 (2015). https://doi.org/10.1002/admi.201500195
- K. Domanski, J.-P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate et al., Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells. ACS Nano 10(6), 6306–6314 (2016). https://doi.org/10.1021/acsnano.6b02613
- L. Fagiolari, F. Bella, Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ. Sci. 12(12), 3437–3472 (2019). https://doi.org/10.1039/c9ee02115a
- X. Zhang, Z. Yu, D. Zhang, Q. Tai, X.Z. Zhao, Recent progress of carbon-based inorganic perovskite solar cells: From efficiency to stability. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202201320
- A. Mei, Y. Sheng, Y. Ming, Y. Hu, Y. Rong et al., Stabilizing perovskite solar cells to iec61215:2016 standards with over 9,000-h operational tracking. Joule 4(12), 2646–2660 (2020). https://doi.org/10.1016/j.joule.2020.09.010
- Y. Yang, M.T. Hoang, D. Yao, N.D. Pham, V.T. Tiong et al., Spiro-ometad or cuscn as a preferable hole transport material for carbon-based planar perovskite solar cells. J. Mater. Chem. A 8(25), 12723–12734 (2020). https://doi.org/10.1039/d0ta03951a
- H. Chen, S. Yang, Carbon-based perovskite solar cells without hole transport materials: the front runner to the market? Adv. Mater. 29(24), 1603994 (2017). https://doi.org/10.1002/adma.201603994
- H. Zhang, J. Xiao, J. Shi, H. Su, Y. Luo et al., Self-adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells. Adv. Funct. Mater. 28(39), 1802985 (2018). https://doi.org/10.1002/adfm.201802985
- J. Ryu, K. Lee, J. Yun, H. Yu, J. Lee et al., Paintable carbon-based perovskite solar cells with engineered perovskite/carbon interface using carbon nanotubes dripping method. Small 13(38), 1701225 (2017). https://doi.org/10.1002/smll.201701225
- D.-K. Lee, D.-N. Jeong, T.K. Ahn, N.-G. Park, Precursor engineering for a large-area perovskite solar cell with > 19% efficiency. ACS Energy Lett. 4(10), 2393–2401 (2019). https://doi.org/10.1021/acsenergylett.9b01735
- Y. Deng, X. Zheng, Y. Bai, Q. Wang, J. Zhao et al., Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 3(7), 560–566 (2018). https://doi.org/10.1038/s41560-018-0153-9
- S. Tang, Y. Deng, X. Zheng, Y. Bai, Y. Fang et al., Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7(18), 1700302 (2017). https://doi.org/10.1002/aenm.201700302
- M. Xu, W. Ji, Y. Sheng, Y. Wu, H. Cheng et al., Efficient triple-mesoscopic perovskite solar mini-modules fabricated with slot-die coating. Nano Energy 74, 104842 (2020). https://doi.org/10.1016/j.nanoen.2020.104842
- Y. Hu, S. Si, A. Mei, Y. Rong, H. Liu et al., Stable large-area (10×10cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Sol. RRL 1(2), 1600019 (2017). https://doi.org/10.1002/solr.201600019
- H. Huang, J. Shi, L. Zhu, D. Li, Y. Luo et al., Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy 27, 352–358 (2016). https://doi.org/10.1016/j.nanoen.2016.07.026
- K. Liu, Q. Liang, M. Qin, D. Shen, H. Yin et al., Zwitterionic-surfactant-assisted room-temperature coating of efficient perovskite solar cells. Joule 4(11), 2404–2425 (2020). https://doi.org/10.1016/j.joule.2020.09.011
- X. Zheng, Y. Deng, B. Chen, H. Wei, X. Xiao et al., Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells. Adv. Mater. 30(52), 1803428 (2018). https://doi.org/10.1002/adma.201803428
- K. Ueda, M. Fujimoto, H. Noto, T. Sakaeda, S. Iwakawa, Effect of acyl chains of phosphatidylcholines on the pharmacokinetics of menatetrenone incorporated in o/w lipid emulsions prepared with phosphatidylcholines and soybean oil in rats. J. Pharm. Pharmacol. 56(7), 855–859 (2004). https://doi.org/10.1211/0022357023790
- K. Zhang, Z. Wang, G. Wang, J. Wang, Y. Li et al., A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity. Nat. Commun. 11(1), 1006 (2020). https://doi.org/10.1038/s41467-020-14715-0
- S. Xiao, Y. Bai, X. Meng, T. Zhang, H. Chen et al., Unveiling a key intermediate in solvent vapor postannealing to enlarge crystalline domains of organometal halide perovskite films. Adv. Funct. Mater. 27(12), 1604944 (2017). https://doi.org/10.1002/adfm.201604944
- Y. Guo, K. Shoyama, W. Sato, Y. Matsuo, K. Inoue et al., Chemical pathways connecting lead(II) iodide and perovskite via polymeric plumbate(II) fiber. J. Am. Chem. Soc. 137(50), 15907–15914 (2015). https://doi.org/10.1021/jacs.5b10599
- C. Tanford, Theory of micelle formation in aqueous-solutions. J. Phys. Chem. 78(24), 2469–2479 (1974). https://doi.org/10.1021/j100617a012
- Y. Nojima, K. Iwata, Viscosity heterogeneity inside lipid bilayers of single-component phosphatidylcholine liposomes observed with picosecond time-resolved fluorescence spectroscopy. J. Phys. Chem. B 118(29), 8631–8641 (2014). https://doi.org/10.1021/jp503921e
- S.K. Owusu-Ware, B.Z. Chowdhry, S.A. Leharne, M.D. Antonijevic, Phase behaviour of dehydrated phosphatidylcholines. J. Therm. Anal. Calorim. 127(1), 415–421 (2017). https://doi.org/10.1007/s10973-016-5957-x
- H. Yin, Y. Lin, J. Huang, Microstructures and rheological dynamics of viscoelastic solutions in a catanionic surfactant system. J. Colloid Interf. Sci. 338(1), 177–183 (2009). https://doi.org/10.1016/j.jcis.2009.05.076
- S. Hofmann, H. Hoffmann, Shear-induced micellar structures in ternary surfactant mixtures: the influence of the structure of the micellar interface. J. Phys. Chem. B 102(29), 5614–5624 (1998). https://doi.org/10.1021/jp980339w
- R. Bruinsma, W.M. Gelbart, A. Ben-Shaul, Flow-induced gelation of living (micellar) polymers. J. Chem. Phys. 96(10), 7710–7727 (1992). https://doi.org/10.1063/1.462371
- S.J. Weinstein, K.J. Ruschak, Coating flows. Annu. Rev. Fluid Mech. 36, 29–53 (2004). https://doi.org/10.1146/annurev.fluid.36.050802.122049
- F.M. Menger, C.A. Littau, Gemini surfactants-a new class of self-assembling molecules. J. Am. Chem. Soc. 115(22), 10083–10090 (1993). https://doi.org/10.1021/ja00075a025
- F.M. Menger, C.A. Littau, Gemini-surfactants: synthesis and properties. J. Am. Chem. Soc. 113(4), 1451–1452 (1991). https://doi.org/10.1021/ja00004a077
- S. Karaborni, K. Esselink, P.A.J. Hilbers, B. Smit, J. Karthauser et al., Simulating the self-assembly of gemini (dimeric) surfactants. Science 266(5183), 254–256 (1994). https://doi.org/10.1126/science.266.5183.254
- B.J. Ennis, J. Li, P. Robert, The influence of viscosity on the strength of an axially strained pendular liquid bridge. Chem. Eng. Sci. 45(10), 3071–3088 (1990). https://doi.org/10.1016/0009-2509(90)80054-I
- C.M. Boyce, Gas-solid fluidization with liquid bridging: A review from a modeling perspective. Powder Technol. 336, 12–29 (2018). https://doi.org/10.1016/j.powtec.2018.05.027
- A.Z. Zinchenko, R.H. Davis, A boundary-integral study of a drop squeezing through interp constrictions. J. Fluid Mech. 564, 227–266 (2006). https://doi.org/10.1017/s0022112006001479
- K.J. Ruschak, Coating flows. Annu. Rev. Fluid Mech. 17, 65–89 (1985). https://doi.org/10.1146/annurev.fl.17.010185.000433
- J. Lu, L. Jiang, W. Li, F. Li, N.K. Pai et al., Diammonium and monoammonium mixed-organic-cation perovskites for high performance solar cells with improved stability. Adv. Energy Mater. 7(18), 1700444 (2017). https://doi.org/10.1002/aenm.201700444
- B. Wu, H.T. Nguyen, Z. Ku, G. Han, D. Giovanni et al., Discerning the surface and bulk recombination kinetics of organic-inorganic halide perovskite single crystals. Adv. Energy Mater. 6(14), 1600551 (2016). https://doi.org/10.1002/aenm.201600551
- M. Maiberg, T. Hölscher, S. Zahedi-Azad, R. Scheer, Theoretical study of time-resolved luminescence in semiconductors.III. Trap states in the band gap. J. Appl. Phys. 118(10), 105701 (2015). https://doi.org/10.1063/1.4929877
- Z. Lin, Extraction technique of trap states based on transient photo-voltage measurement. Sci. Rep. 10(1), 12888 (2020). https://doi.org/10.1038/s41598-020-69914-y
- MathSciNet
- B. Shi, B. Liu, J. Luo, Y. Li, X. Zhang, Enhanced light absorption of thin perovskite solar cells using textured substrates. Sol. Energy Mat. Sol. C 168, 214–220 (2017). https://doi.org/10.1016/j.solmat.2017.04.038
- F. Zhang, X. Yang, M. Cheng, J. Li, W. Wang et al., Engineering of hole-selective contact for low temperature-processed carbon counter electrode-based perovskite solar cells. J. Mater. Chem. A 3(48), 24272–24280 (2015). https://doi.org/10.1039/c5ta07507f
- J. Wu, Y. Cui, B. Yu, K. Liu, Y. Li et al., A simple way to simultaneously release the interface stress and realize the inner encapsulation for highly efficient and stable perovskite solar cells. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201905336
References
NREL. Best research-cell efficiency chart (2023). https://www.nrel.gov/pv/cell-efficiency.html
M. Kim, J. Jeong, H.Z. Lu, T.K. Lee, F.T. Eickemeyer et al., Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375(6578), 302–306 (2022). https://doi.org/10.1126/science.abh1885
Y. Ding, B. Ding, H. Kanda, O.J. Usiobo, T. Gallet et al., Single-crystalline TiO2 nanops for stable and efficient perovskite modules. Nat. Nanotechnol. 17(6), 598–605 (2022). https://doi.org/10.1038/s41565-022-01108-1
Y. Li, Z. Lin, J. Wang, R. Xu, K. Zhang et al., Amine salts vapor healing perfected perovskite layers for niox based p-i-n solar cells. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202203995
Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376(6591), 416–420 (2022). https://doi.org/10.1126/science.abm8566
P. Calado, A.M. Telford, D. Bryant, X. Li, J. Nelson et al., Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831 (2016). https://doi.org/10.1038/ncomms13831
Y.B. Yuan, J.S. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49(2), 286–293 (2016). https://doi.org/10.1021/acs.accounts.5b00420
Y. Kato, L.K. Ono, M.V. Lee, S. Wang, S.R. Raga et al., Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2(13), 1500195 (2015). https://doi.org/10.1002/admi.201500195
K. Domanski, J.-P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate et al., Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells. ACS Nano 10(6), 6306–6314 (2016). https://doi.org/10.1021/acsnano.6b02613
L. Fagiolari, F. Bella, Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ. Sci. 12(12), 3437–3472 (2019). https://doi.org/10.1039/c9ee02115a
X. Zhang, Z. Yu, D. Zhang, Q. Tai, X.Z. Zhao, Recent progress of carbon-based inorganic perovskite solar cells: From efficiency to stability. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202201320
A. Mei, Y. Sheng, Y. Ming, Y. Hu, Y. Rong et al., Stabilizing perovskite solar cells to iec61215:2016 standards with over 9,000-h operational tracking. Joule 4(12), 2646–2660 (2020). https://doi.org/10.1016/j.joule.2020.09.010
Y. Yang, M.T. Hoang, D. Yao, N.D. Pham, V.T. Tiong et al., Spiro-ometad or cuscn as a preferable hole transport material for carbon-based planar perovskite solar cells. J. Mater. Chem. A 8(25), 12723–12734 (2020). https://doi.org/10.1039/d0ta03951a
H. Chen, S. Yang, Carbon-based perovskite solar cells without hole transport materials: the front runner to the market? Adv. Mater. 29(24), 1603994 (2017). https://doi.org/10.1002/adma.201603994
H. Zhang, J. Xiao, J. Shi, H. Su, Y. Luo et al., Self-adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells. Adv. Funct. Mater. 28(39), 1802985 (2018). https://doi.org/10.1002/adfm.201802985
J. Ryu, K. Lee, J. Yun, H. Yu, J. Lee et al., Paintable carbon-based perovskite solar cells with engineered perovskite/carbon interface using carbon nanotubes dripping method. Small 13(38), 1701225 (2017). https://doi.org/10.1002/smll.201701225
D.-K. Lee, D.-N. Jeong, T.K. Ahn, N.-G. Park, Precursor engineering for a large-area perovskite solar cell with > 19% efficiency. ACS Energy Lett. 4(10), 2393–2401 (2019). https://doi.org/10.1021/acsenergylett.9b01735
Y. Deng, X. Zheng, Y. Bai, Q. Wang, J. Zhao et al., Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 3(7), 560–566 (2018). https://doi.org/10.1038/s41560-018-0153-9
S. Tang, Y. Deng, X. Zheng, Y. Bai, Y. Fang et al., Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7(18), 1700302 (2017). https://doi.org/10.1002/aenm.201700302
M. Xu, W. Ji, Y. Sheng, Y. Wu, H. Cheng et al., Efficient triple-mesoscopic perovskite solar mini-modules fabricated with slot-die coating. Nano Energy 74, 104842 (2020). https://doi.org/10.1016/j.nanoen.2020.104842
Y. Hu, S. Si, A. Mei, Y. Rong, H. Liu et al., Stable large-area (10×10cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Sol. RRL 1(2), 1600019 (2017). https://doi.org/10.1002/solr.201600019
H. Huang, J. Shi, L. Zhu, D. Li, Y. Luo et al., Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy 27, 352–358 (2016). https://doi.org/10.1016/j.nanoen.2016.07.026
K. Liu, Q. Liang, M. Qin, D. Shen, H. Yin et al., Zwitterionic-surfactant-assisted room-temperature coating of efficient perovskite solar cells. Joule 4(11), 2404–2425 (2020). https://doi.org/10.1016/j.joule.2020.09.011
X. Zheng, Y. Deng, B. Chen, H. Wei, X. Xiao et al., Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells. Adv. Mater. 30(52), 1803428 (2018). https://doi.org/10.1002/adma.201803428
K. Ueda, M. Fujimoto, H. Noto, T. Sakaeda, S. Iwakawa, Effect of acyl chains of phosphatidylcholines on the pharmacokinetics of menatetrenone incorporated in o/w lipid emulsions prepared with phosphatidylcholines and soybean oil in rats. J. Pharm. Pharmacol. 56(7), 855–859 (2004). https://doi.org/10.1211/0022357023790
K. Zhang, Z. Wang, G. Wang, J. Wang, Y. Li et al., A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity. Nat. Commun. 11(1), 1006 (2020). https://doi.org/10.1038/s41467-020-14715-0
S. Xiao, Y. Bai, X. Meng, T. Zhang, H. Chen et al., Unveiling a key intermediate in solvent vapor postannealing to enlarge crystalline domains of organometal halide perovskite films. Adv. Funct. Mater. 27(12), 1604944 (2017). https://doi.org/10.1002/adfm.201604944
Y. Guo, K. Shoyama, W. Sato, Y. Matsuo, K. Inoue et al., Chemical pathways connecting lead(II) iodide and perovskite via polymeric plumbate(II) fiber. J. Am. Chem. Soc. 137(50), 15907–15914 (2015). https://doi.org/10.1021/jacs.5b10599
C. Tanford, Theory of micelle formation in aqueous-solutions. J. Phys. Chem. 78(24), 2469–2479 (1974). https://doi.org/10.1021/j100617a012
Y. Nojima, K. Iwata, Viscosity heterogeneity inside lipid bilayers of single-component phosphatidylcholine liposomes observed with picosecond time-resolved fluorescence spectroscopy. J. Phys. Chem. B 118(29), 8631–8641 (2014). https://doi.org/10.1021/jp503921e
S.K. Owusu-Ware, B.Z. Chowdhry, S.A. Leharne, M.D. Antonijevic, Phase behaviour of dehydrated phosphatidylcholines. J. Therm. Anal. Calorim. 127(1), 415–421 (2017). https://doi.org/10.1007/s10973-016-5957-x
H. Yin, Y. Lin, J. Huang, Microstructures and rheological dynamics of viscoelastic solutions in a catanionic surfactant system. J. Colloid Interf. Sci. 338(1), 177–183 (2009). https://doi.org/10.1016/j.jcis.2009.05.076
S. Hofmann, H. Hoffmann, Shear-induced micellar structures in ternary surfactant mixtures: the influence of the structure of the micellar interface. J. Phys. Chem. B 102(29), 5614–5624 (1998). https://doi.org/10.1021/jp980339w
R. Bruinsma, W.M. Gelbart, A. Ben-Shaul, Flow-induced gelation of living (micellar) polymers. J. Chem. Phys. 96(10), 7710–7727 (1992). https://doi.org/10.1063/1.462371
S.J. Weinstein, K.J. Ruschak, Coating flows. Annu. Rev. Fluid Mech. 36, 29–53 (2004). https://doi.org/10.1146/annurev.fluid.36.050802.122049
F.M. Menger, C.A. Littau, Gemini surfactants-a new class of self-assembling molecules. J. Am. Chem. Soc. 115(22), 10083–10090 (1993). https://doi.org/10.1021/ja00075a025
F.M. Menger, C.A. Littau, Gemini-surfactants: synthesis and properties. J. Am. Chem. Soc. 113(4), 1451–1452 (1991). https://doi.org/10.1021/ja00004a077
S. Karaborni, K. Esselink, P.A.J. Hilbers, B. Smit, J. Karthauser et al., Simulating the self-assembly of gemini (dimeric) surfactants. Science 266(5183), 254–256 (1994). https://doi.org/10.1126/science.266.5183.254
B.J. Ennis, J. Li, P. Robert, The influence of viscosity on the strength of an axially strained pendular liquid bridge. Chem. Eng. Sci. 45(10), 3071–3088 (1990). https://doi.org/10.1016/0009-2509(90)80054-I
C.M. Boyce, Gas-solid fluidization with liquid bridging: A review from a modeling perspective. Powder Technol. 336, 12–29 (2018). https://doi.org/10.1016/j.powtec.2018.05.027
A.Z. Zinchenko, R.H. Davis, A boundary-integral study of a drop squeezing through interp constrictions. J. Fluid Mech. 564, 227–266 (2006). https://doi.org/10.1017/s0022112006001479
K.J. Ruschak, Coating flows. Annu. Rev. Fluid Mech. 17, 65–89 (1985). https://doi.org/10.1146/annurev.fl.17.010185.000433
J. Lu, L. Jiang, W. Li, F. Li, N.K. Pai et al., Diammonium and monoammonium mixed-organic-cation perovskites for high performance solar cells with improved stability. Adv. Energy Mater. 7(18), 1700444 (2017). https://doi.org/10.1002/aenm.201700444
B. Wu, H.T. Nguyen, Z. Ku, G. Han, D. Giovanni et al., Discerning the surface and bulk recombination kinetics of organic-inorganic halide perovskite single crystals. Adv. Energy Mater. 6(14), 1600551 (2016). https://doi.org/10.1002/aenm.201600551
M. Maiberg, T. Hölscher, S. Zahedi-Azad, R. Scheer, Theoretical study of time-resolved luminescence in semiconductors.III. Trap states in the band gap. J. Appl. Phys. 118(10), 105701 (2015). https://doi.org/10.1063/1.4929877
Z. Lin, Extraction technique of trap states based on transient photo-voltage measurement. Sci. Rep. 10(1), 12888 (2020). https://doi.org/10.1038/s41598-020-69914-y
MathSciNet
B. Shi, B. Liu, J. Luo, Y. Li, X. Zhang, Enhanced light absorption of thin perovskite solar cells using textured substrates. Sol. Energy Mat. Sol. C 168, 214–220 (2017). https://doi.org/10.1016/j.solmat.2017.04.038
F. Zhang, X. Yang, M. Cheng, J. Li, W. Wang et al., Engineering of hole-selective contact for low temperature-processed carbon counter electrode-based perovskite solar cells. J. Mater. Chem. A 3(48), 24272–24280 (2015). https://doi.org/10.1039/c5ta07507f
J. Wu, Y. Cui, B. Yu, K. Liu, Y. Li et al., A simple way to simultaneously release the interface stress and realize the inner encapsulation for highly efficient and stable perovskite solar cells. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201905336