Critical Review on cathode–electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries
Corresponding Author: Jijian Xu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 166
Abstract
The thermal stability window of current commercial carbonate-based electrolytes is no longer sufficient to meet the ever-increasing cathode working voltage requirements of high energy density lithium-ion batteries. It is crucial to construct a robust cathode–electrolyte interphase (CEI) for high-voltage cathode electrodes to separate the electrolytes from the active cathode materials and thereby suppress the side reactions. Herein, this review presents a brief historic evolution of the mechanism of CEI formation and compositions, the state-of-art characterizations and modeling associated with CEI, and how to construct robust CEI from a practical electrolyte design perspective. The focus on electrolyte design is categorized into three parts: CEI-forming additives, anti-oxidation solvents, and lithium salts. Moreover, practical considerations for electrolyte design applications are proposed. This review will shed light on the future electrolyte design which enables aggressive high-voltage cathodes.
Highlights:
1 A critical assessment of cathode–electrolyte interphase (CEI) for high-voltage cathode electrodes in Li-ion cells.
2 Fundamental understanding of why interfacial interphase is important to electrochemical performance and further elaboration on how to design robust CEI interphase.
3 Emerging theoretical simulations and advanced in situ characterizations helps to unveil the mystery of CEI are summarized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
- X. Fan, C. Wang, High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021). https://doi.org/10.1039/D1CS00450F
- J. Zhang, P.F. Wang, P. Bai, H. Wan, S. Liu et al., Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode. Adv. Mater. 34(8), 2108353 (2022). https://doi.org/10.1002/adma.202108353
- U.H. Kim, D.W. Jun, K.J. Park, Q. Zhang, P. Kaghazchi et al., Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy Environ. Sci. 11(5), 1271–1279 (2018). https://doi.org/10.1039/C8EE00227D
- W. Li, B. Song, A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46(10), 3006–3059 (2017). https://doi.org/10.1039/C6CS00875E
- D. Kong, J. Hu, Z. Chen, K. Song, C. Li et al., Ti-gradient doping to stabilize layered surface structure for high performance high-Ni oxide cathode of Li-ion battery. Adv. Energy Mater. 9(41), 1901756 (2019). https://doi.org/10.1002/aenm.201901756
- H. Yu, Y. Cao, L. Chen, Y. Hu, X. Duan et al., Surface enrichment and diffusion enabling gradient-doping and coating of ni-rich cathode toward Li-ion batteries. Nat. Commun. 12, 4564 (2021). https://doi.org/10.1038/s41467-021-24893-0
- J.N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge et al., Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4(7), 594–603 (2019). https://doi.org/10.1038/s41560-019-0409-z
- W. He, F. Ye, J. Lin, Q. Wang, Q. Xie et al., Boosting the electrochemical performance of Li- and Mn-rich cathodes by a three-in-one strategy. Nano-Micro Lett. 13, 205 (2021). https://doi.org/10.1007/s40820-021-00725-0
- S.W. Lee, M.S. Kim, J.H. Jeong, D.H. Kim, K.Y. Chung et al., Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: improved thermal stability and high-voltage performance. J. Power Sources 360, 206–214 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.042
- J. Qian, L. Liu, J. Yang, S. Li, X. Wang et al., Electrochemical surface passivation of LiCoO2 ps at ultrahigh voltage and its applications in lithium-based batteries. Nat. Commun. 9, 4918 (2018). https://doi.org/10.1038/s41467-018-07296-6
- J.S. Park, X. Meng, J.W. Elam, S. Hao, C. Wolverton et al., Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries. Chem. Mater. 26(10), 3128–3134 (2014). https://doi.org/10.1021/cm500512n
- Q. Wu, Y. Yin, S. Sun, X. Zhang, N. Wan et al., Novel AlF3 surface modified spinel LiMn1.5Ni0.5O4 for lithium-ion batteries: performance characterization and mechanism exploration. Electrochim. Acta 158, 73–80 (2015). https://doi.org/10.1016/j.electacta.2015.01.145
- Z. Zhao, M. Sun, T. Wu, J. Zhang, P. Wang et al., A bifunctional-modulated conformal Li/Mn-rich layered cathode for fast-charging, high volumetric density and durable Li-ion full cells. Nano-Micro Lett. 13, 118 (2021). https://doi.org/10.1007/s40820-021-00643-1
- Y. Zhao, L. Zhang, J. Liu, K. Adair, F. Zhao et al., Atomic/molecular layer deposition for energy storage and conversion. Chem. Soc. Rev. 50, 3889–3956 (2021). https://doi.org/10.1039/D0CS00156B
- E. Wang, Y. Zhao, D. Xiao, X. Zhang, T. Wu et al., Composite nanostructure construction on the grain surface of Li-rich layered oxides. Adv. Mater. 32, 1906070 (2020). https://doi.org/10.1002/adma.201906070
- B.J. Chae, J.H. Park, H.J. Song, S.H. Jang, K. Jung et al., Thiophene-initiated polymeric artificial cathode-electrolyte interface for Ni-rich cathode material. Electrochim. Acta 290, 465–473 (2018). https://doi.org/10.1016/j.electacta.2018.09.103
- K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004). https://doi.org/10.1021/cr030203g
- M. Gauthier, T.J. Carney, A. Grimaud, L. Giordano, N. Pour et al., Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights. J. Phys. Chem. Lett. 6(22), 4653–4672 (2015). https://doi.org/10.1021/acs.jpclett.5b01727
- Y. Wu, X. Liu, L. Wang, X. Feng, D. Ren et al., Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Mater. 37, 77–86 (2021). https://doi.org/10.1016/j.ensm.2021.02.001
- H.M.K. Sari, X. Li, Controllable cathode–electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv. Energy Mater. 9(39), 1901597 (2019). https://doi.org/10.1002/aenm.201901597
- S.P. Kühn, K. Edström, M. Winter, I. Cekic-Laskovic, Face to face at the cathode electrolyte interphase: from interface features to interphase formation and dynamics. Adv. Mater. Interfaces 9(8), 2102078 (2022). https://doi.org/10.1002/admi.202102078
- Q. Li, Y. Wang, X. Wang, X. Sun, J.N. Zhang et al., Investigations on the fundamental process of cathode electrolyte interphase formation and evolution of high-voltage cathodes. ACS Appl. Mater. Interfaces 12(2), 2319–2326 (2019). https://doi.org/10.1021/acsami.9b16727
- K. Xu, Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114(23), 11503–11618 (2014). https://doi.org/10.1021/cr500003w
- P. Peljo, H.H. Girault, Electrochemical potential window of battery electrolytes: the homo–lumo misconception. Energy Environ. Sci. 11(9), 2306–2309 (2018). https://doi.org/10.1039/C8EE01286E
- O. Borodin, Challenges with prediction of battery electrolyte electrochemical stability window and guiding the electrode–electrolyte stabilization. Curr. Opin. Electrochem. 13, 86–93 (2019). https://doi.org/10.1016/j.coelec.2018.10.015
- K. Edstroem, T. Gustafsson, J.O. Thomas, The cathode–electrolyte interface in the Li-ion battery. Electrochim. Acta 50(2–3), 397–403 (2004). https://doi.org/10.1016/j.electacta.2004.03.049
- D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89(2), 206–218 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6
- M. Thomas, P.G. Bruce, J.B. Goodenough, Ac impedance analysis of polycrystalline insertion electrodes: application to Li1−xCoO2. J. Electrochem. Soc. 132(7), 1521 (1985). https://doi.org/10.1149/1.2114158
- K. Kanamura, S. Toriyama, S. Shiraishi, M. Ohashi, Z.I. Takehara, Studies on electrochemical oxidation of non-aqueous electrolyte on the LiCoO2 thin film electrode. J. Electroanal. Chem. 419(1), 77–84 (1996). https://doi.org/10.1016/S0022-0728(96)04862-0
- T. Eriksson, A. Andersson, C. Gejke, T. Gustafsson, J.O. Thomas, Influence of temperature on the interface chemistry of LixMn2O4 electrodes. Langmuir 18(9), 3609–3619 (2002). https://doi.org/10.1021/la011354m
- G.L. Xu, Q. Liu, K.K. Lau, Y. Liu, X. Liu et al., Building ultraconformal protective layers on both secondary and primary ps of layered lithium transition metal oxide cathodes. Nat. Energy 4(6), 484–494 (2019). https://doi.org/10.1038/s41560-019-0387-1
- W. Liu, J. Li, W. Li, H. Xu, C. Zhang et al., Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nat. Commun. 11, 3629 (2020). https://doi.org/10.1038/s41467-020-17396-x
- S. Bolloju, C.Y. Chiou, T. Vikramaditya, J.T. Lee, (Pentafluorophenyl) diphenylphosphine as a dual-functional electrolyte additive for LiNi0.5Mn1.5O4 cathodes in high-voltage lithium-ion batteries. Electrochim. Acta 299, 663–671 (2019). https://doi.org/10.1016/j.electacta.2019.01.037
- Z.P. Zhuang, X. Dai, W.D. Dong, L.Q. Jiang, L. Wang et al., Tris (trimethylsilyl) borate as electrolyte additive alleviating cathode electrolyte interphase for enhanced lithium-selenium battery. Electrochim. Acta 393, 139042 (2021). https://doi.org/10.1016/j.electacta.2021.139042
- D. Wu, J. He, J. Liu, M. Wu, S. Qi et al., Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+-transferred characteristics via adjusting electrolyte additives. Adv. Energy Mater. 12(18), 2200337 (2022). https://doi.org/10.1002/aenm.202200337
- F. Li, J. He, J. Liu, M. Wu, Y. Hou et al., Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew. Chem. Int. Ed. 60(12), 6600–6608 (2021). https://doi.org/10.1002/anie.202013993
- Q. Zhang, J. Ma, L. Mei, J. Liu, Z. Li et al., In situ tem visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries. Matter 5(4), 1235–1250 (2022). https://doi.org/10.1016/j.matt.2022.01.015
- N. Yabuuchi, K. Yoshii, S.T. Myung, I. Nakai, S. Komaba, Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 133(12), 4404–4419 (2011). https://doi.org/10.1021/ja108588y
- F. Lin, I.M. Markus, D. Nordlund, T.C. Weng, M.D. Asta et al., Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014). https://doi.org/10.1038/ncomms4529
- K. Yamamoto, T. Minato, S. Mori, D. Takamatsu, Y. Orikasa et al., Improved cyclic performance of lithium-ion batteries: an investigation of cathode/electrolyte interface via in situ total-reflection fluorescence x-ray absorption spectroscopy. J. Phys. Chem. C 118(18), 9538–9543 (2014). https://doi.org/10.1021/jp5011132
- J.L. Tebbe, T.F. Fuerst, C.B. Musgrave, Degradation of ethylene carbonate electrolytes of lithium ion batteries via ring opening activated by LiCoO2 cathode surfaces and electrolyte species. ACS Appl. Mater. Interfaces 8(40), 26664–26674 (2016). https://doi.org/10.1021/acsami.6b06157
- M.A. Teshager, S.D. Lin, B.J. Hwang, F.M. Wang, S.H. Haregewoin et al., In situ drifts analysis of solid-electrolyte interphase formation on Li-rich Li1.2Ni0.2Mn0.6O2 and LiCoO2 cathodes during oxidative electrolyte decomposition. ChemElectroChem. 3(2), 337–345 (2016). https://doi.org/10.1002/celc.201500290
- C. Cárdenas, N. Rabi, P.W. Ayers, C. Morell, P. Jaramillo et al., Chemical reactivity descriptors for ambiphilic reagents: dual descriptor, local hypersoftness, and electrostatic potential. J. Phys. Chem. A 113(30), 8660–8667 (2009). https://doi.org/10.1021/jp902792n
- O. Borodin, X. Ren, J. Vatamanu, A.W. Cresce, J. Knap et al., Modeling insight into battery electrolyte electrochemical stability and interfacial structure. Acc. Chem. Res. 50(12), 2886–2894 (2017). https://doi.org/10.1021/acs.accounts.7b00486
- O. Borodin, M. Olguin, C.E. Spear, K.W. Leiter, J. Knap, Towards high throughput screening of electrochemical stability of battery electrolytes. Nanotechnology 26(35), 354003 (2015). https://doi.org/10.1088/0957-4484/26/35/354003
- O. Borodin, M. Olguin, C. Spear, K. Leiter, J. Knap et al., Challenges with quantum chemistry-based screening of electrochemical stability of lithium battery electrolytes. ECS Transact. 69(1), 113 (2015). https://doi.org/10.1149/06901.0113ecst
- J. Li, W. Li, Y. You, A. Manthiram, Extending the service life of high-Ni layered oxides by tuning the electrode–electrolyte interphase. Adv. Energy Mater. 8(29), 1801957 (2018). https://doi.org/10.1002/aenm.201801957
- J.N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu et al., Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 14, 1–7 (2018). https://doi.org/10.1016/j.ensm.2018.02.016
- D. Xiong, R. Petibon, M. Nie, L. Ma, J. Xia et al., Interactions between positive and negative electrodes in Li-ion cells operated at high temperature and high voltage. J. Electrochem. Soc. 163(3), A546 (2016). https://doi.org/10.1149/2.0951603jes
- S. Krueger, R. Kloepsch, J. Li, S. Nowak, S. Passerini et al., How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries? J. Electrochem. Soc. 160(4), A542 (2013). https://doi.org/10.1149/2.022304jes
- S. Li, C. Chen, X. Xia, J. Dahn, The impact of electrolyte oxidation products in LiNi0.5Mn1.5O4/Li4Ti5O12 cells. J. Electrochem. Soc. 160(9), A1524 (2013). https://doi.org/10.1149/2.051309jes
- Y. Wang, Y. Zhang, S. Wang, S. Dong, C. Dang et al., Ultrafast charging and stable cycling dual–ion batteries enabled via an artificial cathode–electrolyte interface. Adv. Funct. Mater. 31(29), 2102360 (2021). https://doi.org/10.1002/adfm.202102360
- W.H. Li, Y.M. Li, X.F. Liu, Z.Y. Gu, H.J. Liang et al., All-climate and ultrastable dual-ion batteries with long life achieved via synergistic enhancement of cathode and anode interfaces. Adv. Funct. Mater. 32(21), 2201038 (2022). https://doi.org/10.1002/adfm.202201038
- W.H. Li, H.J. Liang, X.K. Hou, Z.Y. Gu, X.X. Zhao et al., Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery. J. Energy Chem. 50, 416–423 (2020). https://doi.org/10.1002/adfm.202201038
- J. Lu, T. Wu, K. Amine, State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy 2(3), 17011 (2017). https://doi.org/10.1038/nenergy.2017.11
- T. Minato, H. Kawaura, M. Hirayama, S. Taminato, K. Suzuki et al., Dynamic behavior at the interface between lithium cobalt oxide and an organic electrolyte monitored by neutron reflectivity measurements. J. Phys. Chem. C 120(36), 20082–20088 (2016). https://doi.org/10.1021/acs.jpcc.6b02523
- W. Lu, J. Zhang, J. Xu, X. Wu, L. Chen, In situ visualized cathode electrolyte interphase on LiCoO2 in high voltage cycling. ACS Appl. Mater. Interfaces 9(22), 19313–19318 (2017). https://doi.org/10.1021/acsami.7b03024
- Y. Meng, G. Chen, L. Shi, H. Liu, D. Zhang, Operando fourier transform infrared investigation of cathode electrolyte interphase dynamic reversible evolution on Li1.2Ni0.2Mn0.6O2. ACS Appl. Mater. Interfaces 11(48), 45108–45117 (2019). https://doi.org/10.1021/acsami.9b17438
- D. Chen, M.A. Mahmoud, J.H. Wang, G.H. Waller, B. Zhao et al., Operando investigation into dynamic evolution of cathode–electrolyte interfaces in a Li-ion battery. Nano Lett. 19(3), 2037–2043 (2019). https://doi.org/10.1021/acs.nanolett.9b00179
- Y. Chu, Y. Shen, F. Guo, X. Zhao, Q. Dong et al., Advanced characterizations of solid electrolyte interphases in lithium-ion batteries. Electrochem. Energy Rev. 3, 187–219 (2020). https://doi.org/10.1007/s41918-019-00058-y
- Z. Zhu, Y. Zhou, P. Yan, R. Vemuri, W. Xu et al., In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries. Nano Lett. 15(9), 6170–6176 (2015). https://doi.org/10.1021/acs.nanolett.5b02479
- Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun et al., Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science. 358(6362), 506–510 (2017). https://doi.org/10.1126/science.aam6014
- J. Scharf, M. Chouchane, D.P. Finegan, B. Lu, C. Redquest et al., Bridging nano-and microscale x-ray tomography for battery research by leveraging artificial intelligence. Nat. Nanotechnol. 17, 446–459 (2022). https://doi.org/10.1038/s41565-022-01081-9
- T.T. Nguyen, J. Villanova, Z. Su, R. Tucoulou, B. Fleutot et al., 3D quantification of microstructural properties of LiNi0.5Mn0.3Co0.2O2 high-energy density electrodes by x-ray holographic nano-tomography. Adv. Energy Mater. 11(8), 2003529 (2021). https://doi.org/10.1002/aenm.202003529
- M. Garcia, E. Webb, S. Garofalini, Molecular dynamics simulation of V2O5/ Li2SiO3 interface. J. Electrochem. Soc. 145(6), 2155 (1998). https://doi.org/10.1149/1.1838611
- G. Nuspl, M. Nagaoka, K. Yoshizawa, F. Mohri, T. Yamabe, Lithium diffusion in LixCoO2 electrode materials. B Chem. Soc. Jpn. 71(9), 2259–2265 (1998). https://doi.org/10.1246/bcsj.71.2259
- L. Xing, J. Vatamanu, O. Borodin, G.D. Smith, D. Bedrov, Electrode/electrolyte interface in sulfolane-based electrolytes for Li ion batteries: a molecular dynamics simulation study. J. Phys. Chem. C 116(45), 23871–23881 (2012). https://doi.org/10.1021/jp3054179
- S. Wu, B. Su, K. Ni, F. Pan, C. Wang et al., Fluorinated carbonate electrolyte with superior oxidative stability enables long-term cycle stability of Na2/3Ni1/3Mn2/3O2 cathodes in sodium-ion batteries. Adv. Energy Mater. 11(9), 2002737 (2021). https://doi.org/10.1002/aenm.202002737
- X. Xie, E.W.C. Spotte-Smith, M. Wen, H.D. Patel, S.M. Blau et al., Data-driven prediction of formation mechanisms of lithium ethylene monocarbonate with an automated reaction network. J. Am. Chem. Soc. 143(33), 13245–13258 (2021). https://doi.org/10.1021/jacs.1c05807
- S.M. Blau, H.D. Patel, E.W.C. Spotte-Smith, X. Xie, S. Dwaraknath et al., A chemically consistent graph architecture for massive reaction networks applied to solid-electrolyte interphase formation. Chem. Sci. 12(13), 4931–4939 (2021). https://doi.org/10.1039/D0SC05647B
- M.H. Park, Y.S. Lee, H. Lee, Y.K. Han, Low Li+ binding affinity: an important characteristic for additives to form solid electrolyte interphases in Li-ion batteries. J. Power Sources 196(11), 5109–5114 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.106
- J. Zhao, X. Zhang, Y. Liang, Z. Han, S. Liu et al., Interphase engineering by electrolyte additives for lithium-rich layered oxides: advances and perspectives. ACS Energy Lett. 6(7), 2552–2564 (2021). https://doi.org/10.1021/acsenergylett.1c00750
- Y. Qian, P. Niehoff, M. Börner, M. Grützke, X. Mönnighoff et al., Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode. J. Power Sources 329, 31–40 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.023
- R. Wagner, B. Streipert, V. Kraft, A.R. Jiménez, S. Röser et al., Counterintuitive role of magnesium salts as effective electrolyte additives for high voltage lithium-ion batteries. Adv. Mater. Interfaces 3(15), 1600096 (2016). https://doi.org/10.1002/admi.201600096
- S.S. Zhang, A review on electrolyte additives for lithium-ion batteries. J. Power Sources 162(2), 1379–1394 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.074
- C.G. Shi, C.H. Shen, X.X. Peng, C.X. Luo, L.F. Shen et al., A special enabler for boosting cyclic life and rate capability of LiNi0.8Co0.1Mn0.1O2: green and simple additive. Nano Energy 65, 104084 (2019). https://doi.org/10.1016/j.nanoen.2019.104084
- Y.Q. Chen, T.Y. Chen, W.D. Hsu, T.Y. Pan, L.J. Her et al., An electrolyte additive with boron-nitrogen-oxygen alkyl group enabled stable cycling for high voltage LiNi0.5Mn1.5O4 cathode in lithium-ion battery. J. Power Sources 477, 228473 (2020). https://doi.org/10.1016/j.jpowsour.2020.228473
- R. Chen, F. Liu, Y. Chen, Y. Ye, Y. Huang et al., An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. J. Power Sources 306, 70–77 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.105
- Z. Sun, H. Zhou, X. Luo, Y. Che, W. Li et al., Design of a novel electrolyte additive for high voltage LiCoO2 cathode lithium-ion batteries: lithium 4-benzonitrile trimethyl borate. J. Power Sources 503, 230033 (2021). https://doi.org/10.1016/j.jpowsour.2021.230033
- J. Ahn, J. Im, H. Seo, S. Yoon, K.Y. Cho, Enhancing the cycling stability of Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode at 4 5 V via 2, 4-difluorobiphenyl additive. J. Power Sources 512, 230513 (2021). https://doi.org/10.1016/j.jpowsour.2021.230513
- Y. Zheng, N. Xu, S. Chen, Y. Liao, G. Zhong et al., Construction of a stable LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface by a multifunctional organosilicon electrolyte additive. ACS Appl. Energy Mater. 3(3), 2837–2845 (2020). https://doi.org/10.1021/acsaem.9b02486
- N. Aspern, D. Diddens, T. Kobayashi, M. Börner, O. Stubbmann-Kazakova et al., Fluorinated cyclic phosphorus (III)-based electrolyte additives for high voltage application in lithium-ion batteries: impact of structure–reactivity relationships on CEI formation and cell performance. ACS Appl. Mater. Interfaces 11(18), 16605–16618 (2019). https://doi.org/10.1021/acsami.9b03359
- G. Lan, L. Xing, D. Bedrov, J. Chen, R. Guo et al., Enhanced cyclic stability of Ni-rich lithium ion battery with electrolyte film-forming additive. J. Alloys Compd. 821, 153236 (2020). https://doi.org/10.1016/j.jallcom.2019.153236
- X. Zuo, C. Fan, J. Liu, X. Xiao, J. Wu et al., Effect of tris (trimethylsilyl) borate on the high voltage capacity retention of LiNi0 5Co0.2Mn0.3O2/graphite cells. J. Power Sources 229, 308–312 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.056
- Z. Chen, C. Wang, L. Xing, X. Wang, W. Tu et al., Borate electrolyte additives for high voltage lithium nickel manganese oxide electrode: a comparative study. Electrochim. Acta 249, 353–359 (2017). https://doi.org/10.1016/j.electacta.2017.08.027
- Y. Dong, B.T. Young, Y. Zhang, T. Yoon, D.R. Heskett et al., Effect of lithium borate additives on cathode film formation in LiNi0.5Mn1.5O4/Li cells. ACS Appl. Mater. Interfaces 9(24), 20467–20475 (2017). https://doi.org/10.1021/acsami.7b01481
- Y. Li, W. Li, R. Shimizu, D. Cheng, H. Nguyen et al., Elucidating the effect of borate additive in high-voltage electrolyte for Li-rich layered oxide materials. Adv. Energy Mater. 12(11), 2103033 (2022). https://doi.org/10.1002/aenm.202103033
- T. Deng, X. Fan, L. Cao, J. Chen, S. Hou et al., Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule 3(10), 2550–2564 (2019). https://doi.org/10.1016/j.joule.2019.08.004
- M. Xu, W. Li, B.L. Lucht, Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries. J. Power Sources 193(2), 804–809 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.067
- Q. Liu, G. Yang, S. Li, S. Zhang, R. Chen et al., Synergy effect of trimethyl borate on protecting high-voltage cathode materials in dual-additive electrolytes. ACS Appl. Mater. Interfaces 13(18), 21459–21466 (2021). https://doi.org/10.1021/acsami.1c04389
- Q. Gu, M. Wang, Y. Liu, Y. Deng, L. Wang et al., Electrolyte additives for improving the high-temperature storage performance of Li-ion battery NCM523∥graphite with overcharge protection. ACS Appl. Mater. Interfaces 14, 4759–4766 (2022). https://doi.org/10.1021/acsami.1c22304
- L. Madec, L. Ma, K.J. Nelson, R. Petibon, J.P. Sun et al., The effects of a ternary electrolyte additive system on the electrode/electrolyte interfaces in high voltage Li-ion cells. J. Electrochem. Soc. 163(6), A1001 (2016). https://doi.org/10.1149/2.1051606jes
- E.G. Shim, T.H. Nam, J.G. Kim, H.S. Kim, S.I. Moon, Effect of vinyl acetate plus vinylene carbonate and vinyl ethylene carbonate plus biphenyl as electrolyte additives on the electrochemical performance of Li-ion batteries. Electrochim. Acta 53(2), 650–656 (2007). https://doi.org/10.1016/j.electacta.2007.07.026
- F. Liu, Z. Zhang, Z. Yu, X. Fan, M. Yi et al., Bifunctional nitrile-borate based electrolyte additive enables excellent electrochemical stability of lithium metal batteries with single-crystal Ni-rich cathode at 4.7 V. Chem. Eng. J. 434, 134745 (2022). https://doi.org/10.1016/j.cej.2022.134745
- Y.M. Song, J.G. Han, S. Park, K.T. Lee, N.S. Choi, A multifunctional phosphite-containing electrolyte for 5 V-class LiNi0.5Mn1.5O4 cathodes with superior electrochemical performance. J. Mater. Chem. A 2(25), 9506–9513 (2014). https://doi.org/10.1039/C4TA01129E
- T. Yim, S.G. Woo, S.H. Lim, W. Cho, J.H. Song et al., 5V-class high-voltage batteries with over-lithiated oxide and a multi-functional additive. J. Mater. Chem. A 3(11), 6157–6167 (2015). https://doi.org/10.1039/C4TA06531J
- Y. Cui, Y. Wang, S. Gu, C. Qian, T. Chen et al., An effective interface-regulating mechanism enabled by non-sacrificial additives for high-voltage nickel-rich cathode. J. Power Sources 453, 227852 (2020). https://doi.org/10.1016/j.jpowsour.2020.227852
- L. Zou, P. Gao, H. Jia, X. Cao, H. Wu et al., Nonsacrificial additive for tuning the cathode–electrolyte interphase of lithium-ion batteries. ACS Appl. Mater. Interfaces 14(3), 4111–4118 (2022). https://doi.org/10.1021/acsami.1c20789
- Z. Zhang, L. Hu, H. Wu, W. Weng, M. Koh et al., Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci. 6(6), 1806–1810 (2013). https://doi.org/10.1039/C3EE24414H
- T. Achiha, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi et al., Thermal stability and electrochemical properties of fluorine compounds as nonflammable solvents for lithium-ion batteries. J. Electrochem. Soc. 157(6), A707 (2010). https://doi.org/10.1149/1.3377084
- X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen et al., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotech. 13(8), 715–722 (2018). https://doi.org/10.1038/s41565-018-0183-2
- C. Wang, Y.S. Meng, K. Xu, Perspective—fluorinating interphases. J. Electrochem. Soc. 166(3), A5184 (2018). https://doi.org/10.1149/2.0281903jes
- Z. Yu, W. Yu, Y. Chen, L. Mondonico, X. Xiao et al., Tuning fluorination of linear carbonate for lithium-ion batteries. J. Electrochem. Soc. 169, 040555 (2022). https://doi.org/10.1149/1945-7111/ac67f5
- X.G. Sun, C.A. Angell, New sulfone electrolytes for rechargeable lithium batteries Part I Oligoether-containing sulfones. Electrochem. Commun. 7(3), 261–266 (2005). https://doi.org/10.1016/j.elecom.2005.01.010
- A. Abouimrane, I. Belharouak, K. Amine, Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochem. Commun. 11(5), 1073–1076 (2009). https://doi.org/10.1016/j.elecom.2009.03.020
- C.C. Su, M. He, J. Shi, R. Amine, Z. Yu et al., Principle in developing novel fluorinated sulfone electrolyte for high voltage lithium-ion batteries. Energy Environ. Sci. 14(5), 3029–3034 (2021). https://doi.org/10.1039/D0EE03890C
- J. Alvarado, M.A. Schroeder, M. Zhang, O. Borodin, E. Gobrogge et al., A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Mater. Today 21(4), 341–353 (2018). https://doi.org/10.1016/j.mattod.2018.02.005
- L. Dong, Y. Liu, D. Chen, Y. Han, Y. Ji et al., Stabilization of high-voltage lithium metal batteries using a sulfone-based electrolyte with bi-electrode affinity and LiSO2F-rich interphases. Energy Storage Mater. 44, 527–536 (2022). https://doi.org/10.1016/j.ensm.2021.10.045
- Y. Abu-Lebdeh, I. Davidson, High-voltage electrolytes based on adiponitrile for Li-ion batteries. J. Electrochem. Soc. 156(1), A60 (2008). https://doi.org/10.1149/1.3023084
- H. Zhi, L. Xing, X. Zheng, K. Xu, W. Li, Understanding how nitriles stabilize electrolyte/electrode interface at high voltage. Phys. Chem. Lett. 8(24), 6048–6052 (2017). https://doi.org/10.1021/acs.jpclett.7b02734
- F. Xian, J. Li, Z. Hu, Q. Zhou, C. Wang et al., Investigation of the cathodic interfacial stability of a nitrile electrolyte and its performance with a high-voltage LiCoO2 cathode. Chem. Commun. 56(37), 4998–5001 (2020). https://doi.org/10.1039/D0CC00049C
- Q. Zhang, K. Liu, F. Ding, W. Li, X. Liu et al., Enhancing the high voltage interface compatibility of LiNi0.5Co0.2Mn0.3O2 in the succinonitrile-based electrolyte. Electrochim. Acta 298, 818–826 (2019). https://doi.org/10.1016/j.electacta.2018.12.104
- H. Moon, S.J. Cho, D.E. Yu, S.Y. Lee, A nitrile electrolyte strategy for 4.9 V-class lithium-metal batteries operating in flame. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12383
- P. Johansson, Intrinsic anion oxidation potentials. J. Phys. Chem. A 110(44), 12077–12080 (2006). https://doi.org/10.1021/jp070202i
- K. Xu, Tailoring electrolyte composition for LiBOB. J. Electrochem. Soc. 155(10), A733 (2008). https://doi.org/10.1149/1.2961055
- C. Täubert, M. Fleischhammer, M. Wohlfahrt-Mehrens, U. Wietelmann, T. Buhrmester, LiBOB as electrolyte salt or additive for lithium-ion batteries based on LiNi0.8Co0.15Al0.05O2/graphite. J. Electrochem. Soc. 157(6), A721 (2010). https://doi.org/10.1149/1.3374666
- S. Dalavi, M. Xu, B. Knight, B.L. Lucht, Effect of added LiBOB on high voltage (LiNi0.5Mn1.5O4) spinel cathodes. Electrochem. Solid State Lett. 15(2), A28 (2011). https://doi.org/10.1149/2.015202esl
- V. Aravindan, Y.L. Cheah, W.C. Ling, S. Madhavi, Effect of LiBOB additive on the electrochemical performance of LiCoPO4. J. Electrochem. Soc. 159(9), A1435 (2012). https://doi.org/10.1149/2.024209jes
- S.S. Zhang, An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Commun. 8(9), 1423–1428 (2006). https://doi.org/10.1016/j.elecom.2006.06.016
- I.A. Shkrob, Y. Zhu, T.W. Marin, D.P. Abraham, Mechanistic insight into the protective action of bis (oxalato) borate and difluoro (oxalate) borate anions in Li-ion batteries. J. Phys. Chem. C 117(45), 23750–23756 (2013). https://doi.org/10.1021/jp407714p
- E. Zhao, O. Borodin, X. Gao, D. Lei, Y. Xiao et al., Lithium–iron (III) fluoride battery with double surface protection. Adv. Energy Mater. 8(26), 1800721 (2018). https://doi.org/10.1002/aenm.201800721
- M. Mao, B. Huang, Q. Li, C. Wang, Y.B. He et al., In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery. Nano Energy 78, 105282 (2020). https://doi.org/10.1016/j.nanoen.2020.105282
- H. Lu, L. He, Y. Yuan, Y. Zhu, B. Zheng et al., Synergistic effect of fluorinated solvents for improving high voltage performance of LiNi0.5Mn1.5O4 cathode. J. Electrochem. Soc. 167(12), 120534 (2020). https://doi.org/10.1149/1945-7111/abb34a
- G. Xu, X. Shangguan, S. Dong, X. Zhou, G. Cui, Formulation of blended-lithium-salt electrolytes for lithium batteries. Angew. Chem. Int. Ed. 59(9), 3400–3415 (2020). https://doi.org/10.1002/anie.201906494
- D. Zhao, P. Wang, X. Cui, L. Mao, C. Li et al., Robust and sulfur-containing ingredient surface film to improve the electrochemical performance of LiDFOB-based high-voltage electrolyte. Electrochim. Acta 260, 536–548 (2018). https://doi.org/10.1016/j.electacta.2017.12.103
- F. Zhang, C. Wang, D. Zhao, L. Yang, P. Wang et al., Synergistic effect of sulfolane and lithium difluoro (oxalate) borate on improvement of compatibility for LiNi0.8Co0.15Al0.05O2 electrode. Electrochim. Acta. 337, 135727 (2020). https://doi.org/10.1016/j.electacta.2020.135727
- R. Weber, M. Genovese, A. Louli, S. Hames, C. Martin et al., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4(8), 683–689 (2019). https://doi.org/10.1038/s41560-019-0428-9
- C. Martin, M. Genovese, A. Louli, R. Weber, J. Dahn, Cycling lithium metal on graphite to form hybrid lithium-ion/lithium metal cells. Joule 4(6), 1296–1310 (2020). https://doi.org/10.1016/j.joule.2020.04.003
- S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3(9), 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8
- X. Li, J. Zheng, M.H. Engelhard, D. Mei, Q. Li et al., Effects of imide–orthoborate dual-salt mixtures in organic carbonate electrolytes on the stability of lithium metal batteries. ACS Appl. Mater. Interfaces 10(3), 2469–2479 (2018). https://doi.org/10.1021/acsami.7b15117
- K. Park, S. Yu, C. Lee, H. Lee, Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis (fluorosulfonyl) imide electrolytes. J. Power Sources 296, 197–203 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.052
- B. Mandal, T. Sooksimuang, B. Griffin, A. Padhi, R. Filler, New lithium salts for rechargeable battery electrolytes. Solid State Ionics 175(1–4), 267–272 (2004). https://doi.org/10.1016/j.ssi.2003.11.037
- I.A. Shkrob, T.W. Marin, Y. Zhu, D.P. Abraham, Why bis (fluorosulfonyl) imide is a “magic anion” for electrochemistry. J. Phys. Chem. C 118(34), 19661–19671 (2014). https://doi.org/10.1021/jp506567p
- L.J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba et al., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J. Power Sources 68(2), 320–325 (1997). https://doi.org/10.1016/S0378-7753(97)02517-2
- N. Wongittharom, T.C. Lee, I.M. Hung, S.W. Lee, Y.C. Wang et al., Ionic liquid electrolytes for high-voltage rechargeable Li/LiNi0.5Mn1.5O4 cells. J. Mater. Chem. A 2(10), 3613–3620 (2014). https://doi.org/10.1039/C3TA14423B
- L. Xia, Y. Jiang, Y. Pan, S. Li, J. Wang et al., Lithium bis (fluorosulfony) imide-lithium hexafluorophosphate binary-salt electrolytes for lithium-ion batteries: aluminum corrosion behaviors and electrochemical properties. ChemistrySelect 3(7), 1954–1960 (2018). https://doi.org/10.1002/slct.201702488
- X. Chen, W. Xu, M.H. Engelhard, J. Zheng, Y. Zhang et al., Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures. J. Mater. Chem. A 2(7), 2346–2352 (2014). https://doi.org/10.1039/C3TA13043F
- H. Han, J. Guo, D. Zhang, S. Feng, W. Feng et al., Lithium (fluorosulfonyl) (nonafluorobutanesulfonyl) imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells. Electrochem. Commun. 13(3), 265–268 (2011). https://doi.org/10.1016/j.elecom.2010.12.030
- Z. Fang, Q. Ma, P. Liu, J. Ma, Y.S. Hu et al., Novel concentrated Li[(FSO2)(n-C4F9SO2)N]-based ether electrolyte for superior stability of metallic lithium anode. ACS Appl. Mater. Interfaces 9(5), 4282–4289 (2017). https://doi.org/10.1021/acsami.6b03857
- L. Qiao, U. Oteo, M. Martinez-Ibañez, A. Santiago, R. Cid et al., Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries. Nat. Mater. 21(4), 455–462 (2022). https://doi.org/10.1038/s41563-021-01190-1
- O. Borodin, J. Self, K.A. Persson, C. Wang, K. Xu, Uncharted waters: super-concentrated electrolytes. Joule 4(1), 69–100 (2020). https://doi.org/10.1016/j.joule.2019.12.007
- J. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016). https://doi.org/10.1038/ncomms12032
- L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
- J. Xu, X. Ji, J. Zhang, C. Yang, P. Wang et al., Aqueous electrolyte design for super-stable 2 5 V LiMn2O4||Li4Ti5O12 pouch cells. Nat. Energy. 7(2), 186–193 (2022). https://doi.org/10.1038/s41560-021-00977-5
- J. Vatamanu, O. Borodin, Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability. J. Phys. Chem. Lett. 8(18), 4362–4367 (2017). https://doi.org/10.1021/acs.jpclett.7b01879
- X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4(1), 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
- J. Alvarado, M.A. Schroeder, T.P. Pollard, X. Wang, J.Z. Lee et al., Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12(2), 780–794 (2019). https://doi.org/10.1039/C8EE02601G
- J. Xu, C. Wang, Perspective—electrolyte design for aqueous batteries: from ultra-high concentration to low concentration? J. Electrochem. Soc. 169(3), 030530 (2022). https://doi.org/10.1149/1945-7111/ac5ba9
- Y. Li, Y. Yang, Y. Lu, Q. Zhou, X. Qi et al., Ultralow-concentration electrolyte for Na-ion batteries. ACS Energy Lett. 5(4), 1156–1158 (2020). https://doi.org/10.1021/acsenergylett.0c00337
- X. Ren, L. Zou, X. Cao, M.H. Engelhard, W. Liu et al., Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3(7), 1662–1676 (2019). https://doi.org/10.1016/j.joule.2019.05.006
- S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard et al., High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30(21), 1706102 (2018). https://doi.org/10.1002/adma.201706102
- X. Ren, S. Chen, H. Lee, D. Mei, M.H. Engelhard et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4(8), 1877–1892 (2018). https://doi.org/10.1016/j.chempr.2018.05.002
- R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3(4), 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
- M.S. Ziegler, J. Song, J.E. Trancik, Determinants of lithium-ion battery technology cost decline. Energy Environ. Sci. 14(12), 6074–6098 (2021). https://doi.org/10.1039/D1EE01313K
- R. Gond, W. Ekeren, R. Mogensen, A.J. Naylor, R. Younesi, Non-flammable liquid electrolytes for safe batteries. Mater. Horiz. 8, 2913–2928 (2021). https://doi.org/10.1039/D1MH00748C
- H. Ota, A. Kominato, W.J. Chun, E. Yasukawa, S. Kasuya, Effect of cyclic phosphate additive in non-flammable electrolyte. J. Power Sources 119, 393–398 (2003). https://doi.org/10.1016/S0378-7753(03)00259-3
- T. Tsujikawa, K. Yabuta, T. Matsushita, T. Matsushima, K. Hayashi et al., Characteristics of lithium-ion battery with non-flammable electrolyte. J. Power Sources 189(1), 429–434 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.010
- J. Hou, L. Lu, L. Wang, A. Ohma, D. Ren et al., Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 11, 5100 (2020). https://doi.org/10.1038/s41467-020-18868-w
- X. Feng, D. Ren, X. He, M. Ouyang, Mitigating thermal runaway of lithium-ion batteries. Joule 4(4), 743–770 (2020). https://doi.org/10.1016/j.joule.2020.02.010
- M.T.F. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F.N. Sayed et al., A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2(8), 17108 (2017). https://doi.org/10.1038/nenergy.2017.108
- X. Zhang, L. Zou, Y. Xu, X. Cao, M.H. Engelhard et al., Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range. Adv. Energy Mater. 10(22), 2000368 (2020). https://doi.org/10.1002/aenm.202000368
- C.L. Campion, W. Li, B.L. Lucht, Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 152(12), A2327 (2005). https://doi.org/10.1149/1.2083267
- C.S. Rustomji, Y. Yang, T.K. Kim, J. Mac, Y.J. Kim et al., Liquefied gas electrolytes for electrochemical energy storage devices. Science. 356(6345), aal4263 (2017). https://doi.org/10.1126/science.aal4263
- X. Fan, X. Ji, L. Chen, J. Chen, T. Deng et al., All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4(10), 882–890 (2019). https://doi.org/10.1038/s41560-019-0474-3
- J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6(3), 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z
- A. Masias, J. Marcicki, W.A. Paxton, Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 6(2), 621–630 (2021). https://doi.org/10.1021/acsenergylett.0c02584
References
J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
X. Fan, C. Wang, High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021). https://doi.org/10.1039/D1CS00450F
J. Zhang, P.F. Wang, P. Bai, H. Wan, S. Liu et al., Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode. Adv. Mater. 34(8), 2108353 (2022). https://doi.org/10.1002/adma.202108353
U.H. Kim, D.W. Jun, K.J. Park, Q. Zhang, P. Kaghazchi et al., Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy Environ. Sci. 11(5), 1271–1279 (2018). https://doi.org/10.1039/C8EE00227D
W. Li, B. Song, A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46(10), 3006–3059 (2017). https://doi.org/10.1039/C6CS00875E
D. Kong, J. Hu, Z. Chen, K. Song, C. Li et al., Ti-gradient doping to stabilize layered surface structure for high performance high-Ni oxide cathode of Li-ion battery. Adv. Energy Mater. 9(41), 1901756 (2019). https://doi.org/10.1002/aenm.201901756
H. Yu, Y. Cao, L. Chen, Y. Hu, X. Duan et al., Surface enrichment and diffusion enabling gradient-doping and coating of ni-rich cathode toward Li-ion batteries. Nat. Commun. 12, 4564 (2021). https://doi.org/10.1038/s41467-021-24893-0
J.N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge et al., Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4(7), 594–603 (2019). https://doi.org/10.1038/s41560-019-0409-z
W. He, F. Ye, J. Lin, Q. Wang, Q. Xie et al., Boosting the electrochemical performance of Li- and Mn-rich cathodes by a three-in-one strategy. Nano-Micro Lett. 13, 205 (2021). https://doi.org/10.1007/s40820-021-00725-0
S.W. Lee, M.S. Kim, J.H. Jeong, D.H. Kim, K.Y. Chung et al., Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: improved thermal stability and high-voltage performance. J. Power Sources 360, 206–214 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.042
J. Qian, L. Liu, J. Yang, S. Li, X. Wang et al., Electrochemical surface passivation of LiCoO2 ps at ultrahigh voltage and its applications in lithium-based batteries. Nat. Commun. 9, 4918 (2018). https://doi.org/10.1038/s41467-018-07296-6
J.S. Park, X. Meng, J.W. Elam, S. Hao, C. Wolverton et al., Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries. Chem. Mater. 26(10), 3128–3134 (2014). https://doi.org/10.1021/cm500512n
Q. Wu, Y. Yin, S. Sun, X. Zhang, N. Wan et al., Novel AlF3 surface modified spinel LiMn1.5Ni0.5O4 for lithium-ion batteries: performance characterization and mechanism exploration. Electrochim. Acta 158, 73–80 (2015). https://doi.org/10.1016/j.electacta.2015.01.145
Z. Zhao, M. Sun, T. Wu, J. Zhang, P. Wang et al., A bifunctional-modulated conformal Li/Mn-rich layered cathode for fast-charging, high volumetric density and durable Li-ion full cells. Nano-Micro Lett. 13, 118 (2021). https://doi.org/10.1007/s40820-021-00643-1
Y. Zhao, L. Zhang, J. Liu, K. Adair, F. Zhao et al., Atomic/molecular layer deposition for energy storage and conversion. Chem. Soc. Rev. 50, 3889–3956 (2021). https://doi.org/10.1039/D0CS00156B
E. Wang, Y. Zhao, D. Xiao, X. Zhang, T. Wu et al., Composite nanostructure construction on the grain surface of Li-rich layered oxides. Adv. Mater. 32, 1906070 (2020). https://doi.org/10.1002/adma.201906070
B.J. Chae, J.H. Park, H.J. Song, S.H. Jang, K. Jung et al., Thiophene-initiated polymeric artificial cathode-electrolyte interface for Ni-rich cathode material. Electrochim. Acta 290, 465–473 (2018). https://doi.org/10.1016/j.electacta.2018.09.103
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004). https://doi.org/10.1021/cr030203g
M. Gauthier, T.J. Carney, A. Grimaud, L. Giordano, N. Pour et al., Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights. J. Phys. Chem. Lett. 6(22), 4653–4672 (2015). https://doi.org/10.1021/acs.jpclett.5b01727
Y. Wu, X. Liu, L. Wang, X. Feng, D. Ren et al., Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Mater. 37, 77–86 (2021). https://doi.org/10.1016/j.ensm.2021.02.001
H.M.K. Sari, X. Li, Controllable cathode–electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv. Energy Mater. 9(39), 1901597 (2019). https://doi.org/10.1002/aenm.201901597
S.P. Kühn, K. Edström, M. Winter, I. Cekic-Laskovic, Face to face at the cathode electrolyte interphase: from interface features to interphase formation and dynamics. Adv. Mater. Interfaces 9(8), 2102078 (2022). https://doi.org/10.1002/admi.202102078
Q. Li, Y. Wang, X. Wang, X. Sun, J.N. Zhang et al., Investigations on the fundamental process of cathode electrolyte interphase formation and evolution of high-voltage cathodes. ACS Appl. Mater. Interfaces 12(2), 2319–2326 (2019). https://doi.org/10.1021/acsami.9b16727
K. Xu, Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114(23), 11503–11618 (2014). https://doi.org/10.1021/cr500003w
P. Peljo, H.H. Girault, Electrochemical potential window of battery electrolytes: the homo–lumo misconception. Energy Environ. Sci. 11(9), 2306–2309 (2018). https://doi.org/10.1039/C8EE01286E
O. Borodin, Challenges with prediction of battery electrolyte electrochemical stability window and guiding the electrode–electrolyte stabilization. Curr. Opin. Electrochem. 13, 86–93 (2019). https://doi.org/10.1016/j.coelec.2018.10.015
K. Edstroem, T. Gustafsson, J.O. Thomas, The cathode–electrolyte interface in the Li-ion battery. Electrochim. Acta 50(2–3), 397–403 (2004). https://doi.org/10.1016/j.electacta.2004.03.049
D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89(2), 206–218 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6
M. Thomas, P.G. Bruce, J.B. Goodenough, Ac impedance analysis of polycrystalline insertion electrodes: application to Li1−xCoO2. J. Electrochem. Soc. 132(7), 1521 (1985). https://doi.org/10.1149/1.2114158
K. Kanamura, S. Toriyama, S. Shiraishi, M. Ohashi, Z.I. Takehara, Studies on electrochemical oxidation of non-aqueous electrolyte on the LiCoO2 thin film electrode. J. Electroanal. Chem. 419(1), 77–84 (1996). https://doi.org/10.1016/S0022-0728(96)04862-0
T. Eriksson, A. Andersson, C. Gejke, T. Gustafsson, J.O. Thomas, Influence of temperature on the interface chemistry of LixMn2O4 electrodes. Langmuir 18(9), 3609–3619 (2002). https://doi.org/10.1021/la011354m
G.L. Xu, Q. Liu, K.K. Lau, Y. Liu, X. Liu et al., Building ultraconformal protective layers on both secondary and primary ps of layered lithium transition metal oxide cathodes. Nat. Energy 4(6), 484–494 (2019). https://doi.org/10.1038/s41560-019-0387-1
W. Liu, J. Li, W. Li, H. Xu, C. Zhang et al., Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nat. Commun. 11, 3629 (2020). https://doi.org/10.1038/s41467-020-17396-x
S. Bolloju, C.Y. Chiou, T. Vikramaditya, J.T. Lee, (Pentafluorophenyl) diphenylphosphine as a dual-functional electrolyte additive for LiNi0.5Mn1.5O4 cathodes in high-voltage lithium-ion batteries. Electrochim. Acta 299, 663–671 (2019). https://doi.org/10.1016/j.electacta.2019.01.037
Z.P. Zhuang, X. Dai, W.D. Dong, L.Q. Jiang, L. Wang et al., Tris (trimethylsilyl) borate as electrolyte additive alleviating cathode electrolyte interphase for enhanced lithium-selenium battery. Electrochim. Acta 393, 139042 (2021). https://doi.org/10.1016/j.electacta.2021.139042
D. Wu, J. He, J. Liu, M. Wu, S. Qi et al., Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+-transferred characteristics via adjusting electrolyte additives. Adv. Energy Mater. 12(18), 2200337 (2022). https://doi.org/10.1002/aenm.202200337
F. Li, J. He, J. Liu, M. Wu, Y. Hou et al., Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew. Chem. Int. Ed. 60(12), 6600–6608 (2021). https://doi.org/10.1002/anie.202013993
Q. Zhang, J. Ma, L. Mei, J. Liu, Z. Li et al., In situ tem visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries. Matter 5(4), 1235–1250 (2022). https://doi.org/10.1016/j.matt.2022.01.015
N. Yabuuchi, K. Yoshii, S.T. Myung, I. Nakai, S. Komaba, Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 133(12), 4404–4419 (2011). https://doi.org/10.1021/ja108588y
F. Lin, I.M. Markus, D. Nordlund, T.C. Weng, M.D. Asta et al., Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014). https://doi.org/10.1038/ncomms4529
K. Yamamoto, T. Minato, S. Mori, D. Takamatsu, Y. Orikasa et al., Improved cyclic performance of lithium-ion batteries: an investigation of cathode/electrolyte interface via in situ total-reflection fluorescence x-ray absorption spectroscopy. J. Phys. Chem. C 118(18), 9538–9543 (2014). https://doi.org/10.1021/jp5011132
J.L. Tebbe, T.F. Fuerst, C.B. Musgrave, Degradation of ethylene carbonate electrolytes of lithium ion batteries via ring opening activated by LiCoO2 cathode surfaces and electrolyte species. ACS Appl. Mater. Interfaces 8(40), 26664–26674 (2016). https://doi.org/10.1021/acsami.6b06157
M.A. Teshager, S.D. Lin, B.J. Hwang, F.M. Wang, S.H. Haregewoin et al., In situ drifts analysis of solid-electrolyte interphase formation on Li-rich Li1.2Ni0.2Mn0.6O2 and LiCoO2 cathodes during oxidative electrolyte decomposition. ChemElectroChem. 3(2), 337–345 (2016). https://doi.org/10.1002/celc.201500290
C. Cárdenas, N. Rabi, P.W. Ayers, C. Morell, P. Jaramillo et al., Chemical reactivity descriptors for ambiphilic reagents: dual descriptor, local hypersoftness, and electrostatic potential. J. Phys. Chem. A 113(30), 8660–8667 (2009). https://doi.org/10.1021/jp902792n
O. Borodin, X. Ren, J. Vatamanu, A.W. Cresce, J. Knap et al., Modeling insight into battery electrolyte electrochemical stability and interfacial structure. Acc. Chem. Res. 50(12), 2886–2894 (2017). https://doi.org/10.1021/acs.accounts.7b00486
O. Borodin, M. Olguin, C.E. Spear, K.W. Leiter, J. Knap, Towards high throughput screening of electrochemical stability of battery electrolytes. Nanotechnology 26(35), 354003 (2015). https://doi.org/10.1088/0957-4484/26/35/354003
O. Borodin, M. Olguin, C. Spear, K. Leiter, J. Knap et al., Challenges with quantum chemistry-based screening of electrochemical stability of lithium battery electrolytes. ECS Transact. 69(1), 113 (2015). https://doi.org/10.1149/06901.0113ecst
J. Li, W. Li, Y. You, A. Manthiram, Extending the service life of high-Ni layered oxides by tuning the electrode–electrolyte interphase. Adv. Energy Mater. 8(29), 1801957 (2018). https://doi.org/10.1002/aenm.201801957
J.N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu et al., Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 14, 1–7 (2018). https://doi.org/10.1016/j.ensm.2018.02.016
D. Xiong, R. Petibon, M. Nie, L. Ma, J. Xia et al., Interactions between positive and negative electrodes in Li-ion cells operated at high temperature and high voltage. J. Electrochem. Soc. 163(3), A546 (2016). https://doi.org/10.1149/2.0951603jes
S. Krueger, R. Kloepsch, J. Li, S. Nowak, S. Passerini et al., How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries? J. Electrochem. Soc. 160(4), A542 (2013). https://doi.org/10.1149/2.022304jes
S. Li, C. Chen, X. Xia, J. Dahn, The impact of electrolyte oxidation products in LiNi0.5Mn1.5O4/Li4Ti5O12 cells. J. Electrochem. Soc. 160(9), A1524 (2013). https://doi.org/10.1149/2.051309jes
Y. Wang, Y. Zhang, S. Wang, S. Dong, C. Dang et al., Ultrafast charging and stable cycling dual–ion batteries enabled via an artificial cathode–electrolyte interface. Adv. Funct. Mater. 31(29), 2102360 (2021). https://doi.org/10.1002/adfm.202102360
W.H. Li, Y.M. Li, X.F. Liu, Z.Y. Gu, H.J. Liang et al., All-climate and ultrastable dual-ion batteries with long life achieved via synergistic enhancement of cathode and anode interfaces. Adv. Funct. Mater. 32(21), 2201038 (2022). https://doi.org/10.1002/adfm.202201038
W.H. Li, H.J. Liang, X.K. Hou, Z.Y. Gu, X.X. Zhao et al., Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery. J. Energy Chem. 50, 416–423 (2020). https://doi.org/10.1002/adfm.202201038
J. Lu, T. Wu, K. Amine, State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy 2(3), 17011 (2017). https://doi.org/10.1038/nenergy.2017.11
T. Minato, H. Kawaura, M. Hirayama, S. Taminato, K. Suzuki et al., Dynamic behavior at the interface between lithium cobalt oxide and an organic electrolyte monitored by neutron reflectivity measurements. J. Phys. Chem. C 120(36), 20082–20088 (2016). https://doi.org/10.1021/acs.jpcc.6b02523
W. Lu, J. Zhang, J. Xu, X. Wu, L. Chen, In situ visualized cathode electrolyte interphase on LiCoO2 in high voltage cycling. ACS Appl. Mater. Interfaces 9(22), 19313–19318 (2017). https://doi.org/10.1021/acsami.7b03024
Y. Meng, G. Chen, L. Shi, H. Liu, D. Zhang, Operando fourier transform infrared investigation of cathode electrolyte interphase dynamic reversible evolution on Li1.2Ni0.2Mn0.6O2. ACS Appl. Mater. Interfaces 11(48), 45108–45117 (2019). https://doi.org/10.1021/acsami.9b17438
D. Chen, M.A. Mahmoud, J.H. Wang, G.H. Waller, B. Zhao et al., Operando investigation into dynamic evolution of cathode–electrolyte interfaces in a Li-ion battery. Nano Lett. 19(3), 2037–2043 (2019). https://doi.org/10.1021/acs.nanolett.9b00179
Y. Chu, Y. Shen, F. Guo, X. Zhao, Q. Dong et al., Advanced characterizations of solid electrolyte interphases in lithium-ion batteries. Electrochem. Energy Rev. 3, 187–219 (2020). https://doi.org/10.1007/s41918-019-00058-y
Z. Zhu, Y. Zhou, P. Yan, R. Vemuri, W. Xu et al., In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries. Nano Lett. 15(9), 6170–6176 (2015). https://doi.org/10.1021/acs.nanolett.5b02479
Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun et al., Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science. 358(6362), 506–510 (2017). https://doi.org/10.1126/science.aam6014
J. Scharf, M. Chouchane, D.P. Finegan, B. Lu, C. Redquest et al., Bridging nano-and microscale x-ray tomography for battery research by leveraging artificial intelligence. Nat. Nanotechnol. 17, 446–459 (2022). https://doi.org/10.1038/s41565-022-01081-9
T.T. Nguyen, J. Villanova, Z. Su, R. Tucoulou, B. Fleutot et al., 3D quantification of microstructural properties of LiNi0.5Mn0.3Co0.2O2 high-energy density electrodes by x-ray holographic nano-tomography. Adv. Energy Mater. 11(8), 2003529 (2021). https://doi.org/10.1002/aenm.202003529
M. Garcia, E. Webb, S. Garofalini, Molecular dynamics simulation of V2O5/ Li2SiO3 interface. J. Electrochem. Soc. 145(6), 2155 (1998). https://doi.org/10.1149/1.1838611
G. Nuspl, M. Nagaoka, K. Yoshizawa, F. Mohri, T. Yamabe, Lithium diffusion in LixCoO2 electrode materials. B Chem. Soc. Jpn. 71(9), 2259–2265 (1998). https://doi.org/10.1246/bcsj.71.2259
L. Xing, J. Vatamanu, O. Borodin, G.D. Smith, D. Bedrov, Electrode/electrolyte interface in sulfolane-based electrolytes for Li ion batteries: a molecular dynamics simulation study. J. Phys. Chem. C 116(45), 23871–23881 (2012). https://doi.org/10.1021/jp3054179
S. Wu, B. Su, K. Ni, F. Pan, C. Wang et al., Fluorinated carbonate electrolyte with superior oxidative stability enables long-term cycle stability of Na2/3Ni1/3Mn2/3O2 cathodes in sodium-ion batteries. Adv. Energy Mater. 11(9), 2002737 (2021). https://doi.org/10.1002/aenm.202002737
X. Xie, E.W.C. Spotte-Smith, M. Wen, H.D. Patel, S.M. Blau et al., Data-driven prediction of formation mechanisms of lithium ethylene monocarbonate with an automated reaction network. J. Am. Chem. Soc. 143(33), 13245–13258 (2021). https://doi.org/10.1021/jacs.1c05807
S.M. Blau, H.D. Patel, E.W.C. Spotte-Smith, X. Xie, S. Dwaraknath et al., A chemically consistent graph architecture for massive reaction networks applied to solid-electrolyte interphase formation. Chem. Sci. 12(13), 4931–4939 (2021). https://doi.org/10.1039/D0SC05647B
M.H. Park, Y.S. Lee, H. Lee, Y.K. Han, Low Li+ binding affinity: an important characteristic for additives to form solid electrolyte interphases in Li-ion batteries. J. Power Sources 196(11), 5109–5114 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.106
J. Zhao, X. Zhang, Y. Liang, Z. Han, S. Liu et al., Interphase engineering by electrolyte additives for lithium-rich layered oxides: advances and perspectives. ACS Energy Lett. 6(7), 2552–2564 (2021). https://doi.org/10.1021/acsenergylett.1c00750
Y. Qian, P. Niehoff, M. Börner, M. Grützke, X. Mönnighoff et al., Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode. J. Power Sources 329, 31–40 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.023
R. Wagner, B. Streipert, V. Kraft, A.R. Jiménez, S. Röser et al., Counterintuitive role of magnesium salts as effective electrolyte additives for high voltage lithium-ion batteries. Adv. Mater. Interfaces 3(15), 1600096 (2016). https://doi.org/10.1002/admi.201600096
S.S. Zhang, A review on electrolyte additives for lithium-ion batteries. J. Power Sources 162(2), 1379–1394 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.074
C.G. Shi, C.H. Shen, X.X. Peng, C.X. Luo, L.F. Shen et al., A special enabler for boosting cyclic life and rate capability of LiNi0.8Co0.1Mn0.1O2: green and simple additive. Nano Energy 65, 104084 (2019). https://doi.org/10.1016/j.nanoen.2019.104084
Y.Q. Chen, T.Y. Chen, W.D. Hsu, T.Y. Pan, L.J. Her et al., An electrolyte additive with boron-nitrogen-oxygen alkyl group enabled stable cycling for high voltage LiNi0.5Mn1.5O4 cathode in lithium-ion battery. J. Power Sources 477, 228473 (2020). https://doi.org/10.1016/j.jpowsour.2020.228473
R. Chen, F. Liu, Y. Chen, Y. Ye, Y. Huang et al., An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. J. Power Sources 306, 70–77 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.105
Z. Sun, H. Zhou, X. Luo, Y. Che, W. Li et al., Design of a novel electrolyte additive for high voltage LiCoO2 cathode lithium-ion batteries: lithium 4-benzonitrile trimethyl borate. J. Power Sources 503, 230033 (2021). https://doi.org/10.1016/j.jpowsour.2021.230033
J. Ahn, J. Im, H. Seo, S. Yoon, K.Y. Cho, Enhancing the cycling stability of Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode at 4 5 V via 2, 4-difluorobiphenyl additive. J. Power Sources 512, 230513 (2021). https://doi.org/10.1016/j.jpowsour.2021.230513
Y. Zheng, N. Xu, S. Chen, Y. Liao, G. Zhong et al., Construction of a stable LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface by a multifunctional organosilicon electrolyte additive. ACS Appl. Energy Mater. 3(3), 2837–2845 (2020). https://doi.org/10.1021/acsaem.9b02486
N. Aspern, D. Diddens, T. Kobayashi, M. Börner, O. Stubbmann-Kazakova et al., Fluorinated cyclic phosphorus (III)-based electrolyte additives for high voltage application in lithium-ion batteries: impact of structure–reactivity relationships on CEI formation and cell performance. ACS Appl. Mater. Interfaces 11(18), 16605–16618 (2019). https://doi.org/10.1021/acsami.9b03359
G. Lan, L. Xing, D. Bedrov, J. Chen, R. Guo et al., Enhanced cyclic stability of Ni-rich lithium ion battery with electrolyte film-forming additive. J. Alloys Compd. 821, 153236 (2020). https://doi.org/10.1016/j.jallcom.2019.153236
X. Zuo, C. Fan, J. Liu, X. Xiao, J. Wu et al., Effect of tris (trimethylsilyl) borate on the high voltage capacity retention of LiNi0 5Co0.2Mn0.3O2/graphite cells. J. Power Sources 229, 308–312 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.056
Z. Chen, C. Wang, L. Xing, X. Wang, W. Tu et al., Borate electrolyte additives for high voltage lithium nickel manganese oxide electrode: a comparative study. Electrochim. Acta 249, 353–359 (2017). https://doi.org/10.1016/j.electacta.2017.08.027
Y. Dong, B.T. Young, Y. Zhang, T. Yoon, D.R. Heskett et al., Effect of lithium borate additives on cathode film formation in LiNi0.5Mn1.5O4/Li cells. ACS Appl. Mater. Interfaces 9(24), 20467–20475 (2017). https://doi.org/10.1021/acsami.7b01481
Y. Li, W. Li, R. Shimizu, D. Cheng, H. Nguyen et al., Elucidating the effect of borate additive in high-voltage electrolyte for Li-rich layered oxide materials. Adv. Energy Mater. 12(11), 2103033 (2022). https://doi.org/10.1002/aenm.202103033
T. Deng, X. Fan, L. Cao, J. Chen, S. Hou et al., Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule 3(10), 2550–2564 (2019). https://doi.org/10.1016/j.joule.2019.08.004
M. Xu, W. Li, B.L. Lucht, Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries. J. Power Sources 193(2), 804–809 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.067
Q. Liu, G. Yang, S. Li, S. Zhang, R. Chen et al., Synergy effect of trimethyl borate on protecting high-voltage cathode materials in dual-additive electrolytes. ACS Appl. Mater. Interfaces 13(18), 21459–21466 (2021). https://doi.org/10.1021/acsami.1c04389
Q. Gu, M. Wang, Y. Liu, Y. Deng, L. Wang et al., Electrolyte additives for improving the high-temperature storage performance of Li-ion battery NCM523∥graphite with overcharge protection. ACS Appl. Mater. Interfaces 14, 4759–4766 (2022). https://doi.org/10.1021/acsami.1c22304
L. Madec, L. Ma, K.J. Nelson, R. Petibon, J.P. Sun et al., The effects of a ternary electrolyte additive system on the electrode/electrolyte interfaces in high voltage Li-ion cells. J. Electrochem. Soc. 163(6), A1001 (2016). https://doi.org/10.1149/2.1051606jes
E.G. Shim, T.H. Nam, J.G. Kim, H.S. Kim, S.I. Moon, Effect of vinyl acetate plus vinylene carbonate and vinyl ethylene carbonate plus biphenyl as electrolyte additives on the electrochemical performance of Li-ion batteries. Electrochim. Acta 53(2), 650–656 (2007). https://doi.org/10.1016/j.electacta.2007.07.026
F. Liu, Z. Zhang, Z. Yu, X. Fan, M. Yi et al., Bifunctional nitrile-borate based electrolyte additive enables excellent electrochemical stability of lithium metal batteries with single-crystal Ni-rich cathode at 4.7 V. Chem. Eng. J. 434, 134745 (2022). https://doi.org/10.1016/j.cej.2022.134745
Y.M. Song, J.G. Han, S. Park, K.T. Lee, N.S. Choi, A multifunctional phosphite-containing electrolyte for 5 V-class LiNi0.5Mn1.5O4 cathodes with superior electrochemical performance. J. Mater. Chem. A 2(25), 9506–9513 (2014). https://doi.org/10.1039/C4TA01129E
T. Yim, S.G. Woo, S.H. Lim, W. Cho, J.H. Song et al., 5V-class high-voltage batteries with over-lithiated oxide and a multi-functional additive. J. Mater. Chem. A 3(11), 6157–6167 (2015). https://doi.org/10.1039/C4TA06531J
Y. Cui, Y. Wang, S. Gu, C. Qian, T. Chen et al., An effective interface-regulating mechanism enabled by non-sacrificial additives for high-voltage nickel-rich cathode. J. Power Sources 453, 227852 (2020). https://doi.org/10.1016/j.jpowsour.2020.227852
L. Zou, P. Gao, H. Jia, X. Cao, H. Wu et al., Nonsacrificial additive for tuning the cathode–electrolyte interphase of lithium-ion batteries. ACS Appl. Mater. Interfaces 14(3), 4111–4118 (2022). https://doi.org/10.1021/acsami.1c20789
Z. Zhang, L. Hu, H. Wu, W. Weng, M. Koh et al., Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci. 6(6), 1806–1810 (2013). https://doi.org/10.1039/C3EE24414H
T. Achiha, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi et al., Thermal stability and electrochemical properties of fluorine compounds as nonflammable solvents for lithium-ion batteries. J. Electrochem. Soc. 157(6), A707 (2010). https://doi.org/10.1149/1.3377084
X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen et al., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotech. 13(8), 715–722 (2018). https://doi.org/10.1038/s41565-018-0183-2
C. Wang, Y.S. Meng, K. Xu, Perspective—fluorinating interphases. J. Electrochem. Soc. 166(3), A5184 (2018). https://doi.org/10.1149/2.0281903jes
Z. Yu, W. Yu, Y. Chen, L. Mondonico, X. Xiao et al., Tuning fluorination of linear carbonate for lithium-ion batteries. J. Electrochem. Soc. 169, 040555 (2022). https://doi.org/10.1149/1945-7111/ac67f5
X.G. Sun, C.A. Angell, New sulfone electrolytes for rechargeable lithium batteries Part I Oligoether-containing sulfones. Electrochem. Commun. 7(3), 261–266 (2005). https://doi.org/10.1016/j.elecom.2005.01.010
A. Abouimrane, I. Belharouak, K. Amine, Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochem. Commun. 11(5), 1073–1076 (2009). https://doi.org/10.1016/j.elecom.2009.03.020
C.C. Su, M. He, J. Shi, R. Amine, Z. Yu et al., Principle in developing novel fluorinated sulfone electrolyte for high voltage lithium-ion batteries. Energy Environ. Sci. 14(5), 3029–3034 (2021). https://doi.org/10.1039/D0EE03890C
J. Alvarado, M.A. Schroeder, M. Zhang, O. Borodin, E. Gobrogge et al., A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Mater. Today 21(4), 341–353 (2018). https://doi.org/10.1016/j.mattod.2018.02.005
L. Dong, Y. Liu, D. Chen, Y. Han, Y. Ji et al., Stabilization of high-voltage lithium metal batteries using a sulfone-based electrolyte with bi-electrode affinity and LiSO2F-rich interphases. Energy Storage Mater. 44, 527–536 (2022). https://doi.org/10.1016/j.ensm.2021.10.045
Y. Abu-Lebdeh, I. Davidson, High-voltage electrolytes based on adiponitrile for Li-ion batteries. J. Electrochem. Soc. 156(1), A60 (2008). https://doi.org/10.1149/1.3023084
H. Zhi, L. Xing, X. Zheng, K. Xu, W. Li, Understanding how nitriles stabilize electrolyte/electrode interface at high voltage. Phys. Chem. Lett. 8(24), 6048–6052 (2017). https://doi.org/10.1021/acs.jpclett.7b02734
F. Xian, J. Li, Z. Hu, Q. Zhou, C. Wang et al., Investigation of the cathodic interfacial stability of a nitrile electrolyte and its performance with a high-voltage LiCoO2 cathode. Chem. Commun. 56(37), 4998–5001 (2020). https://doi.org/10.1039/D0CC00049C
Q. Zhang, K. Liu, F. Ding, W. Li, X. Liu et al., Enhancing the high voltage interface compatibility of LiNi0.5Co0.2Mn0.3O2 in the succinonitrile-based electrolyte. Electrochim. Acta 298, 818–826 (2019). https://doi.org/10.1016/j.electacta.2018.12.104
H. Moon, S.J. Cho, D.E. Yu, S.Y. Lee, A nitrile electrolyte strategy for 4.9 V-class lithium-metal batteries operating in flame. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12383
P. Johansson, Intrinsic anion oxidation potentials. J. Phys. Chem. A 110(44), 12077–12080 (2006). https://doi.org/10.1021/jp070202i
K. Xu, Tailoring electrolyte composition for LiBOB. J. Electrochem. Soc. 155(10), A733 (2008). https://doi.org/10.1149/1.2961055
C. Täubert, M. Fleischhammer, M. Wohlfahrt-Mehrens, U. Wietelmann, T. Buhrmester, LiBOB as electrolyte salt or additive for lithium-ion batteries based on LiNi0.8Co0.15Al0.05O2/graphite. J. Electrochem. Soc. 157(6), A721 (2010). https://doi.org/10.1149/1.3374666
S. Dalavi, M. Xu, B. Knight, B.L. Lucht, Effect of added LiBOB on high voltage (LiNi0.5Mn1.5O4) spinel cathodes. Electrochem. Solid State Lett. 15(2), A28 (2011). https://doi.org/10.1149/2.015202esl
V. Aravindan, Y.L. Cheah, W.C. Ling, S. Madhavi, Effect of LiBOB additive on the electrochemical performance of LiCoPO4. J. Electrochem. Soc. 159(9), A1435 (2012). https://doi.org/10.1149/2.024209jes
S.S. Zhang, An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Commun. 8(9), 1423–1428 (2006). https://doi.org/10.1016/j.elecom.2006.06.016
I.A. Shkrob, Y. Zhu, T.W. Marin, D.P. Abraham, Mechanistic insight into the protective action of bis (oxalato) borate and difluoro (oxalate) borate anions in Li-ion batteries. J. Phys. Chem. C 117(45), 23750–23756 (2013). https://doi.org/10.1021/jp407714p
E. Zhao, O. Borodin, X. Gao, D. Lei, Y. Xiao et al., Lithium–iron (III) fluoride battery with double surface protection. Adv. Energy Mater. 8(26), 1800721 (2018). https://doi.org/10.1002/aenm.201800721
M. Mao, B. Huang, Q. Li, C. Wang, Y.B. He et al., In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery. Nano Energy 78, 105282 (2020). https://doi.org/10.1016/j.nanoen.2020.105282
H. Lu, L. He, Y. Yuan, Y. Zhu, B. Zheng et al., Synergistic effect of fluorinated solvents for improving high voltage performance of LiNi0.5Mn1.5O4 cathode. J. Electrochem. Soc. 167(12), 120534 (2020). https://doi.org/10.1149/1945-7111/abb34a
G. Xu, X. Shangguan, S. Dong, X. Zhou, G. Cui, Formulation of blended-lithium-salt electrolytes for lithium batteries. Angew. Chem. Int. Ed. 59(9), 3400–3415 (2020). https://doi.org/10.1002/anie.201906494
D. Zhao, P. Wang, X. Cui, L. Mao, C. Li et al., Robust and sulfur-containing ingredient surface film to improve the electrochemical performance of LiDFOB-based high-voltage electrolyte. Electrochim. Acta 260, 536–548 (2018). https://doi.org/10.1016/j.electacta.2017.12.103
F. Zhang, C. Wang, D. Zhao, L. Yang, P. Wang et al., Synergistic effect of sulfolane and lithium difluoro (oxalate) borate on improvement of compatibility for LiNi0.8Co0.15Al0.05O2 electrode. Electrochim. Acta. 337, 135727 (2020). https://doi.org/10.1016/j.electacta.2020.135727
R. Weber, M. Genovese, A. Louli, S. Hames, C. Martin et al., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4(8), 683–689 (2019). https://doi.org/10.1038/s41560-019-0428-9
C. Martin, M. Genovese, A. Louli, R. Weber, J. Dahn, Cycling lithium metal on graphite to form hybrid lithium-ion/lithium metal cells. Joule 4(6), 1296–1310 (2020). https://doi.org/10.1016/j.joule.2020.04.003
S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3(9), 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8
X. Li, J. Zheng, M.H. Engelhard, D. Mei, Q. Li et al., Effects of imide–orthoborate dual-salt mixtures in organic carbonate electrolytes on the stability of lithium metal batteries. ACS Appl. Mater. Interfaces 10(3), 2469–2479 (2018). https://doi.org/10.1021/acsami.7b15117
K. Park, S. Yu, C. Lee, H. Lee, Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis (fluorosulfonyl) imide electrolytes. J. Power Sources 296, 197–203 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.052
B. Mandal, T. Sooksimuang, B. Griffin, A. Padhi, R. Filler, New lithium salts for rechargeable battery electrolytes. Solid State Ionics 175(1–4), 267–272 (2004). https://doi.org/10.1016/j.ssi.2003.11.037
I.A. Shkrob, T.W. Marin, Y. Zhu, D.P. Abraham, Why bis (fluorosulfonyl) imide is a “magic anion” for electrochemistry. J. Phys. Chem. C 118(34), 19661–19671 (2014). https://doi.org/10.1021/jp506567p
L.J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba et al., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J. Power Sources 68(2), 320–325 (1997). https://doi.org/10.1016/S0378-7753(97)02517-2
N. Wongittharom, T.C. Lee, I.M. Hung, S.W. Lee, Y.C. Wang et al., Ionic liquid electrolytes for high-voltage rechargeable Li/LiNi0.5Mn1.5O4 cells. J. Mater. Chem. A 2(10), 3613–3620 (2014). https://doi.org/10.1039/C3TA14423B
L. Xia, Y. Jiang, Y. Pan, S. Li, J. Wang et al., Lithium bis (fluorosulfony) imide-lithium hexafluorophosphate binary-salt electrolytes for lithium-ion batteries: aluminum corrosion behaviors and electrochemical properties. ChemistrySelect 3(7), 1954–1960 (2018). https://doi.org/10.1002/slct.201702488
X. Chen, W. Xu, M.H. Engelhard, J. Zheng, Y. Zhang et al., Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures. J. Mater. Chem. A 2(7), 2346–2352 (2014). https://doi.org/10.1039/C3TA13043F
H. Han, J. Guo, D. Zhang, S. Feng, W. Feng et al., Lithium (fluorosulfonyl) (nonafluorobutanesulfonyl) imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells. Electrochem. Commun. 13(3), 265–268 (2011). https://doi.org/10.1016/j.elecom.2010.12.030
Z. Fang, Q. Ma, P. Liu, J. Ma, Y.S. Hu et al., Novel concentrated Li[(FSO2)(n-C4F9SO2)N]-based ether electrolyte for superior stability of metallic lithium anode. ACS Appl. Mater. Interfaces 9(5), 4282–4289 (2017). https://doi.org/10.1021/acsami.6b03857
L. Qiao, U. Oteo, M. Martinez-Ibañez, A. Santiago, R. Cid et al., Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries. Nat. Mater. 21(4), 455–462 (2022). https://doi.org/10.1038/s41563-021-01190-1
O. Borodin, J. Self, K.A. Persson, C. Wang, K. Xu, Uncharted waters: super-concentrated electrolytes. Joule 4(1), 69–100 (2020). https://doi.org/10.1016/j.joule.2019.12.007
J. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016). https://doi.org/10.1038/ncomms12032
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
J. Xu, X. Ji, J. Zhang, C. Yang, P. Wang et al., Aqueous electrolyte design for super-stable 2 5 V LiMn2O4||Li4Ti5O12 pouch cells. Nat. Energy. 7(2), 186–193 (2022). https://doi.org/10.1038/s41560-021-00977-5
J. Vatamanu, O. Borodin, Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability. J. Phys. Chem. Lett. 8(18), 4362–4367 (2017). https://doi.org/10.1021/acs.jpclett.7b01879
X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4(1), 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
J. Alvarado, M.A. Schroeder, T.P. Pollard, X. Wang, J.Z. Lee et al., Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12(2), 780–794 (2019). https://doi.org/10.1039/C8EE02601G
J. Xu, C. Wang, Perspective—electrolyte design for aqueous batteries: from ultra-high concentration to low concentration? J. Electrochem. Soc. 169(3), 030530 (2022). https://doi.org/10.1149/1945-7111/ac5ba9
Y. Li, Y. Yang, Y. Lu, Q. Zhou, X. Qi et al., Ultralow-concentration electrolyte for Na-ion batteries. ACS Energy Lett. 5(4), 1156–1158 (2020). https://doi.org/10.1021/acsenergylett.0c00337
X. Ren, L. Zou, X. Cao, M.H. Engelhard, W. Liu et al., Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3(7), 1662–1676 (2019). https://doi.org/10.1016/j.joule.2019.05.006
S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard et al., High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30(21), 1706102 (2018). https://doi.org/10.1002/adma.201706102
X. Ren, S. Chen, H. Lee, D. Mei, M.H. Engelhard et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4(8), 1877–1892 (2018). https://doi.org/10.1016/j.chempr.2018.05.002
R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3(4), 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
M.S. Ziegler, J. Song, J.E. Trancik, Determinants of lithium-ion battery technology cost decline. Energy Environ. Sci. 14(12), 6074–6098 (2021). https://doi.org/10.1039/D1EE01313K
R. Gond, W. Ekeren, R. Mogensen, A.J. Naylor, R. Younesi, Non-flammable liquid electrolytes for safe batteries. Mater. Horiz. 8, 2913–2928 (2021). https://doi.org/10.1039/D1MH00748C
H. Ota, A. Kominato, W.J. Chun, E. Yasukawa, S. Kasuya, Effect of cyclic phosphate additive in non-flammable electrolyte. J. Power Sources 119, 393–398 (2003). https://doi.org/10.1016/S0378-7753(03)00259-3
T. Tsujikawa, K. Yabuta, T. Matsushita, T. Matsushima, K. Hayashi et al., Characteristics of lithium-ion battery with non-flammable electrolyte. J. Power Sources 189(1), 429–434 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.010
J. Hou, L. Lu, L. Wang, A. Ohma, D. Ren et al., Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 11, 5100 (2020). https://doi.org/10.1038/s41467-020-18868-w
X. Feng, D. Ren, X. He, M. Ouyang, Mitigating thermal runaway of lithium-ion batteries. Joule 4(4), 743–770 (2020). https://doi.org/10.1016/j.joule.2020.02.010
M.T.F. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F.N. Sayed et al., A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2(8), 17108 (2017). https://doi.org/10.1038/nenergy.2017.108
X. Zhang, L. Zou, Y. Xu, X. Cao, M.H. Engelhard et al., Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range. Adv. Energy Mater. 10(22), 2000368 (2020). https://doi.org/10.1002/aenm.202000368
C.L. Campion, W. Li, B.L. Lucht, Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 152(12), A2327 (2005). https://doi.org/10.1149/1.2083267
C.S. Rustomji, Y. Yang, T.K. Kim, J. Mac, Y.J. Kim et al., Liquefied gas electrolytes for electrochemical energy storage devices. Science. 356(6345), aal4263 (2017). https://doi.org/10.1126/science.aal4263
X. Fan, X. Ji, L. Chen, J. Chen, T. Deng et al., All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4(10), 882–890 (2019). https://doi.org/10.1038/s41560-019-0474-3
J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6(3), 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z
A. Masias, J. Marcicki, W.A. Paxton, Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 6(2), 621–630 (2021). https://doi.org/10.1021/acsenergylett.0c02584