All-Polymer Solar Cells and Photodetectors with Improved Stability Enabled by Terpolymers Containing Antioxidant Side Chains
Corresponding Author: Fei Huang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 140
Abstract
It is of vital importance to improve the long-term and photostability of organic photovoltaics, including organic solar cells (OSCs) and organic photodetectors (OPDs), for their ultimate industrialization. Herein, two series of terpolymers featuring with an antioxidant butylated hydroxytoluene (BHT)-terminated side chain, PTzBI-EHp-BTBHTx and N2200-BTBHTx (x = 0.05, 0.1, 0.2), are designed and synthesized. It was found that incorporating appropriate ratio of benzothiadiazole (BT) with BHT side chains on the conjugated backbone would induce negligible effect on the molecular weight, absorption spectra and energy levels of polymers, however, which would obviously enhance the photostability of these polymers. Consequently, all-polymer solar cells (all-PSCs) and photodetectors were fabricated, and the all-PSC based on PTzBI-EHp-BTBHT0.05: N2200 realized an optimal power conversion efficiency (PCE) approaching ~ 10%, outperforming the device based on pristine PTzBI-EHp: N2200. Impressively, the all-PSCs based on BHT-featuring terpolymers displayed alleviated PCEs degradation under continuous irradiation for 300 h due to the improved morphological and photostability of active layers. The OPDs based on BHT-featuring terpolymers achieved a lower dark current at − 0.1 bias, which could be stabilized even after irradiation over 400 h. This study provides a feasible approach to develop terpolymers with antioxidant efficacy for improving the lifetime of OSCs and OPDs.
Highlights:
1 Two series of terpolymers with improved photostability were realized by the introduction of appropriate ratio of antioxidant butylated hydroxytoluene unit containing side chains.
2 All-polymer solar cells and organic photodetectors (OPDs) with these terpolymers as both donors and acceptors have been prepared with simultaneously improved efficiency and stability.
3 A feasible approach to develop terpolymers with antioxidant efficacy for improving the lifetime of organic solar cells and OPDs is proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Yan, Z. Chen, Y. Zheng, C. Newman, J.R. Quinn et al., High-mobility electron-transporting polymer for printed transistors. Nature 457, 679 (2009). https://doi.org/10.1038/nature07727
- S. Dong, T. Jia, K. Zhang, J. Jing, F. Huang, Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%. Joule 4, 2004 (2020). https://doi.org/10.1016/j.joule.2020.07.028
- S.D. Collins, N.A. Ran, M.C. Heiber, T.-Q. Nguyen, Small is powerful: recent progress in solution-processed small molecule solar cells. Adv. Energy Mater. 7, 1602242 (2017). https://doi.org/10.1002/aenm.201602242
- Y. Song, K. Zhang, S. Dong, R. Xia, F. Huang et al., Semitransparent organic solar cells enabled by a sequentially deposited bilayer structure. ACS Appl. Mater. Interfaces 12, 18473 (2020). https://doi.org/10.1021/acsami.0c00396
- N. Cui, Y. Song, C.-H. Tan, K. Zhang, X. Yang et al., Stretchable transparent electrodes for conformable wearable organic photovoltaic devices. Npj Flex. Electron. 5, 31 (2021). https://doi.org/10.1038/s41528-021-00127-7
- P. Bi, S. Zhang, Z. Chen, Y. Xu, Y. Cui et al., Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 5, 2408 (2021). https://doi.org/10.1016/j.joule.2021.06.020
- L. Duan, A. Uddin, Progress in stability of organic solar cells. Adv. Sci. 7, 1903259 (2020). https://doi.org/10.1002/advs.201903259
- X. Huang, Z. Zhao, S. Chung, K. Cho, J. Lv et al., Balancing the performance and stability of organic photodiodes with all-polymer active layers. J. Mater. Chem. C 10, 17502 (2022). https://doi.org/10.1039/D2TC04132D
- M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Solar Energy Mater. Solar Cells 92, 686 (2008). https://doi.org/10.1016/j.solmat.2008.01.005
- Y. Wang, J. Lee, X. Hou, C. Labanti, J. Yan et al., Recent progress and challenges toward highly stable nonfullerene acceptor-based organic solar cells. Adv. Energy Mater. 11, 2003002 (2021). https://doi.org/10.1002/aenm.202003002
- I. Fraga Domínguez, A. Distler, L. Lüer, Stability of organic solar cells: the influence of nanostructured carbon materials. Adv. Energy Mater. 7, 1601320 (2017). https://doi.org/10.1002/aenm.201601320
- M. Riede, D. Spoltore, K. Leo, Organic solar cells—the path to commercial success. Adv. Energy Mater. 11, 2002653 (2021). https://doi.org/10.1002/aenm.202002653
- J. Oh, S.M. Lee, S. Jung, J. Lee, G. Park et al., Antioxidant additive with a high dielectric constant for high photo-oxidative stabilization of organic solar cells without almost sacrificing initial high efficiencies. Solar RRL 5, 2000812 (2021). https://doi.org/10.1002/solr.202000812
- I. Björkhem, A. Henriksson-Freyschuss, O. Breuer, U. Diczfalusy, L. Berglund et al., The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler. Thromb. J. Vasc. Biol. 11, 15 (1991). https://doi.org/10.1161/01.ATV.11.1.15
- X. Wen, Y. Zhang, G. Xie, R. Rausch, N. Tang et al., Phenol-functionalized perylene bisimides as amine-free electron transporting interlayers for stable nonfullerene organic solar cells. Adv. Funct. Mater. 32, 2111706 (2022). https://doi.org/10.1002/adfm.202111706
- A. Guerrero, G. Garcia-Belmonte, Recent advances to understand morphology stability of organic photovoltaics. Nano-Micro Lett. 9, 10 (2017). https://doi.org/10.1007/s40820-016-0107-3
- S. Chen, L. Hong, M. Dong, W. Deng, L. Shao et al., A polyfluoroalkyl-containing non-fullerene acceptor enables self-stratification in organic solar cells. Angew. Chem. Int. Ed. 62, e202213869 (2023). https://doi.org/10.1002/anie.202213869
- L. Zhan, S. Li, X. Xia, Y. Li, X. Lu et al., Layer-by-layer processed ternary organic photovoltaics with efficiency over 18%. Adv. Mater. 33, 2007231 (2021). https://doi.org/10.1002/adma.202007231
- M. Salvador, N. Gasparini, J.D. Perea, S.H. Paleti, A. Distler et al., Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates. Energy Environ. Sci. 10, 2005 (2017). https://doi.org/10.1039/C7EE01403A
- V. Turkovic, S. Engmann, N. Tsierkezos, H. Hoppe, U. Ritter et al., Long-term stabilization of organic solar cells using hindered phenols as additives. ACS Appl. Mater. Interfaces 6, 18525 (2014). https://doi.org/10.1021/am5024989
- J. Zhang, C. Tan, K. Zhang, T. Jia, Y. Cui et al., π-Extended conjugated polymer acceptor containing thienylene-vinylene-thienylene unit for high-performance thick-film all-polymer solar cells with superior long-term stability. Adv. Energy Mater. 11, 2102559 (2021). https://doi.org/10.1002/aenm.202102559
- Z. Yin, Q. Wang, H. Zhao, H. Wang, N. Li et al., 17.13% efficiency and superior thermal stability of organic solar cells based on a comb-shape active blend. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12443
- B. Fan, W. Zhong, L. Ying, D. Zhang, M. Li et al., Surpassing the 10% efficiency milestone for 1-cm2 all-polymer solar cells. Nat. Commun. 10, 4100 (2019). https://doi.org/10.1038/s41467-019-12132-6
- M. Kielar, O. Dhez, G. Pecastaings, A. Curutchet, L. Hirsch, Long-term stable organic photodetectors with ultra low dark currents for high detectivity applications. Sci. Rep. 6, 39201 (2016). https://doi.org/10.1038/srep39201
- G. Li, J. Wu, J. Fang, X. Guo, L. Zhu et al., A non-fullerene acceptor with chlorinated thienyl conjugated side chains for high-performance polymer solar cells via toluene processing. Chin. J. Chem. 38, 697 (2020). https://doi.org/10.1002/cjoc.201900495
- U. Würfel, L. Perdigón-Toro, J. Kurpiers, C.M. Wolff, P. Caprioglio et al., Recombination between photogenerated and electrode-induced charges dominates the fill factor losses in optimized organic solar cells. J. Phys. Chem. Lett. 10, 3473 (2019). https://doi.org/10.1021/acs.jpclett.9b01175
- M.P. Seah, W.A. Dench, Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2 (1979). https://doi.org/10.1002/sia.740010103
- Z. Wang, Z. Hong, T. Zhuang, G. Chen, H. Sasabe et al., High fill factor and thermal stability of bilayer organic photovoltaic cells with an inverted structure. Appl. Phys. Lett. 106, 053305 (2015). https://doi.org/10.1063/1.4907399
- L.J.A. Koster, V.D. Mihailetchi, R. Ramaker, P.W.M. Blom, Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells. Appl. Phys. Lett. 86, 123509 (2005). https://doi.org/10.1063/1.1889240
- Y. Song, Z. Zhong, P. He, G. Yu, Q. Xue et al., Doping compensation enables high-detectivity infrared organic photodiodes for image sensing. Adv. Mater. 34, 2201827 (2022). https://doi.org/10.1002/adma.202201827
- S. Dongaonkar, J.D. Servaites, G.M. Ford, S. Loser, J. Moore et al., Universality of non-Ohmic shunt leakage in thin-film solar cells. J. Appl. Phys. 108, 124509 (2010). https://doi.org/10.1063/1.3518509
- X. Zhou, D. Yang, D. Ma, Extremely low dark current, high responsivity, all-polymer photodetectors with spectral response from 300 nm to 1000 nm. Adv. Opt. Mater. 3, 1570 (2015). https://doi.org/10.1002/adom.201500224
- D. Zhang, D. Zhao, Z. Wang, J. Yu, Processes controlling the distribution of vertical organic composition in organic photodetectors by ultrasonic-assisted solvent vapor annealing. ACS Appl. Electron. Mater. 2, 2188 (2020). https://doi.org/10.1021/acsaelm.0c00378
- H. Shekhar, O. Solomeshch, D. Liraz, N. Tessler, Low dark leakage current in organic planar heterojunction photodiodes. Appl. Phys. Lett. 111, 223301 (2017). https://doi.org/10.1063/1.4996826
- C. Fuentes-Hernandez, W.-F. Chou, T.M. Khan, L. Diniz, J. Lukens et al., Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 370, 698 (2020). https://doi.org/10.1126/science.aba2624
- Y. Song, G. Yu, B. Xie, K. Zhang, F. Huang, Visible-to-near-infrared organic photodiodes with performance comparable to commercial silicon-based detectors. Appl. Phys. Lett. 117, 093302 (2020). https://doi.org/10.1063/5.0018274
- C. Zhang, Y. Cao, Y. Song, G. Yu, L. Lan et al., Organic photodiodes with thermally reliable dark current and excellent detectivity enabled by low donor concentration. ACS Appl. Mater. Interfaces 15, 7175 (2023). https://doi.org/10.1021/acsami.2c15657
References
H. Yan, Z. Chen, Y. Zheng, C. Newman, J.R. Quinn et al., High-mobility electron-transporting polymer for printed transistors. Nature 457, 679 (2009). https://doi.org/10.1038/nature07727
S. Dong, T. Jia, K. Zhang, J. Jing, F. Huang, Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%. Joule 4, 2004 (2020). https://doi.org/10.1016/j.joule.2020.07.028
S.D. Collins, N.A. Ran, M.C. Heiber, T.-Q. Nguyen, Small is powerful: recent progress in solution-processed small molecule solar cells. Adv. Energy Mater. 7, 1602242 (2017). https://doi.org/10.1002/aenm.201602242
Y. Song, K. Zhang, S. Dong, R. Xia, F. Huang et al., Semitransparent organic solar cells enabled by a sequentially deposited bilayer structure. ACS Appl. Mater. Interfaces 12, 18473 (2020). https://doi.org/10.1021/acsami.0c00396
N. Cui, Y. Song, C.-H. Tan, K. Zhang, X. Yang et al., Stretchable transparent electrodes for conformable wearable organic photovoltaic devices. Npj Flex. Electron. 5, 31 (2021). https://doi.org/10.1038/s41528-021-00127-7
P. Bi, S. Zhang, Z. Chen, Y. Xu, Y. Cui et al., Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 5, 2408 (2021). https://doi.org/10.1016/j.joule.2021.06.020
L. Duan, A. Uddin, Progress in stability of organic solar cells. Adv. Sci. 7, 1903259 (2020). https://doi.org/10.1002/advs.201903259
X. Huang, Z. Zhao, S. Chung, K. Cho, J. Lv et al., Balancing the performance and stability of organic photodiodes with all-polymer active layers. J. Mater. Chem. C 10, 17502 (2022). https://doi.org/10.1039/D2TC04132D
M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Solar Energy Mater. Solar Cells 92, 686 (2008). https://doi.org/10.1016/j.solmat.2008.01.005
Y. Wang, J. Lee, X. Hou, C. Labanti, J. Yan et al., Recent progress and challenges toward highly stable nonfullerene acceptor-based organic solar cells. Adv. Energy Mater. 11, 2003002 (2021). https://doi.org/10.1002/aenm.202003002
I. Fraga Domínguez, A. Distler, L. Lüer, Stability of organic solar cells: the influence of nanostructured carbon materials. Adv. Energy Mater. 7, 1601320 (2017). https://doi.org/10.1002/aenm.201601320
M. Riede, D. Spoltore, K. Leo, Organic solar cells—the path to commercial success. Adv. Energy Mater. 11, 2002653 (2021). https://doi.org/10.1002/aenm.202002653
J. Oh, S.M. Lee, S. Jung, J. Lee, G. Park et al., Antioxidant additive with a high dielectric constant for high photo-oxidative stabilization of organic solar cells without almost sacrificing initial high efficiencies. Solar RRL 5, 2000812 (2021). https://doi.org/10.1002/solr.202000812
I. Björkhem, A. Henriksson-Freyschuss, O. Breuer, U. Diczfalusy, L. Berglund et al., The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler. Thromb. J. Vasc. Biol. 11, 15 (1991). https://doi.org/10.1161/01.ATV.11.1.15
X. Wen, Y. Zhang, G. Xie, R. Rausch, N. Tang et al., Phenol-functionalized perylene bisimides as amine-free electron transporting interlayers for stable nonfullerene organic solar cells. Adv. Funct. Mater. 32, 2111706 (2022). https://doi.org/10.1002/adfm.202111706
A. Guerrero, G. Garcia-Belmonte, Recent advances to understand morphology stability of organic photovoltaics. Nano-Micro Lett. 9, 10 (2017). https://doi.org/10.1007/s40820-016-0107-3
S. Chen, L. Hong, M. Dong, W. Deng, L. Shao et al., A polyfluoroalkyl-containing non-fullerene acceptor enables self-stratification in organic solar cells. Angew. Chem. Int. Ed. 62, e202213869 (2023). https://doi.org/10.1002/anie.202213869
L. Zhan, S. Li, X. Xia, Y. Li, X. Lu et al., Layer-by-layer processed ternary organic photovoltaics with efficiency over 18%. Adv. Mater. 33, 2007231 (2021). https://doi.org/10.1002/adma.202007231
M. Salvador, N. Gasparini, J.D. Perea, S.H. Paleti, A. Distler et al., Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates. Energy Environ. Sci. 10, 2005 (2017). https://doi.org/10.1039/C7EE01403A
V. Turkovic, S. Engmann, N. Tsierkezos, H. Hoppe, U. Ritter et al., Long-term stabilization of organic solar cells using hindered phenols as additives. ACS Appl. Mater. Interfaces 6, 18525 (2014). https://doi.org/10.1021/am5024989
J. Zhang, C. Tan, K. Zhang, T. Jia, Y. Cui et al., π-Extended conjugated polymer acceptor containing thienylene-vinylene-thienylene unit for high-performance thick-film all-polymer solar cells with superior long-term stability. Adv. Energy Mater. 11, 2102559 (2021). https://doi.org/10.1002/aenm.202102559
Z. Yin, Q. Wang, H. Zhao, H. Wang, N. Li et al., 17.13% efficiency and superior thermal stability of organic solar cells based on a comb-shape active blend. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12443
B. Fan, W. Zhong, L. Ying, D. Zhang, M. Li et al., Surpassing the 10% efficiency milestone for 1-cm2 all-polymer solar cells. Nat. Commun. 10, 4100 (2019). https://doi.org/10.1038/s41467-019-12132-6
M. Kielar, O. Dhez, G. Pecastaings, A. Curutchet, L. Hirsch, Long-term stable organic photodetectors with ultra low dark currents for high detectivity applications. Sci. Rep. 6, 39201 (2016). https://doi.org/10.1038/srep39201
G. Li, J. Wu, J. Fang, X. Guo, L. Zhu et al., A non-fullerene acceptor with chlorinated thienyl conjugated side chains for high-performance polymer solar cells via toluene processing. Chin. J. Chem. 38, 697 (2020). https://doi.org/10.1002/cjoc.201900495
U. Würfel, L. Perdigón-Toro, J. Kurpiers, C.M. Wolff, P. Caprioglio et al., Recombination between photogenerated and electrode-induced charges dominates the fill factor losses in optimized organic solar cells. J. Phys. Chem. Lett. 10, 3473 (2019). https://doi.org/10.1021/acs.jpclett.9b01175
M.P. Seah, W.A. Dench, Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2 (1979). https://doi.org/10.1002/sia.740010103
Z. Wang, Z. Hong, T. Zhuang, G. Chen, H. Sasabe et al., High fill factor and thermal stability of bilayer organic photovoltaic cells with an inverted structure. Appl. Phys. Lett. 106, 053305 (2015). https://doi.org/10.1063/1.4907399
L.J.A. Koster, V.D. Mihailetchi, R. Ramaker, P.W.M. Blom, Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells. Appl. Phys. Lett. 86, 123509 (2005). https://doi.org/10.1063/1.1889240
Y. Song, Z. Zhong, P. He, G. Yu, Q. Xue et al., Doping compensation enables high-detectivity infrared organic photodiodes for image sensing. Adv. Mater. 34, 2201827 (2022). https://doi.org/10.1002/adma.202201827
S. Dongaonkar, J.D. Servaites, G.M. Ford, S. Loser, J. Moore et al., Universality of non-Ohmic shunt leakage in thin-film solar cells. J. Appl. Phys. 108, 124509 (2010). https://doi.org/10.1063/1.3518509
X. Zhou, D. Yang, D. Ma, Extremely low dark current, high responsivity, all-polymer photodetectors with spectral response from 300 nm to 1000 nm. Adv. Opt. Mater. 3, 1570 (2015). https://doi.org/10.1002/adom.201500224
D. Zhang, D. Zhao, Z. Wang, J. Yu, Processes controlling the distribution of vertical organic composition in organic photodetectors by ultrasonic-assisted solvent vapor annealing. ACS Appl. Electron. Mater. 2, 2188 (2020). https://doi.org/10.1021/acsaelm.0c00378
H. Shekhar, O. Solomeshch, D. Liraz, N. Tessler, Low dark leakage current in organic planar heterojunction photodiodes. Appl. Phys. Lett. 111, 223301 (2017). https://doi.org/10.1063/1.4996826
C. Fuentes-Hernandez, W.-F. Chou, T.M. Khan, L. Diniz, J. Lukens et al., Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 370, 698 (2020). https://doi.org/10.1126/science.aba2624
Y. Song, G. Yu, B. Xie, K. Zhang, F. Huang, Visible-to-near-infrared organic photodiodes with performance comparable to commercial silicon-based detectors. Appl. Phys. Lett. 117, 093302 (2020). https://doi.org/10.1063/5.0018274
C. Zhang, Y. Cao, Y. Song, G. Yu, L. Lan et al., Organic photodiodes with thermally reliable dark current and excellent detectivity enabled by low donor concentration. ACS Appl. Mater. Interfaces 15, 7175 (2023). https://doi.org/10.1021/acsami.2c15657