Electrolyte Design for Low-Temperature Li-Metal Batteries: Challenges and Prospects
Corresponding Author: Jijian Xu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 35
Abstract
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation. To get the most energy storage out of the battery at low temperatures, improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases. Herein, this review critically outlines electrolytes’ limiting factors, including reduced ionic conductivity, large de-solvation energy, sluggish charge transfer, and slow Li-ion transportation across the electrolyte/electrode interphases, which affect the low-temperature performance of Li-metal batteries. Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding. Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared. Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.
Highlights:
1 A critical assessment of electrolytes’ limiting factors, which affect the low-temperature performance of Li-metal batteries.
2 Summary of emerging strategies to improve low-temperature performance from the aspects of electrolyte design and electrolyte/electrode interphase engineering.
3 Perspectives and challenges on how to develop creative solutions in electrolytes and correlative materials for low-temperature operation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.S. Zhang, K. Xu, T.R. Jow, Low temperature performance of graphite electrode in Li-ion cells. Electrochim. Acta 48, 241–246 (2002). https://doi.org/10.1016/S0013-4686(02)00620-5
- A.C. Thenuwara, P.P. Shetty, N. Kondekar, S.E. Sandoval, K. Cavallaro et al., Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase. ACS Energy Lett. 5, 2411–2420 (2020). https://doi.org/10.1021/acsenergylett.0c01209
- W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/C3EE40795K
- X. Shen, H. Liu, X.B. Cheng, C. Yan, J.Q. Huang, Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Stor. Mater. 12, 161–175 (2018). https://doi.org/10.1016/j.ensm.2017.12.002
- A. Soto, A. Berrueta, P. Sanchis, A. Ursúa, I. Oficialdegui, On the technical reliability of Lithium-ion batteries in a zero emission polar expedition, 2020 IEEE Int. Conf. Environ. Electr. Eng. 2020 IEEE Ind. Commer. Power Syst. Eur. EEEIC ICPS Eur., pp. 1–6.
- J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z
- C.T. Love, O.A. Baturina, K.E. Swider-Lyons, Observation of lithium dendrites at ambient temperature and below. ECS Electrochem. Lett. 4, A24 (2015). https://doi.org/10.1149/2.0041502eel
- A. Maraschky, R. Akolkar, Temperature dependence of dendritic lithium electrodeposition: a mechanistic study of the role of transport limitations within the SEI. J. Electrochem. Soc. 167(6), 062503 (2020). https://doi.org/10.1149/1945-7111/ab7ce2
- M.C. Smart, B.V. Ratnakumar, R.C. Ewell, S. Surampudi, F.J. Puglia et al., The use of lithium-ion batteries for JPL’s Mars missions. Electrochim. Acta 268(1), 27–40 (2018). https://doi.org/10.1016/j.electacta.2018.02.020
- X. Su, Y. Xu, Y. Wu, H. Li, J. Yang et al., Liquid electrolytes for low-temperature lithium batteries: main limitations, current advances, and future perspectives. Energy Storage Mater. 56, 642–663 (2023). https://doi.org/10.1016/j.ensm.2023.01.044
- Q. Li, G. Liu, H. Cheng, Q. Sun, J. Zhang et al., Low-temperature electrolyte design for lithium-ion batteries: prospect and challenges. Chem. Eur. J. 27(64), 15842–15865 (2021). https://doi.org/10.1002/chem.202101407
- D. Luo, M. Li, Y. Zheng, Q. Ma, R. Gao et al., Electrolyte design for lithium metal anode-based batteries toward extreme temperature application. Adv. Sci. 8(18), 2101051 (2021). https://doi.org/10.1002/advs.202101051
- W. Cai, Y.X. Yao, G.L. Zhu, C. Yan, L.L. Jiang et al., A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 49, 3806–3833 (2020). https://doi.org/10.1039/C9CS00728H
- K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). https://doi.org/10.1021/cr030203g
- K. Xu, Navigating the minefield of battery literature. Commun. Mater. 3, 31 (2022). https://doi.org/10.1038/s43246-022-00251-5
- J.N. Al-Dawsari, A. Bessadok-Jemai, I. Wazeer, S. Mokraoui, M.A. AlMansour et al., Fitting of experimental viscosity to temperature data for deep eutectic solvents. J. Mol. Liq. 310(15), 113127 (2020). https://doi.org/10.1016/j.molliq.2020.113127
- A. Ramanujapuram, G. Yushin, Understanding the exceptional performance of lithium-ion battery cathodes in aqueous electrolytes at subzero temperatures. Adv. Energy Mater. 8, 1802624 (2018). https://doi.org/10.1002/aenm.201802624
- Z. Ma, J. Chen, J. Vatamanu, O. Borodin, D. Bedrov et al., Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery. Energy Storage Mater. 45, 903–910 (2022). https://doi.org/10.1016/j.ensm.2021.12.045
- T.R. Jow, K. Xu, O. Borodin, M. Ue et al., Electrolytes for lithium and lithium-ion batteries (Springer, New York, 2014). https://doi.org/10.1007/978-1-4939-0302-3
- K. Xu, “Charge-Transfer” process at graphite/electrolyte interface and the solvation sheath structure of Li+ in nonaqueous electrolytes. J. Electrochem. Soc. 154, A162 (2007). https://doi.org/10.1149/1.2409866
- Z. Wang, Z. Sun, Y. Shi, F. Qi, X. Gao et al., Ion-dipole chemistry drives rapid evolution of Li ions solvation sheath in low-temperature Li batteries. Adv. Energy Mater. 11(28), 2100935 (2021). https://doi.org/10.1002/aenm.202100935
- W. Lin, J. Li, J. Wang, K. Gu, H. Li et al., Weak-coordination electrolyte enabling fast Li+ transport in lithium metal batteries at ultra-low temperature. Small 19(23), 2207093 (2021). https://doi.org/10.1002/smll.202207093
- F. Ren, Z. Li, J. Chen, P. Huguet, Z. Peng et al., Solvent-diluent interaction-mediated solvation structure of localized high-concentration electrolytes. ACS Appl. Mater. Interfaces 14(3), 4211–4219 (2022). https://doi.org/10.1021/acsami.1c21638
- Y.X. Yao, X. Chen, C. Yan, X.Q. Zhang, W.L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60(8), 4090–4097 (2021). https://doi.org/10.1002/anie.202011482
- J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614, 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
- S.C. Kim, X. Kong, R.A. Vilá, W. Huang, Y. Chen et al., Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability. J. Am. Chem. Soc. 143, 10301–10308 (2021). https://doi.org/10.1021/jacs.1c03868
- L. Sheng, Y. Wu, J. Tian, L. Wang, J. Wang et al., Impact of lithium-ion coordination on lithium electrodeposition. Energy Environ. Mater. 6(1), e12266 (2023). https://doi.org/10.1002/eem2.12266
- J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021). https://doi.org/10.1002/aenm.202100046
- X. Gao, Y.N. Zhou, D. Han, J. Zhou, D. Zhou et al., Thermodynamic understanding of Li-dendrite formation. Joule 4, 1864–1879 (2020). https://doi.org/10.1016/j.joule.2020.06.016
- Z. Zhang, Y. Li, R. Xu, W. Zhou, Y. Li et al., Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375(6576), 66–70 (2022). https://doi.org/10.1126/science.abi8703
- P. Zhai, L. Liu, X. Gu, T. Wang, Y. Gong, Interface engineering for lithium metal anodes in liquid electrolyte. Adv. Energy Mater. 10(34), 2001257 (2020). https://doi.org/10.1002/aenm.202001257
- H. Adenusi, G.A. Chass, S. Passerini, K.V. Tian, G. Chen, Lithium batteries and the solid electrolyte interphase (SEI)-progress and outlook. Adv. Energy Mater. 13(10), 2203307 (2023). https://doi.org/10.1002/aenm.202203307
- H. Wu, H. Jia, C. Wang, J. Zhang, W. Xu, Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 11(5), 2003092 (2021). https://doi.org/10.1002/aenm.202003092
- T.R. Jow, S.A. Delp, J.L. Allen, J.P. Jones, M.C. Smart, Factors Limiting Li+ charge transfer kinetics in Li-ion batteries. J. Electrochem. Soc. 165(2), A361–A367 (2018). https://doi.org/10.1149/2.1221802jes
- Y. Chen, A. Elangovan, D. Zeng, Y. Zhang, H. Ke et al., Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li-S batteries. Adv. Funct. Mater. 30(4), 1906444 (2020). https://doi.org/10.1002/adfm.201906444
- Q. Zheng, M. Watanabe, Y. Iwatate, D. Azuma, K. Shibazaki et al., Hydrothermal leaching of ternary and binary lithium-ion battery cathode materials with citric acid and the kinetic study. J. Supercrit. Fluids 165(1), 104990 (2020). https://doi.org/10.1016/j.supflu.2020.104990
- L. Li, S. Basu, Y. Wang, Z. Chen, P. Hundekar et al., Self-heating–induced healing of lithium dendrites. Science 359(6383), 1513–1516 (2018). https://doi.org/10.1126/science.aap8787
- L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang et al., Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up. Nat. Nanotechnol. 15, 94–98 (2020). https://doi.org/10.1038/s41565-019-0604-x
- D.H. Liu, Z. Bai, M. Li, A. Yu, D. Luo et al., Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem. Soc. Rev. 49, 5407–5445 (2020). https://doi.org/10.1039/C9CS00636B
- J.G. Zhang, W. Xu, J. Xiao, X. Cao, J. Liu, Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 120, 13312–13348 (2020). https://doi.org/10.1021/acs.chemrev.0c00275
- W. Xue, T. Qin, Q. Li, M. Zan, X. Yu et al., Exploiting the synergistic effects of multiple components with a uniform design method for developing low-temperature electrolytes. Energy Storage Mater. 50, 598–605 (2022). https://doi.org/10.1016/j.ensm.2022.06.003
- Z. Li, Y.X. Yao, S. Sun, C.B. Jin, N. Yao et al., 40 Years of low-temperature electrolytes for rechargeable lithium batteries. Angew. Chem. Int. Ed. 62(37), e202303888 (2023). https://doi.org/10.1002/anie.202303888
- S.S. Zhang, K. Xu, T.R. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta 49(7), 1057–1061 (2004). https://doi.org/10.1016/j.electacta.2003.10.016
- X. Liu, X. Shen, H. Li, P. Li, L. Luo et al., Ethylene carbonate-free propylene carbonate-based electrolytes with excellent electrochemical compatibility for Li-ion batteries through engineering electrolyte solvation structure. Adv. Energy Mater. 11(19), 2003905 (2021). https://doi.org/10.1002/aenm.202003905
- S. Weng, X. Zhang, G. Yang, S. Zhang, B. Ma et al., Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 14, 4474 (2023). https://doi.org/10.1038/s41467-023-40221-0
- S. Shi, P. Lu, Z. Liu, Y. Qi, L.G. Hector Jr. et al., Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134(37), 15476–15487 (2012). https://doi.org/10.1021/ja305366r
- X. Tian, Y. Yi, B. Fang, P. Yang, T. Wang et al., Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries. Chem. Mater. 32(23), 9821–9848 (2020). https://doi.org/10.1021/acs.chemmater.0c02428
- L. Suo, Y.S. Hu, H. Li, M. Armand, L. Chen, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013). https://doi.org/10.1038/ncomms2513
- L. Qiao, Z. Cui, B. Chen, G. Xu, Z. Zhang et al., A promising bulky anion based lithium borate salt for lithium metal batteries. Chem. Sci. 9, 3451–3458 (2018). https://doi.org/10.1039/C8SC00041G
- Y. Liu, P. Yu, Q. Sun, Y. Wu, M. Xie et al., Predicted operando polymerization at lithium anode via boron insertion. ACS Energy Lett. 6(6), 2320–2327 (2021). https://doi.org/10.1021/acsenergylett.1c00907
- X. Shangguan, G. Xu, Z. Cui, Q. Wang, X. Du et al., Additive-assisted novel dual-salt electrolyte addresses wide temperature operation of lithium-metal batteries. Small 15(16), 1900269 (2019). https://doi.org/10.1002/smll.201900269
- A. Pan, Z. Wang, F. Zhang, L. Wang, J. Xu et al., Wide-temperature range and high safety electrolytes for high-voltage Li-metal batteries. Nano Res. 16, 8260–8268 (2023). https://doi.org/10.1007/s12274-022-4655-1
- M. Fang, J. Chen, B. Chen, J. Wang, Salt-solvent synchro-constructed robust electrolyte-electrode interphase for high-voltage lithium metal batteries. J. Mater. Chem. A 10, 19903–19913 (2022). https://doi.org/10.1039/D2TA02267B
- H.Z. Jiang, C. Yang, M. Chen, X.W. Liu, L.M. Yin et al., Electrophilically trapping water for preventing polymerization of cyclic ether towards low-temperature Li metal battery. Angew. Chem. Int. Ed. 62(14), e202300238 (2023). https://doi.org/10.1002/anie.202300238
- S.S. Zhang, K. Xu, T.R. Jow, The low temperature performance of Li-ion batteries. J. Power. Sour. 115(1), 137–140 (2003). https://doi.org/10.1016/S0378-7753(02)00618-3
- Q. Li, D. Lu, J. Zheng, S. Jiao, L. Luo et al., Li+-desolvation dictating lithium-ion battery’s low-temperature performances. ACS Appl. Mater. Interfaces 9(49), 42761–42768 (2017). https://doi.org/10.1021/acsami.7b13887
- H. Wang, J. Liu, J. He, S. Qi, M. Wu et al., Pseudo-concentrated electrolytes for lithium metal batteries. eScience 2(5), 557–565 (2022). https://doi.org/10.1016/j.esci.2022.06.005
- G. Cai, J. Holoubek, M. Li, H. Gao, Y. Yin et al., Solvent selection criteria for temperature-resilient lithium-sulfur batteries. Proc. Natl. Acad. Sci. 119(28), e2200392119 (2022). https://doi.org/10.1073/pnas.2200392119
- J. Zhou, Y. Guo, C. Liang, L. Cao, H. Pan et al., A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode. Chem. Commun. 54, 5478–5481 (2018). https://doi.org/10.1039/C8CC02552E
- T. Ma, Y. Ni, Q. Wang, W. Zhang, S. Jin et al., Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem. Int. Ed. 61(39), e202207927 (2022). https://doi.org/10.1002/anie.202207927
- K. Ding, C. Xu, Z. Peng, X. Long, J. Shi et al., Tuning the solvent alkyl chain to tailor electrolyte solvation for stable Li-metal batteries. ACS Appl. Mater. Interfaces 14(39), 44470–44478 (2022). https://doi.org/10.1021/acsami.2c13517
- J. Holoubek, M. Yu, S. Yu, M. Li, Z. Wu et al., An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation. ACS Energy Lett. 5(5), 1438–1447 (2020). https://doi.org/10.1021/acsenergylett.0c00643
- X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4(1), 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
- Y. Yang, Y. Yin, D.M. Davies, M. Zhang, M. Mayer et al., Liquefied gas electrolytes for wide-temperature lithium metal batteries. Energy Environ. Sci. 13, 2209–2219 (2020). https://doi.org/10.1039/D0EE01446J
- J. Holoubek, K. Kim, Y. Yin, Z. Wu, H. Liu et al., Electrolyte design implications of ion-pairing in low-temperature Li metal batteries. Energy Environ. Sci. 15, 1647–1658 (2022). https://doi.org/10.1039/D1EE03422G
- Y. Gao, T. Rojas, K. Wang, S. Liu, D. Wang et al., Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5, 534–542 (2020). https://doi.org/10.1038/s41560-020-0640-7
- S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60(7), 3661–3671 (2021). https://doi.org/10.1002/anie.202012005
- J. Chen, Q. Li, T.P. Pollard, X. Fan, O. Borodin et al., Electrolyte design for Li metal-free Li batteries. Mater. Today 39, 118–126 (2020). https://doi.org/10.1016/j.mattod.2020.04.004
- X.X. Ma, X. Shen, X. Chen, Z.H. Fu, N. Yao et al., The origin of fast lithium-ion transport in the inorganic solid electrolyte interphase on lithium metal anodes. Small Struct. 3(8), 2200071 (2022). https://doi.org/10.1002/sstr.202200071
- R. Xu, C. Yan, Y. Xiao, M. Zhao, H. Yuan et al., The reduction of interfacial transfer barrier of Li ions enabled by inorganics-rich solid-electrolyte interphase. Energy Storage Mater. 28, 401–406 (2020). https://doi.org/10.1016/j.ensm.2019.12.020
- X. Li, R. Zhao, Y. Fu, A. Manthiram, Nitrate additives for lithium batteries: mechanisms, applications and prospects. eScience 1(2), 108–123 (2021). https://doi.org/10.1016/j.esci.2021.12.006
- R. Yu, Z. Li, X. Zhang, X. Guo, Electrolyte design for inorganic-rich solid-electrolyte interfaces to enable low-temperature Li metal batteries. Chem. Commun. 58, 8994–8997 (2022). https://doi.org/10.1039/D2CC03096A
- Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances for wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15, 1711–1759 (2022). https://doi.org/10.1039/D1EE03292E
- S. Wang, Z. Xue, F. Chu, Z. Guan, J. Lei et al., Moderately concentrated electrolyte enabling high-performance lithium metal batteries with a wide working temperature range. J. Energy Chem. 79, 201–210 (2023). https://doi.org/10.1016/j.jechem.2022.12.060
- S. Kim, V.G. Pol, Tailored solvation and interface structures by tetrahydrofuran-derived electrolyte facilitates ultralow temperature lithium metal battery operations. Chemsuschem 16(5), e202202143 (2023). https://doi.org/10.1002/cssc.202202143
- J. Shi, C. Xu, J. Lai, Z. Li, Y. Zhang et al., An amphiphilic molecule-regulated core-shell-solvation electrolyte for Li-metal batteries at ultra-low temperature. Angew. Chem. Int. Ed. 62(13), e202218151 (2023). https://doi.org/10.1002/anie.202218151
- X. Zheng, L. Huang, W. Luo, H. Wang, Y. Dai et al., Tailoring electrolyte solvation chemistry toward an inorganic-rich solid-electrolyte interphase at a Li metal anode. ACS Energy Lett. 6(6), 2054–2063 (2021). https://doi.org/10.1021/acsenergylett.1c00647
- Z. Li, R. Yu, S. Weng, Q. Zhang, X. Wang et al., Tailoring polymer electrolyte ionic conductivity for production of low-temperature operating quasi-all-solid-state lithium metal batteries. Nat. Commun. 14, 482 (2023). https://doi.org/10.1038/s41467-023-35857-x
- D. Wang, D. Lv, H. Liu, J. Yang, Y. Qian et al., Forming solid-electrolyte interphases with rich grain boundaries on 3d lithiophilic skeleton for low-temperature lithium metal batteries. Energy Storage Mater. 49, 454–462 (2022). https://doi.org/10.1016/j.ensm.2022.04.020
- X. Wu, K. Pan, M. Jia, Y. Ren, H. He et al., Electrolyte for lithium protection: from liquid to solid. Green Energy Environ. 4(4), 360–374 (2019). https://doi.org/10.1016/j.gee.2019.05.003
- L.G. Greca, J. Lehtonen, B.L. Tardy, J. Guo, O.J. Rojas, Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route. Mater. Horiz. 5, 408–415 (2018). https://doi.org/10.1039/C7MH01139C
- J. Li, Y. Cai, Y. Cui, H. Wu, H. Da et al., Fabrication of asymmetric bilayer solid-state electrolyte with boosted ion transport enabled by charge-rich space charge layer for -20~70°C lithium metal battery. Nano Energy 95, 107027 (2022). https://doi.org/10.1016/j.nanoen.2022.107027
- J. Chen, Z. Li, N. Sun, J. Xu, Q. Li et al., A robust Li-intercalated interlayer with strong electron withdrawing ability enables durable and high-rate Li metal anode. ACS Energy Lett. 7(5), 1594–1603 (2022). https://doi.org/10.1021/acsenergylett.2c00395
References
S.S. Zhang, K. Xu, T.R. Jow, Low temperature performance of graphite electrode in Li-ion cells. Electrochim. Acta 48, 241–246 (2002). https://doi.org/10.1016/S0013-4686(02)00620-5
A.C. Thenuwara, P.P. Shetty, N. Kondekar, S.E. Sandoval, K. Cavallaro et al., Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase. ACS Energy Lett. 5, 2411–2420 (2020). https://doi.org/10.1021/acsenergylett.0c01209
W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/C3EE40795K
X. Shen, H. Liu, X.B. Cheng, C. Yan, J.Q. Huang, Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Stor. Mater. 12, 161–175 (2018). https://doi.org/10.1016/j.ensm.2017.12.002
A. Soto, A. Berrueta, P. Sanchis, A. Ursúa, I. Oficialdegui, On the technical reliability of Lithium-ion batteries in a zero emission polar expedition, 2020 IEEE Int. Conf. Environ. Electr. Eng. 2020 IEEE Ind. Commer. Power Syst. Eur. EEEIC ICPS Eur., pp. 1–6.
J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z
C.T. Love, O.A. Baturina, K.E. Swider-Lyons, Observation of lithium dendrites at ambient temperature and below. ECS Electrochem. Lett. 4, A24 (2015). https://doi.org/10.1149/2.0041502eel
A. Maraschky, R. Akolkar, Temperature dependence of dendritic lithium electrodeposition: a mechanistic study of the role of transport limitations within the SEI. J. Electrochem. Soc. 167(6), 062503 (2020). https://doi.org/10.1149/1945-7111/ab7ce2
M.C. Smart, B.V. Ratnakumar, R.C. Ewell, S. Surampudi, F.J. Puglia et al., The use of lithium-ion batteries for JPL’s Mars missions. Electrochim. Acta 268(1), 27–40 (2018). https://doi.org/10.1016/j.electacta.2018.02.020
X. Su, Y. Xu, Y. Wu, H. Li, J. Yang et al., Liquid electrolytes for low-temperature lithium batteries: main limitations, current advances, and future perspectives. Energy Storage Mater. 56, 642–663 (2023). https://doi.org/10.1016/j.ensm.2023.01.044
Q. Li, G. Liu, H. Cheng, Q. Sun, J. Zhang et al., Low-temperature electrolyte design for lithium-ion batteries: prospect and challenges. Chem. Eur. J. 27(64), 15842–15865 (2021). https://doi.org/10.1002/chem.202101407
D. Luo, M. Li, Y. Zheng, Q. Ma, R. Gao et al., Electrolyte design for lithium metal anode-based batteries toward extreme temperature application. Adv. Sci. 8(18), 2101051 (2021). https://doi.org/10.1002/advs.202101051
W. Cai, Y.X. Yao, G.L. Zhu, C. Yan, L.L. Jiang et al., A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 49, 3806–3833 (2020). https://doi.org/10.1039/C9CS00728H
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). https://doi.org/10.1021/cr030203g
K. Xu, Navigating the minefield of battery literature. Commun. Mater. 3, 31 (2022). https://doi.org/10.1038/s43246-022-00251-5
J.N. Al-Dawsari, A. Bessadok-Jemai, I. Wazeer, S. Mokraoui, M.A. AlMansour et al., Fitting of experimental viscosity to temperature data for deep eutectic solvents. J. Mol. Liq. 310(15), 113127 (2020). https://doi.org/10.1016/j.molliq.2020.113127
A. Ramanujapuram, G. Yushin, Understanding the exceptional performance of lithium-ion battery cathodes in aqueous electrolytes at subzero temperatures. Adv. Energy Mater. 8, 1802624 (2018). https://doi.org/10.1002/aenm.201802624
Z. Ma, J. Chen, J. Vatamanu, O. Borodin, D. Bedrov et al., Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery. Energy Storage Mater. 45, 903–910 (2022). https://doi.org/10.1016/j.ensm.2021.12.045
T.R. Jow, K. Xu, O. Borodin, M. Ue et al., Electrolytes for lithium and lithium-ion batteries (Springer, New York, 2014). https://doi.org/10.1007/978-1-4939-0302-3
K. Xu, “Charge-Transfer” process at graphite/electrolyte interface and the solvation sheath structure of Li+ in nonaqueous electrolytes. J. Electrochem. Soc. 154, A162 (2007). https://doi.org/10.1149/1.2409866
Z. Wang, Z. Sun, Y. Shi, F. Qi, X. Gao et al., Ion-dipole chemistry drives rapid evolution of Li ions solvation sheath in low-temperature Li batteries. Adv. Energy Mater. 11(28), 2100935 (2021). https://doi.org/10.1002/aenm.202100935
W. Lin, J. Li, J. Wang, K. Gu, H. Li et al., Weak-coordination electrolyte enabling fast Li+ transport in lithium metal batteries at ultra-low temperature. Small 19(23), 2207093 (2021). https://doi.org/10.1002/smll.202207093
F. Ren, Z. Li, J. Chen, P. Huguet, Z. Peng et al., Solvent-diluent interaction-mediated solvation structure of localized high-concentration electrolytes. ACS Appl. Mater. Interfaces 14(3), 4211–4219 (2022). https://doi.org/10.1021/acsami.1c21638
Y.X. Yao, X. Chen, C. Yan, X.Q. Zhang, W.L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60(8), 4090–4097 (2021). https://doi.org/10.1002/anie.202011482
J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614, 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
S.C. Kim, X. Kong, R.A. Vilá, W. Huang, Y. Chen et al., Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability. J. Am. Chem. Soc. 143, 10301–10308 (2021). https://doi.org/10.1021/jacs.1c03868
L. Sheng, Y. Wu, J. Tian, L. Wang, J. Wang et al., Impact of lithium-ion coordination on lithium electrodeposition. Energy Environ. Mater. 6(1), e12266 (2023). https://doi.org/10.1002/eem2.12266
J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021). https://doi.org/10.1002/aenm.202100046
X. Gao, Y.N. Zhou, D. Han, J. Zhou, D. Zhou et al., Thermodynamic understanding of Li-dendrite formation. Joule 4, 1864–1879 (2020). https://doi.org/10.1016/j.joule.2020.06.016
Z. Zhang, Y. Li, R. Xu, W. Zhou, Y. Li et al., Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375(6576), 66–70 (2022). https://doi.org/10.1126/science.abi8703
P. Zhai, L. Liu, X. Gu, T. Wang, Y. Gong, Interface engineering for lithium metal anodes in liquid electrolyte. Adv. Energy Mater. 10(34), 2001257 (2020). https://doi.org/10.1002/aenm.202001257
H. Adenusi, G.A. Chass, S. Passerini, K.V. Tian, G. Chen, Lithium batteries and the solid electrolyte interphase (SEI)-progress and outlook. Adv. Energy Mater. 13(10), 2203307 (2023). https://doi.org/10.1002/aenm.202203307
H. Wu, H. Jia, C. Wang, J. Zhang, W. Xu, Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 11(5), 2003092 (2021). https://doi.org/10.1002/aenm.202003092
T.R. Jow, S.A. Delp, J.L. Allen, J.P. Jones, M.C. Smart, Factors Limiting Li+ charge transfer kinetics in Li-ion batteries. J. Electrochem. Soc. 165(2), A361–A367 (2018). https://doi.org/10.1149/2.1221802jes
Y. Chen, A. Elangovan, D. Zeng, Y. Zhang, H. Ke et al., Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li-S batteries. Adv. Funct. Mater. 30(4), 1906444 (2020). https://doi.org/10.1002/adfm.201906444
Q. Zheng, M. Watanabe, Y. Iwatate, D. Azuma, K. Shibazaki et al., Hydrothermal leaching of ternary and binary lithium-ion battery cathode materials with citric acid and the kinetic study. J. Supercrit. Fluids 165(1), 104990 (2020). https://doi.org/10.1016/j.supflu.2020.104990
L. Li, S. Basu, Y. Wang, Z. Chen, P. Hundekar et al., Self-heating–induced healing of lithium dendrites. Science 359(6383), 1513–1516 (2018). https://doi.org/10.1126/science.aap8787
L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang et al., Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up. Nat. Nanotechnol. 15, 94–98 (2020). https://doi.org/10.1038/s41565-019-0604-x
D.H. Liu, Z. Bai, M. Li, A. Yu, D. Luo et al., Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem. Soc. Rev. 49, 5407–5445 (2020). https://doi.org/10.1039/C9CS00636B
J.G. Zhang, W. Xu, J. Xiao, X. Cao, J. Liu, Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 120, 13312–13348 (2020). https://doi.org/10.1021/acs.chemrev.0c00275
W. Xue, T. Qin, Q. Li, M. Zan, X. Yu et al., Exploiting the synergistic effects of multiple components with a uniform design method for developing low-temperature electrolytes. Energy Storage Mater. 50, 598–605 (2022). https://doi.org/10.1016/j.ensm.2022.06.003
Z. Li, Y.X. Yao, S. Sun, C.B. Jin, N. Yao et al., 40 Years of low-temperature electrolytes for rechargeable lithium batteries. Angew. Chem. Int. Ed. 62(37), e202303888 (2023). https://doi.org/10.1002/anie.202303888
S.S. Zhang, K. Xu, T.R. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta 49(7), 1057–1061 (2004). https://doi.org/10.1016/j.electacta.2003.10.016
X. Liu, X. Shen, H. Li, P. Li, L. Luo et al., Ethylene carbonate-free propylene carbonate-based electrolytes with excellent electrochemical compatibility for Li-ion batteries through engineering electrolyte solvation structure. Adv. Energy Mater. 11(19), 2003905 (2021). https://doi.org/10.1002/aenm.202003905
S. Weng, X. Zhang, G. Yang, S. Zhang, B. Ma et al., Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 14, 4474 (2023). https://doi.org/10.1038/s41467-023-40221-0
S. Shi, P. Lu, Z. Liu, Y. Qi, L.G. Hector Jr. et al., Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134(37), 15476–15487 (2012). https://doi.org/10.1021/ja305366r
X. Tian, Y. Yi, B. Fang, P. Yang, T. Wang et al., Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries. Chem. Mater. 32(23), 9821–9848 (2020). https://doi.org/10.1021/acs.chemmater.0c02428
L. Suo, Y.S. Hu, H. Li, M. Armand, L. Chen, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013). https://doi.org/10.1038/ncomms2513
L. Qiao, Z. Cui, B. Chen, G. Xu, Z. Zhang et al., A promising bulky anion based lithium borate salt for lithium metal batteries. Chem. Sci. 9, 3451–3458 (2018). https://doi.org/10.1039/C8SC00041G
Y. Liu, P. Yu, Q. Sun, Y. Wu, M. Xie et al., Predicted operando polymerization at lithium anode via boron insertion. ACS Energy Lett. 6(6), 2320–2327 (2021). https://doi.org/10.1021/acsenergylett.1c00907
X. Shangguan, G. Xu, Z. Cui, Q. Wang, X. Du et al., Additive-assisted novel dual-salt electrolyte addresses wide temperature operation of lithium-metal batteries. Small 15(16), 1900269 (2019). https://doi.org/10.1002/smll.201900269
A. Pan, Z. Wang, F. Zhang, L. Wang, J. Xu et al., Wide-temperature range and high safety electrolytes for high-voltage Li-metal batteries. Nano Res. 16, 8260–8268 (2023). https://doi.org/10.1007/s12274-022-4655-1
M. Fang, J. Chen, B. Chen, J. Wang, Salt-solvent synchro-constructed robust electrolyte-electrode interphase for high-voltage lithium metal batteries. J. Mater. Chem. A 10, 19903–19913 (2022). https://doi.org/10.1039/D2TA02267B
H.Z. Jiang, C. Yang, M. Chen, X.W. Liu, L.M. Yin et al., Electrophilically trapping water for preventing polymerization of cyclic ether towards low-temperature Li metal battery. Angew. Chem. Int. Ed. 62(14), e202300238 (2023). https://doi.org/10.1002/anie.202300238
S.S. Zhang, K. Xu, T.R. Jow, The low temperature performance of Li-ion batteries. J. Power. Sour. 115(1), 137–140 (2003). https://doi.org/10.1016/S0378-7753(02)00618-3
Q. Li, D. Lu, J. Zheng, S. Jiao, L. Luo et al., Li+-desolvation dictating lithium-ion battery’s low-temperature performances. ACS Appl. Mater. Interfaces 9(49), 42761–42768 (2017). https://doi.org/10.1021/acsami.7b13887
H. Wang, J. Liu, J. He, S. Qi, M. Wu et al., Pseudo-concentrated electrolytes for lithium metal batteries. eScience 2(5), 557–565 (2022). https://doi.org/10.1016/j.esci.2022.06.005
G. Cai, J. Holoubek, M. Li, H. Gao, Y. Yin et al., Solvent selection criteria for temperature-resilient lithium-sulfur batteries. Proc. Natl. Acad. Sci. 119(28), e2200392119 (2022). https://doi.org/10.1073/pnas.2200392119
J. Zhou, Y. Guo, C. Liang, L. Cao, H. Pan et al., A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode. Chem. Commun. 54, 5478–5481 (2018). https://doi.org/10.1039/C8CC02552E
T. Ma, Y. Ni, Q. Wang, W. Zhang, S. Jin et al., Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem. Int. Ed. 61(39), e202207927 (2022). https://doi.org/10.1002/anie.202207927
K. Ding, C. Xu, Z. Peng, X. Long, J. Shi et al., Tuning the solvent alkyl chain to tailor electrolyte solvation for stable Li-metal batteries. ACS Appl. Mater. Interfaces 14(39), 44470–44478 (2022). https://doi.org/10.1021/acsami.2c13517
J. Holoubek, M. Yu, S. Yu, M. Li, Z. Wu et al., An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation. ACS Energy Lett. 5(5), 1438–1447 (2020). https://doi.org/10.1021/acsenergylett.0c00643
X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4(1), 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
Y. Yang, Y. Yin, D.M. Davies, M. Zhang, M. Mayer et al., Liquefied gas electrolytes for wide-temperature lithium metal batteries. Energy Environ. Sci. 13, 2209–2219 (2020). https://doi.org/10.1039/D0EE01446J
J. Holoubek, K. Kim, Y. Yin, Z. Wu, H. Liu et al., Electrolyte design implications of ion-pairing in low-temperature Li metal batteries. Energy Environ. Sci. 15, 1647–1658 (2022). https://doi.org/10.1039/D1EE03422G
Y. Gao, T. Rojas, K. Wang, S. Liu, D. Wang et al., Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5, 534–542 (2020). https://doi.org/10.1038/s41560-020-0640-7
S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60(7), 3661–3671 (2021). https://doi.org/10.1002/anie.202012005
J. Chen, Q. Li, T.P. Pollard, X. Fan, O. Borodin et al., Electrolyte design for Li metal-free Li batteries. Mater. Today 39, 118–126 (2020). https://doi.org/10.1016/j.mattod.2020.04.004
X.X. Ma, X. Shen, X. Chen, Z.H. Fu, N. Yao et al., The origin of fast lithium-ion transport in the inorganic solid electrolyte interphase on lithium metal anodes. Small Struct. 3(8), 2200071 (2022). https://doi.org/10.1002/sstr.202200071
R. Xu, C. Yan, Y. Xiao, M. Zhao, H. Yuan et al., The reduction of interfacial transfer barrier of Li ions enabled by inorganics-rich solid-electrolyte interphase. Energy Storage Mater. 28, 401–406 (2020). https://doi.org/10.1016/j.ensm.2019.12.020
X. Li, R. Zhao, Y. Fu, A. Manthiram, Nitrate additives for lithium batteries: mechanisms, applications and prospects. eScience 1(2), 108–123 (2021). https://doi.org/10.1016/j.esci.2021.12.006
R. Yu, Z. Li, X. Zhang, X. Guo, Electrolyte design for inorganic-rich solid-electrolyte interfaces to enable low-temperature Li metal batteries. Chem. Commun. 58, 8994–8997 (2022). https://doi.org/10.1039/D2CC03096A
Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances for wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15, 1711–1759 (2022). https://doi.org/10.1039/D1EE03292E
S. Wang, Z. Xue, F. Chu, Z. Guan, J. Lei et al., Moderately concentrated electrolyte enabling high-performance lithium metal batteries with a wide working temperature range. J. Energy Chem. 79, 201–210 (2023). https://doi.org/10.1016/j.jechem.2022.12.060
S. Kim, V.G. Pol, Tailored solvation and interface structures by tetrahydrofuran-derived electrolyte facilitates ultralow temperature lithium metal battery operations. Chemsuschem 16(5), e202202143 (2023). https://doi.org/10.1002/cssc.202202143
J. Shi, C. Xu, J. Lai, Z. Li, Y. Zhang et al., An amphiphilic molecule-regulated core-shell-solvation electrolyte for Li-metal batteries at ultra-low temperature. Angew. Chem. Int. Ed. 62(13), e202218151 (2023). https://doi.org/10.1002/anie.202218151
X. Zheng, L. Huang, W. Luo, H. Wang, Y. Dai et al., Tailoring electrolyte solvation chemistry toward an inorganic-rich solid-electrolyte interphase at a Li metal anode. ACS Energy Lett. 6(6), 2054–2063 (2021). https://doi.org/10.1021/acsenergylett.1c00647
Z. Li, R. Yu, S. Weng, Q. Zhang, X. Wang et al., Tailoring polymer electrolyte ionic conductivity for production of low-temperature operating quasi-all-solid-state lithium metal batteries. Nat. Commun. 14, 482 (2023). https://doi.org/10.1038/s41467-023-35857-x
D. Wang, D. Lv, H. Liu, J. Yang, Y. Qian et al., Forming solid-electrolyte interphases with rich grain boundaries on 3d lithiophilic skeleton for low-temperature lithium metal batteries. Energy Storage Mater. 49, 454–462 (2022). https://doi.org/10.1016/j.ensm.2022.04.020
X. Wu, K. Pan, M. Jia, Y. Ren, H. He et al., Electrolyte for lithium protection: from liquid to solid. Green Energy Environ. 4(4), 360–374 (2019). https://doi.org/10.1016/j.gee.2019.05.003
L.G. Greca, J. Lehtonen, B.L. Tardy, J. Guo, O.J. Rojas, Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route. Mater. Horiz. 5, 408–415 (2018). https://doi.org/10.1039/C7MH01139C
J. Li, Y. Cai, Y. Cui, H. Wu, H. Da et al., Fabrication of asymmetric bilayer solid-state electrolyte with boosted ion transport enabled by charge-rich space charge layer for -20~70°C lithium metal battery. Nano Energy 95, 107027 (2022). https://doi.org/10.1016/j.nanoen.2022.107027
J. Chen, Z. Li, N. Sun, J. Xu, Q. Li et al., A robust Li-intercalated interlayer with strong electron withdrawing ability enables durable and high-rate Li metal anode. ACS Energy Lett. 7(5), 1594–1603 (2022). https://doi.org/10.1021/acsenergylett.2c00395