Bioinspired Electrolyte-Gated Organic Synaptic Transistors: From Fundamental Requirements to Applications
Corresponding Author: Dirk Mayer
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 198
Abstract
Rapid development of artificial intelligence requires the implementation of hardware systems with bioinspired parallel information processing and presentation and energy efficiency. Electrolyte-gated organic transistors (EGOTs) offer significant advantages as neuromorphic devices due to their ultra-low operation voltages, minimal hardwired connectivity, and similar operation environment as electrophysiology. Meanwhile, ionic–electronic coupling and the relatively low elastic moduli of organic channel materials make EGOTs suitable for interfacing with biology. This review presents an overview of the device architectures based on organic electrochemical transistors and organic field-effect transistors. Furthermore, we review the requirements of low energy consumption and tunable synaptic plasticity of EGOTs in emulating biological synapses and how they are affected by the organic materials, electrolyte, architecture, and operation mechanism. In addition, we summarize the basic operation principle of biological sensory systems and the recent progress of EGOTs as a building block in artificial systems. Finally, the current challenges and future development of the organic neuromorphic devices are discussed.
Highlights:
1 Neuromorphic device with bioinspired parallel information processing and presentation and energy efficiency is desired for the rapid development of artificial intelligence.
2 Electrolyte-gated organic transistors can be leveraged to emulate versatile synaptic functions with tunable properties and excellent biocompatibility.
3 Recent development regarding the organic channel materials, neuromorphic device handling neurochemical signals, the basic requirements to achieve artificial synapse, and the applications on mimicking perception functions are reviewed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Schneider, U.S. supercomputing strikes back. IEEE Spectr. 55, 52–53 (2018). https://doi.org/10.1109/MSPEC.2018.8241739
- W. Xu, S.-Y. Min, H. Hwang, T.-W. Lee, Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2, e1501326 (2016). https://doi.org/10.1126/sciadv.1501326
- M.L. Kringelbach, N. Jenkinson, S.L.F. Owen, T.Z. Aziz, Translational principles of deep brain stimulation. Nat. Rev. Neurosci. 8, 623–635 (2007). https://doi.org/10.1038/nrn2196
- S.T. Keene, C. Lubrano, S. Kazemzadeh, A. Melianas, Y. Tuchman et al., A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 19, 969–973 (2020). https://doi.org/10.1038/s41563-020-0703-y
- R. Liu, Y. He, X. Zhu, J. Duan, C. Liu et al., Hardware-feasible and efficient N-type organic neuromorphic signal recognition via reservoir computing. Adv. Mater. 37, e2409258 (2025). https://doi.org/10.1002/adma.202409258
- Y. He, Z. Ge, Z. Li, Z. Li, R. Liu et al., All-polymer organic electrochemical synaptic transistor with controlled ionic dynamics for high-performance wearable and sustainable reservoir computing. Adv. Funct. Mater. 35, 2415595 (2025). https://doi.org/10.1002/adfm.202415595
- H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in in-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano-Micro Lett. 16, 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
- Y. Cao, B. Xu, B. Li, H. Fu, Advanced design of soft robots with artificial intelligence. Nano-Micro Lett. 16, 214 (2024). https://doi.org/10.1007/s40820-024-01423-3
- K. Asadi, D.M. de Leeuw, B. de Boer, P.W.M. Blom, Organic non-volatile memories from ferroelectric phase-separated blends. Nat. Mater. 7, 547–550 (2008). https://doi.org/10.1038/nmat2207
- S. Möller, C. Perlov, W. Jackson, C. Taussig, S.R. Forrest, A polymer/semiconductor write-once read-many-times memory. Nature 426, 166–169 (2003). https://doi.org/10.1038/nature02070
- T. Leydecker, M. Herder, E. Pavlica, G. Bratina, S. Hecht et al., Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 11, 769–775 (2016). https://doi.org/10.1038/nnano.2016.87
- T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer et al., Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516–1519 (2009). https://doi.org/10.1126/science.1179963
- H. Carchano, R. Lacoste, Y. Segui, Bistable electrical switching in polymer thin films. Appl. Phys. Lett. 19, 414–415 (1971). https://doi.org/10.1063/1.1653751
- L. Ma, Q. Xu, Y. Yang, Organic nonvolatile memory by controlling the dynamic copper-ion concentration within organic layer. Appl. Phys. Lett. 84, 4908–4910 (2004). https://doi.org/10.1063/1.1763222
- Y. Zhu, T. Nyberg, L. Nyholm, D. Primetzhofer, X. Shi et al., Wafer-scale Ag2S-based memristive crossbar arrays with ultra-low switching-energies reaching biological synapses. Nano-Micro Lett. 17, 69 (2025). https://doi.org/10.1007/s40820-024-01559-2
- D. Kumar, H. Li, D.D. Kumbhar, M.K. Rajbhar, U.K. Das et al., Highly efficient back-end-of-line compatible flexible Si-based optical memristive crossbar array for edge neuromorphic physiological signal processing and bionic machine vision. Nano-Micro Lett. 16, 238 (2024). https://doi.org/10.1007/s40820-024-01456-8
- Y. Zhang, L. Chu, W. Li, A fully-integrated memristor chip for edge learning. Nano-Micro Lett. 16, 166 (2024). https://doi.org/10.1007/s40820-024-01368-7
- B. He, G. He, L. Zhu, J. Cui, E. Fortunato et al., Electrospun highly aligned IGZO nanofiber arrays with low-thermal-budget for challenging transistor and integrated electronics. Adv. Funct. Mater. 34, 2310264 (2024). https://doi.org/10.1002/adfm.202310264
- Y. Lee, H.-L. Park, Y. Kim, T.-W. Lee, Organic electronic synapses with low energy consumption. Joule 5, 794–810 (2021). https://doi.org/10.1016/j.joule.2021.01.005
- H. Han, H. Yu, H. Wei, J. Gong, W. Xu, Recent progress in three-terminal artificial synapses: from device to system. Small 15, e1900695 (2019). https://doi.org/10.1002/smll.201900695
- Y. Zang, H. Shen, D. Huang, C.-A. Di, D. Zhu, A dual-organic-transistor-based tactile-perception system with signal-processing functionality. Adv. Mater. 29, 1606088 (2017). https://doi.org/10.1002/adma.201606088
- T. Someya, Z. Bao, G.G. Malliaras, The rise of plastic bioelectronics. Nature 540, 379–385 (2016). https://doi.org/10.1038/nature21004
- J. Wang, D. Ye, Q. Meng, C.-A. Di, D. Zhu, Advances in organic transistor-based biosensors. Adv. Mater. Technol. 5, 2000218 (2020). https://doi.org/10.1002/admt.202000218
- P. Gkoupidenis, Y. Zhang, H. Kleemann, H. Ling, F. Santoro et al., Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater. 9, 134–149 (2024). https://doi.org/10.1038/s41578-023-00622-5
- J. Rivnay, S. Inal, A. Salleo, R.M. Owens, M. Berggren et al., Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018). https://doi.org/10.1038/natrevmats.2017.86
- N. Wang, A. Yang, Y. Fu, Y. Li, F. Yan, Functionalized organic thin film transistors for biosensing. Acc. Chem. Res. 52, 277–287 (2019). https://doi.org/10.1021/acs.accounts.8b00448
- W. Wang, Z. Li, M. Li, L. Fang, F. Chen et al., High-transconductance, highly elastic, durable and recyclable all-polymer electrochemical transistors with 3D micro-engineered interfaces. Nano-Micro Lett. 14, 184 (2022). https://doi.org/10.1007/s40820-022-00930-5
- S. Cong, J. Chen, M. Xie, Z. Deng, C. Chen et al., Single ambipolar OECT-based inverter with volatility and nonvolatility on demand. Sci. Adv. 10, eadq9405 (2024). https://doi.org/10.1126/sciadv.adq9405
- Z. Deng, Y. Yu, Y. Zhou, J. Zhou, M. Xie et al., Ternary logic circuit and neural network integration via small molecule-based antiambipolar vertical electrochemical transistor. Adv. Mater. 36, e2405115 (2024). https://doi.org/10.1002/adma.202405115
- K. Kaneto, T. Asano, W. Takashima, Memory device using a conducting polymer and solid polymer electrolyte. Jpn. J. Appl. Phys. 30, L215 (1991). https://doi.org/10.1143/jjap.30.l215
- D. Nilsson, M. Chen, T. Kugler, T. Remonen, M. Armgarth et al., Bi-stable and dynamic current modulation in electrochemical organic transistors. Adv. Mater. 14, 51–54 (2002). https://doi.org/10.1002/1521-4095(20020104)14:1<51::AID-ADMA51>3.0.CO;2-%23
- P. Gkoupidenis, N. Schaefer, B. Garlan, G.G. Malliaras, Neuromorphic functions in PEDOT: PSS organic electrochemical transistors. Adv. Mater. 27, 7176–7180 (2015). https://doi.org/10.1002/adma.201503674
- Y. van de Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria et al., A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017). https://doi.org/10.1038/nmat4856
- J. Lenz, F. Del Giudice, F.R. Geisenhof, F. Winterer, R.T. Weitz, Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm-2 regime and artificial synaptic behaviour. Nat. Nanotechnol. 14, 579–585 (2019). https://doi.org/10.1038/s41565-019-0407-0
- H. Shim, K. Sim, F. Ershad, P. Yang, A. Thukral et al., Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 5, eaax4961 (2019). https://doi.org/10.1126/sciadv.aax4961
- P. Gkoupidenis, N. Schaefer, X. Strakosas, J.A. Fairfield, G.G. Malliaras, Synaptic plasticity functions in an organic electrochemical transistor. Appl. Phys. Lett. 107, 263302 (2015). https://doi.org/10.1063/1.4938553
- H.H. Chouhdry, D.H. Lee, A. Bag, N.E. Lee, A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor. Nat. Commun. 14, 821 (2023). https://doi.org/10.1038/s41467-023-36480-6
- D.-G. Seo, Y. Lee, G.-T. Go, M. Pei, S. Jung et al., Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuro-prosthetics. Nano Energy 65, 104035 (2019). https://doi.org/10.1016/j.nanoen.2019.104035
- G. Liu, Q. Li, W. Shi, Y. Liu, K. Liu et al., Ultralow-power and multisensory artificial synapse based on electrolyte-gated vertical organic transistors. Adv. Funct. Mater. 32, 2200959 (2022). https://doi.org/10.1002/adfm.202200959
- H. Li, J. Hu, Y. Zhang, A. Chen, J. Zhou et al., Single-transistor optoelectronic spiking neuron with optogenetics-inspired spatiotemporal dynamics. Adv. Funct. Mater. 34, 2314456 (2024). https://doi.org/10.1002/adfm.202314456
- Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018). https://doi.org/10.1126/science.aao0098
- M. Mesulam, From sensation to cognition. Brain 121, 1013–1052 (1998). https://doi.org/10.1093/brain/121.6.1013
- A.E. Pereda, Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250–263 (2014). https://doi.org/10.1038/nrn3708
- J.S. Dittman, A.C. Kreitzer, W.G. Regehr, Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J. Neurosci. 20, 1374–1385 (2000). https://doi.org/10.1523/JNEUROSCI.20-04-01374.2000
- H.S. White, G.P. Kittlesen, M.S. Wrighton, Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Chem. Soc. 106, 5375–5377 (1984). https://doi.org/10.1021/ja00330a070
- J.W. Thackeray, H.S. White, M.S. Wrighton, Poly(3-methylthiophene)-coated electrodes: optical and electrical properties as a function of redox potential and amplification of electrical and chemical signals using poly(3-methylthiophene)-based microelectrochemical transistors. J. Phys. Chem. 89, 5133–5140 (1985). https://doi.org/10.1021/j100269a048
- E.W. Paul, A.J. Ricco, M.S. Wrighton, Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. J. Phys. Chem. 89, 1441–1447 (1985). https://doi.org/10.1021/j100254a028
- P.N. Bartlett, Measurement of low glucose concentrations using a microelectrochemical enzyme transistor. Analyst 123, 387–392 (1998). https://doi.org/10.1039/a706296f
- P.N. Bartlett, P.R. Birkin, J.H. Wang, F. Palmisano, G. De Benedetto, An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly(aniline) film. Anal. Chem. 70, 3685–3694 (1998). https://doi.org/10.1021/ac971088a
- Y. Fu, L.-A. Kong, Y. Chen, J. Wang, C. Qian et al., Flexible neuromorphic architectures based on self-supported multiterminal organic transistors. ACS Appl. Mater. Interfaces 10, 26443–26450 (2018). https://doi.org/10.1021/acsami.8b07443
- F. Torricelli, D.Z. Adrahtas, Z. Bao, M. Berggren, F. Biscarini et al., Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Meth. Primers 1, 66 (2021). https://doi.org/10.1038/s43586-021-00065-8
- F. Cicoira, M. Sessolo, O. Yaghmazadeh, J.A. DeFranco, S.Y. Yang et al., Influence of device geometry on sensor characteristics of planar organic electrochemical transistors. Adv. Mater. 22, 1012–1016 (2010). https://doi.org/10.1002/adma.200902329
- Y. Liang, G. Figueroa-Miranda, J.A. Tanner, F. Huang, A. Offenhäusser et al., Highly sensitive detection of malaria biomarker through matching channel and gate capacitance of integrated organic electrochemical transistors. Biosens. Bioelectron. 242, 115712 (2023). https://doi.org/10.1016/j.bios.2023.115712
- P. Gkoupidenis, D.A. Koutsouras, G.G. Malliaras, Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 8, 15448 (2017). https://doi.org/10.1038/ncomms15448
- D.-H. Kim, S.-M. Yoon, Improvement in energy consumption and operational stability of electrolyte-gated synapse transistors using atomic-layer-deposited HfO2 thin films. Mater. Sci. Semicond. Process. 153, 107182 (2023). https://doi.org/10.1016/j.mssp.2022.107182
- F. Zare Bidoky, W.J. Hyun, D. Song, C.D. Frisbie, Printed, 1 V electrolyte-gated transistors based on poly(3-hexylthiophene) operating at >10 kHz on plastic. Appl. Phys. Lett. 113, 053301 (2018). https://doi.org/10.1063/1.5025475
- T.T.K. Nguyen, T.N. Nguyen, G. Anquetin, S. Reisberg, V. Noël et al., Triggering the electrolyte-gated organic field-effect transistor output characteristics through gate functionalization using diazonium chemistry: application to biodetection of 2, 4-dichlorophenoxyacetic acid. Biosens. Bioelectron. 113, 32–38 (2018). https://doi.org/10.1016/j.bios.2018.04.051
- T. Cramer, A. Kyndiah, M. Murgia, F. Leonardi, S. Casalini et al., Double layer capacitance measured by organic field effect transistor operated in water. Appl. Phys. Lett. 100, 143302 (2012). https://doi.org/10.1063/1.3699218
- Y. Liang, M. Ernst, F. Brings, D. Kireev, V. Maybeck et al., High performance flexible organic electrochemical transistors for monitoring cardiac action potential. Adv. Healthc. Mater. 7, e1800304 (2018). https://doi.org/10.1002/adhm.201800304
- G.E. Fenoy, C. vonBilderling, W. Knoll, O. Azzaroni, W.A. Marmisollé, PEDOT: tosylate-polyamine-based organic electrochemical transistors for high-performance bioelectronics. Adv. Electron. Mater. 7, 2100059 (2021). https://doi.org/10.1002/aelm.202100059
- S. Inal, J. Rivnay, A.I. Hofmann, I. Uguz, M. Mumtaz et al., Organic electrochemical transistors based on PEDOT with different anionic polyelectrolyte dopants. J. Polym. Sci. Part B Polym. Phys. 54, 147–151 (2016). https://doi.org/10.1002/polb.23938
- A. Giovannitti, D.-T. Sbircea, S. Inal, C.B. Nielsen, E. Bandiello et al., Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl. Acad. Sci. U.S.A. 113, 12017–12022 (2016). https://doi.org/10.1073/pnas.1608780113
- C.B. Nielsen, A. Giovannitti, D.-T. Sbircea, E. Bandiello, M.R. Niazi et al., Molecular design of semiconducting polymers for high-performance organic electrochemical transistors. J. Am. Chem. Soc. 138, 10252–10259 (2016). https://doi.org/10.1021/jacs.6b05280
- Y. Liang, C. Che, H. Tang, K. Zhang, L. Lan et al., Influence of interaction between electrolyte with side-chain free conjugated polymer on the performance of organic electrochemical transistors. ACS Appl. Mater. Interfaces 16, 19977–19986 (2024). https://doi.org/10.1021/acsami.3c13781
- H. Tang, Y. Liang, C. Liu, Z. Hu, Y. Deng et al., A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022). https://doi.org/10.1038/s41586-022-05295-8
- H.Y. Wu, C.Y. Yang, Q. Li, N.B. Kolhe, X. Strakosas et al., Influence of molecular weight on the organic electrochemical transistor performance of ladder-type conjugated polymers. Adv. Mater. 34, e2106235 (2022). https://doi.org/10.1002/adma.202106235
- A. Giovannitti, C.B. Nielsen, D.-T. Sbircea, S. Inal, M. Donahue et al., N-type organic electrochemical transistors with stability in water. Nat. Commun. 7, 13066 (2016). https://doi.org/10.1038/ncomms13066
- K. Feng, W. Shan, S. Ma, Z. Wu, J. Chen et al., Fused bithiophene imide dimer-based n-type polymers for high-performance organic electrochemical transistors. Angew. Chem. Int. Ed. 60, 24198–24205 (2021). https://doi.org/10.1002/anie.202109281
- J. Hu, M.J. Lu, F.Z. Chen, H.M. Jia, H. Zhou et al., Multifunctional hydrogel hybrid-gated organic photoelectrochemical transistor for biosensing. Adv. Funct. Mater. 32, 2109046 (2022). https://doi.org/10.1002/adfm.202109046
- P. Li, J. Shi, Y. Lei, Z. Huang, T. Lei, Switching p-type to high-performance n-type organic electrochemical transistors via doped state engineering. Nat. Commun. 13, 5970 (2022). https://doi.org/10.1038/s41467-022-33553-w
- K. Feng, W. Shan, J. Wang, J.-W. Lee, W. Yang et al., Cyano-functionalized n-type polymer with high electron mobility for high-performance organic electrochemical transistors. Adv. Mater. 34, e2201340 (2022). https://doi.org/10.1002/adma.202201340
- E. Zeglio, M. Vagin, C. Musumeci, F.N. Ajjan, R. Gabrielsson et al., Conjugated polyelectrolyte blends for electrochromic and electrochemical transistor devices. Chem. Mater. 27, 6385–6393 (2015). https://doi.org/10.1021/acs.chemmater.5b02501
- A.T. Lill, D.X. Cao, M. Schrock, J. Vollbrecht, J. Huang et al., Organic electrochemical transistors based on the conjugated polyelectrolyte PCPDTBT-SO3K (CPE-K). Adv. Mater. 32, 1908120 (2020). https://doi.org/10.1002/adma.201908120
- S. Inal, J. Rivnay, P. Leleux, M. Ferro, M. Ramuz et al., A high transconductance accumulation mode electrochemical transistor. Adv. Mater. 26, 7450–7455 (2014). https://doi.org/10.1002/adma.201403150
- A. Savva, C. Cendra, A. Giugni, B. Torre, J. Surgailis et al., Influence of water on the performance of organic electrochemical transistors. Chem. Mater. 31, 927–937 (2019). https://doi.org/10.1021/acs.chemmater.8b04335
- X. Zhao, H. Zou, M. Wang, J. Wang, T. Wang et al., Conformal neuromorphic bioelectronics for sense digitalization. Adv. Mater. 36, 2403444 (2024). https://doi.org/10.1002/adma.202403444
- Z. Farsi, R. Jahn, A. Woehler, Proton electrochemical gradient: driving and regulating neurotransmitter uptake. BioEssays 39, 1600240 (2017). https://doi.org/10.1002/bies.201600240
- K.-D. Kreuer, Proton conductivity: materials and applications. Chem. Mater. 8, 610–641 (1996). https://doi.org/10.1021/cm950192a
- Y. Wang, T. Seki, P. Gkoupidenis, Y. Chen, Y. Nagata et al., Aqueous chemimemristor based on proton-permeable graphene membranes. Proc. Natl. Acad. Sci. U.S.A. 121, e2314347121 (2024). https://doi.org/10.1073/pnas.2314347121
- C.S. Yang, D.S. Shang, N. Liu, G. Shi, X. Shen et al., A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 29, 1700906 (2017). https://doi.org/10.1002/adma.201700906
- J. Li, Y. Qian, W. Li, Y.H. Lin, H. Qian et al., Humidity-enabled organic artificial synaptic devices with ultrahigh moisture resistivity. Adv. Electron. Mater. 8, 2200320 (2022). https://doi.org/10.1002/aelm.202200320
- A. Melianas, T.J. Quill, G. LeCroy, Y. Tuchman, H.V. Loo et al., Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Sci. Adv. 6, eabb2958 (2020). https://doi.org/10.1126/sciadv.abb2958
- L. Xiang, L. Liu, F. Zhang, C. Di, D. Zhu, Ion-gating engineering of organic semiconductors toward multifunctional devices. Adv. Funct. Mater. 31, 2102149 (2021). https://doi.org/10.1002/adfm.202102149
- B.D. Paulsen, K. Tybrandt, E. Stavrinidou, J. Rivnay, Organic mixed ionic-electronic conductors. Nat. Mater. 19, 13–26 (2020). https://doi.org/10.1038/s41563-019-0435-z
- S.T. Keene, T.P.A. van der Pol, D. Zakhidov, C.H.L. Weijtens, R.A.J. Janssen et al., Enhancement-mode PEDOT: PSS organic electrochemical transistors using molecular de-doping. Adv. Mater. 32, e2000270 (2020). https://doi.org/10.1002/adma.202000270
- A. Koklu, S. Wustoni, V.-E. Musteata, D. Ohayon, M. Moser et al., Microfluidic integrated organic electrochemical transistor with a nanoporous membrane for amyloid-β detection. ACS Nano 15, 8130–8141 (2021). https://doi.org/10.1021/acsnano.0c09893
- P.C. Harikesh, C.Y. Yang, H.Y. Wu, S. Zhang, M.J. Donahue et al., Ion-tunable antiambipolarity in mixed ion-electron conducting polymers enables biorealistic organic electrochemical neurons. Nat. Mater. 22, 242–248 (2023). https://doi.org/10.1038/s41563-022-01450-8
- R.B. Rashid, X. Ji, J. Rivnay, Organic electrochemical transistors in bioelectronic circuits. Biosens. Bioelectron. 190, 113461 (2021). https://doi.org/10.1016/j.bios.2021.113461
- C. Cea, G.D. Spyropoulos, P. Jastrzebska-Perfect, J.J. Ferrero, J.N. Gelinas et al., Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679–686 (2020). https://doi.org/10.1038/s41563-020-0638-3
- E.R.W. van Doremaele, X. Ji, J. Rivnay, Y. van de Burgt, A retrainable neuromorphic biosensor for on-chip learning and classification. Nat. Electron. 6, 765–770 (2023). https://doi.org/10.1038/s41928-023-01020-z
- A. Lobosco, C. Lubrano, D. Rana, V.R. Montes, S. Musall et al., Enzyme-mediated organic neurohybrid synapses. Adv. Mater. 36, e2409614 (2024). https://doi.org/10.1002/adma.202409614
- J. Qiu, J. Cao, X. Liu, P. Chen, G. Feng et al., A flexible organic electrochemical synaptic transistor with dopamine-mediated plasticity. IEEE Electron Device Lett. 44, 176–179 (2023). https://doi.org/10.1109/LED.2022.3225143
- T. Wang, M. Wang, J. Wang, L. Yang, X. Ren et al., Author Correction: a chemically mediated artificial neuron. Nat. Electron. 5, 622 (2022). https://doi.org/10.1038/s41928-022-00803-0
- G.M. Matrone, U. Bruno, C. Forró, C. Lubrano, S. Cinti et al., Electrical and optical modulation of a PEDOT: PSS-based electrochemical transistor for multiple neurotransmitter-mediated artificial synapses. Adv. Mater. Technol. 8, 2201911 (2023). https://doi.org/10.1002/admt.202201911
- D. Kim, J.S. Lee, Neurotransmitter-induced excitatory and inhibitory functions in artificial synapses. Adv. Funct. Mater. 32, 2200497 (2022). https://doi.org/10.1002/adfm.202200497
- C. Ausilio, C. Lubrano, D. Rana, G.M. Matrone, U. Bruno et al., Concealing organic neuromorphic devices with neuronal-inspired supported lipid bilayers. Adv. Sci. 11, e2305860 (2024). https://doi.org/10.1002/advs.202305860
- D. Kim, J.-S. Lee, Emulating the signal transmission in a neural system using polymer membranes. ACS Appl. Mater. Interfaces 14, 42308–42316 (2022). https://doi.org/10.1021/acsami.2c12166
- R. Liu, X. Zhu, J. Duan, J. Chen, Z. Xie et al., Versatile neuromorphic modulation and biosensing based on N-type small-molecule organic mixed ionic-electronic conductors. Angew. Chem. Int. Ed. 63, e202315537 (2024). https://doi.org/10.1002/anie.202315537
- H.R. Lee, D. Lee, J.H. Oh, A hippocampus-inspired dual-gated organic artificial synapse for simultaneous sensing of a neurotransmitter and light. Adv. Mater. 33, e2100119 (2021). https://doi.org/10.1002/adma.202100119
- D.-G. Seo, G.-T. Go, H.-L. Park, T.-W. Lee, Organic synaptic transistors for flexible and stretchable artificial sensory nerves. MRS Bull. 46, 321–329 (2021). https://doi.org/10.1557/s43577-021-00093-5
- B.W. Connors, M.A. Long, Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27, 393–418 (2004). https://doi.org/10.1146/annurev.neuro.26.041002.131128
- J. Rivnay, P. Leleux, M. Sessolo, D. Khodagholy, T. Hervé et al., Organic electrochemical transistors with maximum transconductance at zero gate bias. Adv. Mater. 25, 7010–7014 (2013). https://doi.org/10.1002/adma.201303080
- Y. Liang, F. Brings, V. Maybeck, S. Ingebrandt, B. Wolfrum et al., Tuning channel architecture of interdigitated organic electrochemical transistors for recording the action potentials of electrogenic cells. Adv. Funct. Mater. 29, 1902085 (2019). https://doi.org/10.1002/adfm.201902085
- C. Eckel, J. Lenz, A. Melianas, A. Salleo, R. Thomas Weitz, Nanoscopic electrolyte-gated vertical organic transistors with low operation voltage and five orders of magnitude switching range for neuromorphic systems. Nano Lett. 22, 973–978 (2022). https://doi.org/10.1021/acs.nanolett.1c03832
- D.T. Duong, Y. Tuchman, P. Chakthranont, P. Cavassin, R. Colucci et al., A universal platform for fabricating organic electrochemical devices. Adv. Electron. Mater. 4, 1800090 (2018). https://doi.org/10.1002/aelm.201800090
- I. Krauhausen, C.T. Coen, S. Spolaor, P. Gkoupidenis, Y. van de Burgt, Brain-inspired organic electronics: merging neuromorphic computing and bioelectronics using conductive polymers. Adv. Funct. Mater. 34, 2307729 (2024). https://doi.org/10.1002/adfm.202307729
- S. Fabiano, S. Braun, X. Liu, E. Weverberghs, P. Gerbaux et al., Poly(ethylene imine) impurities induce n-doping reaction in organic (semi)conductors. Adv. Mater. 26, 6000–6006 (2014). https://doi.org/10.1002/adma.201401986
- T.P.A. van der Pol, S.T. Keene, B.W.H. Saes, S.C.J. Meskers, A. Salleo et al., The mechanism of dedoping PEDOT: PSS by aliphatic polyamines. J. Phys. Chem. C 123, 24328–24337 (2019). https://doi.org/10.1021/acs.jpcc.9b07718
- R.A. John, F. Liu, N.A. Chien, M.R. Kulkarni, C. Zhu et al., Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 30, e1800220 (2018). https://doi.org/10.1002/adma.201800220
- D.I. Son, C.H. You, W.T. Kim, J.H. Jung, T.W. Kim, Electrical bistabilities and memory mechanisms of organic bistable devices based on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites. Appl. Phys. Lett. 94, 132103 (2009). https://doi.org/10.1063/1.3111445
- Y. Zhou, S.-T. Han, P. Sonar, V.L. Roy, Nonvolatile multilevel data storage memory device from controlled ambipolar charge trapping mechanism. Sci. Rep. 3, 2319 (2013). https://doi.org/10.1038/srep02319
- T. Xiong, C. Li, X. He, B. Xie, J. Zong et al., Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 379, 156–161 (2023). https://doi.org/10.1126/science.adc9150
- P. Zhang, M. Xia, F. Zhuge, Y. Zhou, Z. Wang et al., Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses. Nano Lett. 19, 4279–4286 (2019). https://doi.org/10.1021/acs.nanolett.9b00525
- J.S. Najem, G.J. Taylor, R.J. Weiss, M.S. Hasan, G. Rose et al., Memristive ion channel-doped biomembranes as synaptic mimics. ACS Nano 12, 4702–4711 (2018). https://doi.org/10.1021/acsnano.8b01282
- Y. Qian, J. Li, W. Li, C.-H. Hou, Z. Feng et al., High synaptic plasticity enabled by controlled ion migration in organic heterojunction memristors. J. Mater. Chem. C 12, 9669–9676 (2024). https://doi.org/10.1039/D4TC01257G
- P. Robin, N. Kavokine, L. Bocquet, Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 373, 687–691 (2021). https://doi.org/10.1126/science.abf7923
- C.-H. Kim, S. Sung, M.-H. Yoon, Synaptic organic transistors with a vacuum-deposited charge-trapping nanosheet. Sci. Rep. 6, 33355 (2016). https://doi.org/10.1038/srep33355
- D.A. Bernards, G.G. Malliaras, Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 17, 3538–3544 (2007). https://doi.org/10.1002/adfm.200601239
- Y. van de Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018). https://doi.org/10.1038/s41928-018-0103-3
- Y. Sun, H. Wang, D. Xie, Recent advance in synaptic plasticity modulation techniques for neuromorphic applications. Nano-Micro Lett. 16, 211 (2024). https://doi.org/10.1007/s40820-024-01445-x
- S. Sagar, K. Udaya Mohanan, S. Cho, L.A. Majewski, B.C. Das, Emulation of synaptic functions with low voltage organic memtransistor for hardware oriented neuromorphic computing. Sci. Rep. 12, 3808 (2022). https://doi.org/10.1038/s41598-022-07505-9
- L.F. Abbott, W.G. Regehr, Synaptic computation. Nature 431, 796–803 (2004). https://doi.org/10.1038/nature03010
- L.-A. Kong, J. Sun, C. Qian, Y. Fu, J. Wang et al., Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors. Org. Electron. 47, 126–132 (2017). https://doi.org/10.1016/j.orgel.2017.05.017
- J.Y. Gerasimov, R. Gabrielsson, R. Forchheimer, E. Stavrinidou, D.T. Simon et al., An evolvable organic electrochemical transistor for neuromorphic applications. Adv. Sci. 6, 1801339 (2019). https://doi.org/10.1002/advs.201801339
- P.C. Harikesh, C.-Y. Yang, D. Tu, J.Y. Gerasimov, A.M. Dar et al., Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 13, 901 (2022). https://doi.org/10.1038/s41467-022-28483-6
- S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang et al., A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 25, 1774–1779 (2013). https://doi.org/10.1002/adma.201203680
- X. Wang, Y. Yan, E. Li, Y. Liu, D. Lai et al., Stretchable synaptic transistors with tunable synaptic behavior. Nano Energy 75, 104952 (2020). https://doi.org/10.1016/j.nanoen.2020.104952
- X. Xu, H. Zhang, L. Shao, R. Ma, M. Guo et al., An aqueous electrolyte gated artificial synapse with synaptic plasticity selectively mediated by biomolecules. Angew. Chem. Int. Ed. 62, e202302723 (2023). https://doi.org/10.1002/anie.202302723
- M.J. Panzer, C. Daniel Frisbie, Exploiting ionic coupling in electronic devices: electrolyte-gated organic field-effect transistors. Adv. Mater. 20, 3177–3180 (2008). https://doi.org/10.1002/adma.200800617
- J. Rivnay, P. Leleux, M. Ferro, M. Sessolo, A. Williamson et al., High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 1, e1400251 (2015). https://doi.org/10.1126/sciadv.1400251
- H. Tang, Y. Liang, C.-Y. Yang, X. Luo, J. Yu et al., Polyethylene glycol-decorated n-type conducting polymers with improved ion accessibility for high-performance organic electrochemical transistors. Mater. Horiz. 11, 5419–5428 (2024). https://doi.org/10.1039/D4MH00979G
- Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14, 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
- G.-T. Go, Y. Lee, D.-G. Seo, M. Pei, W. Lee et al., Achieving microstructure-controlled synaptic plasticity and long-term retention in ion-gel-gated organic synaptic transistors. Adv. Intell. Syst. 2, 2000012 (2020). https://doi.org/10.1002/aisy.202000012
- T.D. Nguyen, T.Q. Trung, Y. Lee, N.-E. Lee, Stretchable and stable electrolyte-gated organic electrochemical transistor synapse with a nafion membrane for enhanced synaptic properties. Adv. Eng. Mater. 24, 2100918 (2022). https://doi.org/10.1002/adem.202100918
- D. Khodagholy, J. Rivnay, M. Sessolo, M. Gurfinkel, P. Leleux et al., High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133 (2013). https://doi.org/10.1038/ncomms3133
- J.S. Wilkes, M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun. 965–967 (1992). https://doi.org/10.1039/c39920000965
- M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009). https://doi.org/10.1038/nmat2448
- T. Fujimoto, K. Awaga, Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15, 8983–9006 (2013). https://doi.org/10.1039/c3cp50755f
- H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki et al., High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 19, 1046–1053 (2009). https://doi.org/10.1002/adfm.200801633
- Y. Yadav, S.K. Ghosh, S.P. Singh, High-performance organic field-effect transistors gated by imidazolium-based ionic liquids. ACS Appl. Electron. Mater. 3, 1496–1504 (2021). https://doi.org/10.1021/acsaelm.1c00117
- Y. Zhong, P.D. Nayak, S. Wustoni, J. Surgailis, J.Z. Parrado Agudelo et al., Ionic liquid gated organic electrochemical transistors with broadened bandwidth. ACS Appl. Mater. Interfaces 16, 61457–61466 (2024). https://doi.org/10.1021/acsami.3c11214
- J. Lee, M.J. Panzer, Y. He, T.P. Lodge, C.D. Frisbie, Ion gel gated polymer thin-film transistors. J. Am. Chem. Soc. 129, 4532–4533 (2007). https://doi.org/10.1021/ja070875e
- D. Wang, S. Zhao, R. Yin, L. Li, Z. Lou et al., Recent advanced applications of ion-gel in ionic-gated transistor. npj Flex. Electron. 5, 13 (2021). https://doi.org/10.1038/s41528-021-00110-2
- M.J. Panzer, C. Daniel Frisbie, Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. J. Am. Chem. Soc. 127, 6960–6961 (2005). https://doi.org/10.1021/ja051579+
- F. Calahorro, P.G. Izquierdo, The presynaptic machinery at the synapse of C. elegans. Invert. Neurosci. 18, 4 (2018). https://doi.org/10.1007/s10158-018-0207-5
- H. Shim, S. Jang, A. Thukral, S. Jeong, H. Jo et al., Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors. Proc. Natl. Acad. Sci. U.S.A. 119, e2204852119 (2022). https://doi.org/10.1073/pnas.2204852119
- S. Dai, Y. Dai, Z. Zhao, F. Xia, Y. Li et al., Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence. Matter 5, 3375–3390 (2022). https://doi.org/10.1016/j.matt.2022.07.016
- S.P. Lacour, G. Courtine, J. Guck, Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016). https://doi.org/10.1038/natrevmats.2016.63
- T. Sun, B. Feng, J. Huo, Y. Xiao, W. Wang et al., Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro. Lett. 16, 14 (2023). https://doi.org/10.1007/s40820-023-01235-x
- W. Huang, Y. Wang, Y. Zhang, J. Zhu, D. Liu et al., Intrinsically stretchable carbon nanotube synaptic transistors with associative learning ability and mechanical deformation response. Carbon 189, 386–394 (2022). https://doi.org/10.1016/j.carbon.2021.12.081
- J. Chen, W. Huang, D. Zheng, Z. Xie, X. Zhuang et al., Highly stretchable organic electrochemical transistors with strain-resistant performance. Nat. Mater. 21, 564–571 (2022). https://doi.org/10.1038/s41563-022-01239-9
- D. Liu, X. Tian, J. Bai, Y. Wang, Y. Cheng et al., Intrinsically stretchable organic electrochemical transistors with rigid-device-benchmarkable performance. Adv. Sci. 9, e2203418 (2022). https://doi.org/10.1002/advs.202203418
- H. Shim, S. Jang, J.G. Jang, Z.Y. Rao, J.I. Hong et al., Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Res. 15, 758–764 (2022). https://doi.org/10.1007/s12274-021-3602-x
- X. Wang, H. Yang, E. Li, C. Cao, W. Zheng et al., Stretchable transistor-structured artificial synapses for neuromorphic electronics. Small 19, e2205395 (2023). https://doi.org/10.1002/smll.202205395
- L. Liu, W. Xu, Y. Ni, Z. Xu, B. Cui et al., Stretchable neuromorphic transistor that combines multisensing and information processing for epidermal gesture recognition. ACS Nano 16, 2282–2291 (2022). https://doi.org/10.1021/acsnano.1c08482
- B. Winther-Jensen, O. Winther-Jensen, M. Forsyth, D.R. MacFarlane, High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode. Science 321, 671–674 (2008). https://doi.org/10.1126/science.1159267
- D. Simatos, M. Nikolka, J. Charmet, Electrolyte-gated organic field-effect transistors with high operational stability and lifetime in practical electrolytes. SmartMat 5, e1291 (2024). https://doi.org/10.1002/smm2.1291
- S.T. Keene, A. Melianas, Y. van de Burgt, A. Salleo, Mechanisms for enhanced state retention and stability in redox-gated organic neuromorphic devices. Adv. Electron. Mater. 5, 1800686 (2019). https://doi.org/10.1002/aelm.201800686
- M. Nikolka, I. Nasrallah, B. Rose, M.K. Ravva, K. Broch et al., High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 16, 356–362 (2017). https://doi.org/10.1038/nmat4785
- O. Knopfmacher, M.L. Hammock, A.L. Appleton, G. Schwartz, J. Mei et al., Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 5, 2954 (2014). https://doi.org/10.1038/ncomms3954
- I. Pereiro, A. Fomitcheva Khartchenko, L. Petrini, G.V. Kaigala, Nip the bubble in the bud: a guide to avoid gas nucleation in microfluidics. Lab Chip 19, 2296–2314 (2019). https://doi.org/10.1039/c9lc00211a
- S.-W. Lee, S. Kim, K.-N. Kim, M.-J. Sung, T.-W. Lee, Increasing the stability of electrolyte-gated organic synaptic transistors for neuromorphic implants. Biosens. Bioelectron. 261, 116444 (2024). https://doi.org/10.1016/j.bios.2024.116444
- Y. Zheng, L. Michalek, Q. Liu, Y. Wu, H. Kim et al., Environmentally stable and stretchable polymer electronics enabled by surface-tethered nanostructured molecular-level protection. Nat. Nanotechnol. 18, 1175–1184 (2023). https://doi.org/10.1038/s41565-023-01418-y
- J. Sung, M. Kim, S. Chung, Y. Jang, S. Kim et al., Modulating alkyl groups in copolymer to control ion transport in electrolyte-gated organic transistors for neuromorphic computing. Small Struct. 6, 2570004 (2025). https://doi.org/10.1002/sstr.202570004
- T.M. Jessell, E.R. Kandel, Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication. Cell 72, 1–30 (1993). https://doi.org/10.1016/s0092-8674(05)80025-x
- J. Hu, M.-J. Jing, Y.-T. Huang, B.-H. Kou, Z. Li et al., A photoelectrochemical retinomorphic synapse. Adv. Mater. 36, e2405887 (2024). https://doi.org/10.1002/adma.202405887
- S. Shaham, Chemosensory organs as models of neuronal synapses. Nat. Rev. Neurosci. 11, 212–217 (2010). https://doi.org/10.1038/nrn2740
- H.W. Song, D. Moon, Y. Won, Y.K. Cha, J. Yoo et al., A pattern recognition artificial olfactory system based on human olfactory receptors and organic synaptic devices. Sci. Adv. 10, eadl2882 (2024). https://doi.org/10.1126/sciadv.adl2882
- C. Han, J. Han, M. He, X. Han, Z. Wu et al., Photonic synaptic transistor with memory mode switching for neuromorphic visual system. Laser Photonics Rev. 18, 2300976 (2024). https://doi.org/10.1002/lpor.202300976
- K. Chen, H. Hu, I. Song, H.B. Gobeze, W.-J. Lee et al., Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photon. 17, 629–637 (2023). https://doi.org/10.1038/s41566-023-01232-x
- Y. Li, G. He, W. Wang, C. Fu, S. Jiang et al., A high-performance organic lithium salt-doped OFET with the optical radical effect for photoelectric pulse synaptic simulation and neuromorphic memory learning. Mater. Horiz. 11, 3867–3877 (2024). https://doi.org/10.1039/D4MH00297K
- S.W. Cho, C. Jo, Y.-H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14, 203 (2022). https://doi.org/10.1007/s40820-022-00945-y
- H. Chen, Y. Cai, Y. Han, H. Huang, Towards artificial visual sensory system: organic optoelectronic synaptic materials and devices. Angew. Chem. Int. Ed. 63, e202313634 (2024). https://doi.org/10.1002/anie.202313634
- D. Hao, J. Zhang, S. Dai, J. Zhang, J. Huang, Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces 12, 39487–39495 (2020). https://doi.org/10.1021/acsami.0c10851
- Q. Liu, L. Yin, C. Zhao, Z. Wu, J. Wang et al., All-in-one metal-oxide heterojunction artificial synapses for visual sensory and neuromorphic computing systems. Nano Energy 97, 107171 (2022). https://doi.org/10.1016/j.nanoen.2022.107171
- B.H. Jeong, J. Lee, M. Ku, J. Lee, D. Kim et al., RGB color-discriminable photonic synapse for neuromorphic vision system. Nano-Micro Lett. 17, 78 (2024). https://doi.org/10.1007/s40820-024-01579-y
- C.K. Machens, Building the human brain. Science 338, 1156–1157 (2012). https://doi.org/10.1126/science.1231865
- Y. Wang, W. Gao, S. Yang, Q. Chen, C. Ye et al., Humanoid intelligent display platform for audiovisual interaction and sound identification. Nano-Micro Lett. 15, 221 (2023). https://doi.org/10.1007/s40820-023-01199-y
- Y. Xu, Z. Deng, C. Jin, W. Liu, X. Shi et al., An organic electrochemical synaptic transistor array for neuromorphic computation of sound localization. Appl. Phys. Lett. 123, 133701 (2023). https://doi.org/10.1063/5.0167865
- H. Lee, L.J. MacPherson, C.A. Parada, C.S. Zuker, N.J.P. Ryba, Rewiring the taste system. Nature 548, 330–333 (2017). https://doi.org/10.1038/nature23299
- Y. Zhang, Y. Ma, L. Wang, C. Li, L. Wu et al., Nanofluidic membrane-assisted organic electrochemical transistors for bioinspired gustatory sensation based on selective cation transport. Small 20, e2403629 (2024). https://doi.org/10.1002/smll.202403629
- C. Sun, X. Liu, Q. Jiang, X. Ye, X. Zhu et al., Emerging electrolyte-gated transistors for neuromorphic perception. Sci. Technol. Adv. Mater. 24, 2162325 (2023). https://doi.org/10.1080/14686996.2022.2162325
- H. Wei, J. Gong, J. Liu, G. He, Y. Ni et al., Thermally and mechanically stable perovskite artificial synapse as tuned by phase engineering for efferent neuromuscular control. Nano Lett. 24, 9311–9321 (2024). https://doi.org/10.1021/acs.nanolett.4c02240
- Y. Dong, W. An, Z. Wang, D. Zhang, An artificial intelligence-assisted flexible and wearable mechanoluminescent strain sensor system. Nano-Micro Lett. 17, 62 (2024). https://doi.org/10.1007/s40820-024-01572-5
- J. Zeng, J. Zhao, T. Bu, G. Liu, Y. Qi et al., A flexible tribotronic artificial synapse with bioinspired neurosensory behavior. Nano-Micro Lett. 15, 18 (2022). https://doi.org/10.1007/s40820-022-00989-0
- S. Qu, L. Sun, S. Zhang, J. Liu, Y. Li et al., An artificially-intelligent Cornea with tactile sensation enables sensory expansion and interaction. Nat. Commun. 14, 7181 (2023). https://doi.org/10.1038/s41467-023-42240-3
- W. Xu, L. Wang, D.C. Yang, A. Hajibabaei, Y. Lee et al., Supra-binary polarization in a ferroelectric nanowire. Adv. Mater. 33, e2101981 (2021). https://doi.org/10.1002/adma.202101981
- H. Wei, R. Shi, L. Sun, H. Yu, J. Gong et al., Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. Nat. Commun. 12, 1068 (2021). https://doi.org/10.1038/s41467-021-21319-9
- C. Jiang, J. Liu, Y. Ni, S. Qu, L. Liu et al., Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement. Nat. Commun. 14, 1344 (2023). https://doi.org/10.1038/s41467-023-36935-w
- E. Musk, Neuralink, An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019). https://doi.org/10.2196/16194
- Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15, 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
- S. Zhong, L. Su, M. Xu, D. Loke, B. Yu et al., Recent advances in artificial sensory neurons: biological fundamentals, devices, applications, and challenges. Nano-Micro Lett. 17, 61 (2024). https://doi.org/10.1007/s40820-024-01550-x
- X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2021). https://doi.org/10.1007/s40820-021-00740-1
- T. Sarkar, K. Lieberth, A. Pavlou, T. Frank, V. Mailaender et al., An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774–783 (2022). https://doi.org/10.1038/s41928-022-00859-y
- R.S. Kass, The channelopathies: novel insights into molecular and genetic mechanisms of human disease. J. Clin. Invest. 115, 1986–1989 (2005). https://doi.org/10.1172/JCI26011
References
D. Schneider, U.S. supercomputing strikes back. IEEE Spectr. 55, 52–53 (2018). https://doi.org/10.1109/MSPEC.2018.8241739
W. Xu, S.-Y. Min, H. Hwang, T.-W. Lee, Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2, e1501326 (2016). https://doi.org/10.1126/sciadv.1501326
M.L. Kringelbach, N. Jenkinson, S.L.F. Owen, T.Z. Aziz, Translational principles of deep brain stimulation. Nat. Rev. Neurosci. 8, 623–635 (2007). https://doi.org/10.1038/nrn2196
S.T. Keene, C. Lubrano, S. Kazemzadeh, A. Melianas, Y. Tuchman et al., A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 19, 969–973 (2020). https://doi.org/10.1038/s41563-020-0703-y
R. Liu, Y. He, X. Zhu, J. Duan, C. Liu et al., Hardware-feasible and efficient N-type organic neuromorphic signal recognition via reservoir computing. Adv. Mater. 37, e2409258 (2025). https://doi.org/10.1002/adma.202409258
Y. He, Z. Ge, Z. Li, Z. Li, R. Liu et al., All-polymer organic electrochemical synaptic transistor with controlled ionic dynamics for high-performance wearable and sustainable reservoir computing. Adv. Funct. Mater. 35, 2415595 (2025). https://doi.org/10.1002/adfm.202415595
H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in in-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano-Micro Lett. 16, 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
Y. Cao, B. Xu, B. Li, H. Fu, Advanced design of soft robots with artificial intelligence. Nano-Micro Lett. 16, 214 (2024). https://doi.org/10.1007/s40820-024-01423-3
K. Asadi, D.M. de Leeuw, B. de Boer, P.W.M. Blom, Organic non-volatile memories from ferroelectric phase-separated blends. Nat. Mater. 7, 547–550 (2008). https://doi.org/10.1038/nmat2207
S. Möller, C. Perlov, W. Jackson, C. Taussig, S.R. Forrest, A polymer/semiconductor write-once read-many-times memory. Nature 426, 166–169 (2003). https://doi.org/10.1038/nature02070
T. Leydecker, M. Herder, E. Pavlica, G. Bratina, S. Hecht et al., Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 11, 769–775 (2016). https://doi.org/10.1038/nnano.2016.87
T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer et al., Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516–1519 (2009). https://doi.org/10.1126/science.1179963
H. Carchano, R. Lacoste, Y. Segui, Bistable electrical switching in polymer thin films. Appl. Phys. Lett. 19, 414–415 (1971). https://doi.org/10.1063/1.1653751
L. Ma, Q. Xu, Y. Yang, Organic nonvolatile memory by controlling the dynamic copper-ion concentration within organic layer. Appl. Phys. Lett. 84, 4908–4910 (2004). https://doi.org/10.1063/1.1763222
Y. Zhu, T. Nyberg, L. Nyholm, D. Primetzhofer, X. Shi et al., Wafer-scale Ag2S-based memristive crossbar arrays with ultra-low switching-energies reaching biological synapses. Nano-Micro Lett. 17, 69 (2025). https://doi.org/10.1007/s40820-024-01559-2
D. Kumar, H. Li, D.D. Kumbhar, M.K. Rajbhar, U.K. Das et al., Highly efficient back-end-of-line compatible flexible Si-based optical memristive crossbar array for edge neuromorphic physiological signal processing and bionic machine vision. Nano-Micro Lett. 16, 238 (2024). https://doi.org/10.1007/s40820-024-01456-8
Y. Zhang, L. Chu, W. Li, A fully-integrated memristor chip for edge learning. Nano-Micro Lett. 16, 166 (2024). https://doi.org/10.1007/s40820-024-01368-7
B. He, G. He, L. Zhu, J. Cui, E. Fortunato et al., Electrospun highly aligned IGZO nanofiber arrays with low-thermal-budget for challenging transistor and integrated electronics. Adv. Funct. Mater. 34, 2310264 (2024). https://doi.org/10.1002/adfm.202310264
Y. Lee, H.-L. Park, Y. Kim, T.-W. Lee, Organic electronic synapses with low energy consumption. Joule 5, 794–810 (2021). https://doi.org/10.1016/j.joule.2021.01.005
H. Han, H. Yu, H. Wei, J. Gong, W. Xu, Recent progress in three-terminal artificial synapses: from device to system. Small 15, e1900695 (2019). https://doi.org/10.1002/smll.201900695
Y. Zang, H. Shen, D. Huang, C.-A. Di, D. Zhu, A dual-organic-transistor-based tactile-perception system with signal-processing functionality. Adv. Mater. 29, 1606088 (2017). https://doi.org/10.1002/adma.201606088
T. Someya, Z. Bao, G.G. Malliaras, The rise of plastic bioelectronics. Nature 540, 379–385 (2016). https://doi.org/10.1038/nature21004
J. Wang, D. Ye, Q. Meng, C.-A. Di, D. Zhu, Advances in organic transistor-based biosensors. Adv. Mater. Technol. 5, 2000218 (2020). https://doi.org/10.1002/admt.202000218
P. Gkoupidenis, Y. Zhang, H. Kleemann, H. Ling, F. Santoro et al., Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater. 9, 134–149 (2024). https://doi.org/10.1038/s41578-023-00622-5
J. Rivnay, S. Inal, A. Salleo, R.M. Owens, M. Berggren et al., Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018). https://doi.org/10.1038/natrevmats.2017.86
N. Wang, A. Yang, Y. Fu, Y. Li, F. Yan, Functionalized organic thin film transistors for biosensing. Acc. Chem. Res. 52, 277–287 (2019). https://doi.org/10.1021/acs.accounts.8b00448
W. Wang, Z. Li, M. Li, L. Fang, F. Chen et al., High-transconductance, highly elastic, durable and recyclable all-polymer electrochemical transistors with 3D micro-engineered interfaces. Nano-Micro Lett. 14, 184 (2022). https://doi.org/10.1007/s40820-022-00930-5
S. Cong, J. Chen, M. Xie, Z. Deng, C. Chen et al., Single ambipolar OECT-based inverter with volatility and nonvolatility on demand. Sci. Adv. 10, eadq9405 (2024). https://doi.org/10.1126/sciadv.adq9405
Z. Deng, Y. Yu, Y. Zhou, J. Zhou, M. Xie et al., Ternary logic circuit and neural network integration via small molecule-based antiambipolar vertical electrochemical transistor. Adv. Mater. 36, e2405115 (2024). https://doi.org/10.1002/adma.202405115
K. Kaneto, T. Asano, W. Takashima, Memory device using a conducting polymer and solid polymer electrolyte. Jpn. J. Appl. Phys. 30, L215 (1991). https://doi.org/10.1143/jjap.30.l215
D. Nilsson, M. Chen, T. Kugler, T. Remonen, M. Armgarth et al., Bi-stable and dynamic current modulation in electrochemical organic transistors. Adv. Mater. 14, 51–54 (2002). https://doi.org/10.1002/1521-4095(20020104)14:1<51::AID-ADMA51>3.0.CO;2-%23
P. Gkoupidenis, N. Schaefer, B. Garlan, G.G. Malliaras, Neuromorphic functions in PEDOT: PSS organic electrochemical transistors. Adv. Mater. 27, 7176–7180 (2015). https://doi.org/10.1002/adma.201503674
Y. van de Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria et al., A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017). https://doi.org/10.1038/nmat4856
J. Lenz, F. Del Giudice, F.R. Geisenhof, F. Winterer, R.T. Weitz, Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm-2 regime and artificial synaptic behaviour. Nat. Nanotechnol. 14, 579–585 (2019). https://doi.org/10.1038/s41565-019-0407-0
H. Shim, K. Sim, F. Ershad, P. Yang, A. Thukral et al., Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 5, eaax4961 (2019). https://doi.org/10.1126/sciadv.aax4961
P. Gkoupidenis, N. Schaefer, X. Strakosas, J.A. Fairfield, G.G. Malliaras, Synaptic plasticity functions in an organic electrochemical transistor. Appl. Phys. Lett. 107, 263302 (2015). https://doi.org/10.1063/1.4938553
H.H. Chouhdry, D.H. Lee, A. Bag, N.E. Lee, A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor. Nat. Commun. 14, 821 (2023). https://doi.org/10.1038/s41467-023-36480-6
D.-G. Seo, Y. Lee, G.-T. Go, M. Pei, S. Jung et al., Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuro-prosthetics. Nano Energy 65, 104035 (2019). https://doi.org/10.1016/j.nanoen.2019.104035
G. Liu, Q. Li, W. Shi, Y. Liu, K. Liu et al., Ultralow-power and multisensory artificial synapse based on electrolyte-gated vertical organic transistors. Adv. Funct. Mater. 32, 2200959 (2022). https://doi.org/10.1002/adfm.202200959
H. Li, J. Hu, Y. Zhang, A. Chen, J. Zhou et al., Single-transistor optoelectronic spiking neuron with optogenetics-inspired spatiotemporal dynamics. Adv. Funct. Mater. 34, 2314456 (2024). https://doi.org/10.1002/adfm.202314456
Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018). https://doi.org/10.1126/science.aao0098
M. Mesulam, From sensation to cognition. Brain 121, 1013–1052 (1998). https://doi.org/10.1093/brain/121.6.1013
A.E. Pereda, Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250–263 (2014). https://doi.org/10.1038/nrn3708
J.S. Dittman, A.C. Kreitzer, W.G. Regehr, Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J. Neurosci. 20, 1374–1385 (2000). https://doi.org/10.1523/JNEUROSCI.20-04-01374.2000
H.S. White, G.P. Kittlesen, M.S. Wrighton, Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Chem. Soc. 106, 5375–5377 (1984). https://doi.org/10.1021/ja00330a070
J.W. Thackeray, H.S. White, M.S. Wrighton, Poly(3-methylthiophene)-coated electrodes: optical and electrical properties as a function of redox potential and amplification of electrical and chemical signals using poly(3-methylthiophene)-based microelectrochemical transistors. J. Phys. Chem. 89, 5133–5140 (1985). https://doi.org/10.1021/j100269a048
E.W. Paul, A.J. Ricco, M.S. Wrighton, Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. J. Phys. Chem. 89, 1441–1447 (1985). https://doi.org/10.1021/j100254a028
P.N. Bartlett, Measurement of low glucose concentrations using a microelectrochemical enzyme transistor. Analyst 123, 387–392 (1998). https://doi.org/10.1039/a706296f
P.N. Bartlett, P.R. Birkin, J.H. Wang, F. Palmisano, G. De Benedetto, An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly(aniline) film. Anal. Chem. 70, 3685–3694 (1998). https://doi.org/10.1021/ac971088a
Y. Fu, L.-A. Kong, Y. Chen, J. Wang, C. Qian et al., Flexible neuromorphic architectures based on self-supported multiterminal organic transistors. ACS Appl. Mater. Interfaces 10, 26443–26450 (2018). https://doi.org/10.1021/acsami.8b07443
F. Torricelli, D.Z. Adrahtas, Z. Bao, M. Berggren, F. Biscarini et al., Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Meth. Primers 1, 66 (2021). https://doi.org/10.1038/s43586-021-00065-8
F. Cicoira, M. Sessolo, O. Yaghmazadeh, J.A. DeFranco, S.Y. Yang et al., Influence of device geometry on sensor characteristics of planar organic electrochemical transistors. Adv. Mater. 22, 1012–1016 (2010). https://doi.org/10.1002/adma.200902329
Y. Liang, G. Figueroa-Miranda, J.A. Tanner, F. Huang, A. Offenhäusser et al., Highly sensitive detection of malaria biomarker through matching channel and gate capacitance of integrated organic electrochemical transistors. Biosens. Bioelectron. 242, 115712 (2023). https://doi.org/10.1016/j.bios.2023.115712
P. Gkoupidenis, D.A. Koutsouras, G.G. Malliaras, Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 8, 15448 (2017). https://doi.org/10.1038/ncomms15448
D.-H. Kim, S.-M. Yoon, Improvement in energy consumption and operational stability of electrolyte-gated synapse transistors using atomic-layer-deposited HfO2 thin films. Mater. Sci. Semicond. Process. 153, 107182 (2023). https://doi.org/10.1016/j.mssp.2022.107182
F. Zare Bidoky, W.J. Hyun, D. Song, C.D. Frisbie, Printed, 1 V electrolyte-gated transistors based on poly(3-hexylthiophene) operating at >10 kHz on plastic. Appl. Phys. Lett. 113, 053301 (2018). https://doi.org/10.1063/1.5025475
T.T.K. Nguyen, T.N. Nguyen, G. Anquetin, S. Reisberg, V. Noël et al., Triggering the electrolyte-gated organic field-effect transistor output characteristics through gate functionalization using diazonium chemistry: application to biodetection of 2, 4-dichlorophenoxyacetic acid. Biosens. Bioelectron. 113, 32–38 (2018). https://doi.org/10.1016/j.bios.2018.04.051
T. Cramer, A. Kyndiah, M. Murgia, F. Leonardi, S. Casalini et al., Double layer capacitance measured by organic field effect transistor operated in water. Appl. Phys. Lett. 100, 143302 (2012). https://doi.org/10.1063/1.3699218
Y. Liang, M. Ernst, F. Brings, D. Kireev, V. Maybeck et al., High performance flexible organic electrochemical transistors for monitoring cardiac action potential. Adv. Healthc. Mater. 7, e1800304 (2018). https://doi.org/10.1002/adhm.201800304
G.E. Fenoy, C. vonBilderling, W. Knoll, O. Azzaroni, W.A. Marmisollé, PEDOT: tosylate-polyamine-based organic electrochemical transistors for high-performance bioelectronics. Adv. Electron. Mater. 7, 2100059 (2021). https://doi.org/10.1002/aelm.202100059
S. Inal, J. Rivnay, A.I. Hofmann, I. Uguz, M. Mumtaz et al., Organic electrochemical transistors based on PEDOT with different anionic polyelectrolyte dopants. J. Polym. Sci. Part B Polym. Phys. 54, 147–151 (2016). https://doi.org/10.1002/polb.23938
A. Giovannitti, D.-T. Sbircea, S. Inal, C.B. Nielsen, E. Bandiello et al., Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl. Acad. Sci. U.S.A. 113, 12017–12022 (2016). https://doi.org/10.1073/pnas.1608780113
C.B. Nielsen, A. Giovannitti, D.-T. Sbircea, E. Bandiello, M.R. Niazi et al., Molecular design of semiconducting polymers for high-performance organic electrochemical transistors. J. Am. Chem. Soc. 138, 10252–10259 (2016). https://doi.org/10.1021/jacs.6b05280
Y. Liang, C. Che, H. Tang, K. Zhang, L. Lan et al., Influence of interaction between electrolyte with side-chain free conjugated polymer on the performance of organic electrochemical transistors. ACS Appl. Mater. Interfaces 16, 19977–19986 (2024). https://doi.org/10.1021/acsami.3c13781
H. Tang, Y. Liang, C. Liu, Z. Hu, Y. Deng et al., A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022). https://doi.org/10.1038/s41586-022-05295-8
H.Y. Wu, C.Y. Yang, Q. Li, N.B. Kolhe, X. Strakosas et al., Influence of molecular weight on the organic electrochemical transistor performance of ladder-type conjugated polymers. Adv. Mater. 34, e2106235 (2022). https://doi.org/10.1002/adma.202106235
A. Giovannitti, C.B. Nielsen, D.-T. Sbircea, S. Inal, M. Donahue et al., N-type organic electrochemical transistors with stability in water. Nat. Commun. 7, 13066 (2016). https://doi.org/10.1038/ncomms13066
K. Feng, W. Shan, S. Ma, Z. Wu, J. Chen et al., Fused bithiophene imide dimer-based n-type polymers for high-performance organic electrochemical transistors. Angew. Chem. Int. Ed. 60, 24198–24205 (2021). https://doi.org/10.1002/anie.202109281
J. Hu, M.J. Lu, F.Z. Chen, H.M. Jia, H. Zhou et al., Multifunctional hydrogel hybrid-gated organic photoelectrochemical transistor for biosensing. Adv. Funct. Mater. 32, 2109046 (2022). https://doi.org/10.1002/adfm.202109046
P. Li, J. Shi, Y. Lei, Z. Huang, T. Lei, Switching p-type to high-performance n-type organic electrochemical transistors via doped state engineering. Nat. Commun. 13, 5970 (2022). https://doi.org/10.1038/s41467-022-33553-w
K. Feng, W. Shan, J. Wang, J.-W. Lee, W. Yang et al., Cyano-functionalized n-type polymer with high electron mobility for high-performance organic electrochemical transistors. Adv. Mater. 34, e2201340 (2022). https://doi.org/10.1002/adma.202201340
E. Zeglio, M. Vagin, C. Musumeci, F.N. Ajjan, R. Gabrielsson et al., Conjugated polyelectrolyte blends for electrochromic and electrochemical transistor devices. Chem. Mater. 27, 6385–6393 (2015). https://doi.org/10.1021/acs.chemmater.5b02501
A.T. Lill, D.X. Cao, M. Schrock, J. Vollbrecht, J. Huang et al., Organic electrochemical transistors based on the conjugated polyelectrolyte PCPDTBT-SO3K (CPE-K). Adv. Mater. 32, 1908120 (2020). https://doi.org/10.1002/adma.201908120
S. Inal, J. Rivnay, P. Leleux, M. Ferro, M. Ramuz et al., A high transconductance accumulation mode electrochemical transistor. Adv. Mater. 26, 7450–7455 (2014). https://doi.org/10.1002/adma.201403150
A. Savva, C. Cendra, A. Giugni, B. Torre, J. Surgailis et al., Influence of water on the performance of organic electrochemical transistors. Chem. Mater. 31, 927–937 (2019). https://doi.org/10.1021/acs.chemmater.8b04335
X. Zhao, H. Zou, M. Wang, J. Wang, T. Wang et al., Conformal neuromorphic bioelectronics for sense digitalization. Adv. Mater. 36, 2403444 (2024). https://doi.org/10.1002/adma.202403444
Z. Farsi, R. Jahn, A. Woehler, Proton electrochemical gradient: driving and regulating neurotransmitter uptake. BioEssays 39, 1600240 (2017). https://doi.org/10.1002/bies.201600240
K.-D. Kreuer, Proton conductivity: materials and applications. Chem. Mater. 8, 610–641 (1996). https://doi.org/10.1021/cm950192a
Y. Wang, T. Seki, P. Gkoupidenis, Y. Chen, Y. Nagata et al., Aqueous chemimemristor based on proton-permeable graphene membranes. Proc. Natl. Acad. Sci. U.S.A. 121, e2314347121 (2024). https://doi.org/10.1073/pnas.2314347121
C.S. Yang, D.S. Shang, N. Liu, G. Shi, X. Shen et al., A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 29, 1700906 (2017). https://doi.org/10.1002/adma.201700906
J. Li, Y. Qian, W. Li, Y.H. Lin, H. Qian et al., Humidity-enabled organic artificial synaptic devices with ultrahigh moisture resistivity. Adv. Electron. Mater. 8, 2200320 (2022). https://doi.org/10.1002/aelm.202200320
A. Melianas, T.J. Quill, G. LeCroy, Y. Tuchman, H.V. Loo et al., Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Sci. Adv. 6, eabb2958 (2020). https://doi.org/10.1126/sciadv.abb2958
L. Xiang, L. Liu, F. Zhang, C. Di, D. Zhu, Ion-gating engineering of organic semiconductors toward multifunctional devices. Adv. Funct. Mater. 31, 2102149 (2021). https://doi.org/10.1002/adfm.202102149
B.D. Paulsen, K. Tybrandt, E. Stavrinidou, J. Rivnay, Organic mixed ionic-electronic conductors. Nat. Mater. 19, 13–26 (2020). https://doi.org/10.1038/s41563-019-0435-z
S.T. Keene, T.P.A. van der Pol, D. Zakhidov, C.H.L. Weijtens, R.A.J. Janssen et al., Enhancement-mode PEDOT: PSS organic electrochemical transistors using molecular de-doping. Adv. Mater. 32, e2000270 (2020). https://doi.org/10.1002/adma.202000270
A. Koklu, S. Wustoni, V.-E. Musteata, D. Ohayon, M. Moser et al., Microfluidic integrated organic electrochemical transistor with a nanoporous membrane for amyloid-β detection. ACS Nano 15, 8130–8141 (2021). https://doi.org/10.1021/acsnano.0c09893
P.C. Harikesh, C.Y. Yang, H.Y. Wu, S. Zhang, M.J. Donahue et al., Ion-tunable antiambipolarity in mixed ion-electron conducting polymers enables biorealistic organic electrochemical neurons. Nat. Mater. 22, 242–248 (2023). https://doi.org/10.1038/s41563-022-01450-8
R.B. Rashid, X. Ji, J. Rivnay, Organic electrochemical transistors in bioelectronic circuits. Biosens. Bioelectron. 190, 113461 (2021). https://doi.org/10.1016/j.bios.2021.113461
C. Cea, G.D. Spyropoulos, P. Jastrzebska-Perfect, J.J. Ferrero, J.N. Gelinas et al., Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679–686 (2020). https://doi.org/10.1038/s41563-020-0638-3
E.R.W. van Doremaele, X. Ji, J. Rivnay, Y. van de Burgt, A retrainable neuromorphic biosensor for on-chip learning and classification. Nat. Electron. 6, 765–770 (2023). https://doi.org/10.1038/s41928-023-01020-z
A. Lobosco, C. Lubrano, D. Rana, V.R. Montes, S. Musall et al., Enzyme-mediated organic neurohybrid synapses. Adv. Mater. 36, e2409614 (2024). https://doi.org/10.1002/adma.202409614
J. Qiu, J. Cao, X. Liu, P. Chen, G. Feng et al., A flexible organic electrochemical synaptic transistor with dopamine-mediated plasticity. IEEE Electron Device Lett. 44, 176–179 (2023). https://doi.org/10.1109/LED.2022.3225143
T. Wang, M. Wang, J. Wang, L. Yang, X. Ren et al., Author Correction: a chemically mediated artificial neuron. Nat. Electron. 5, 622 (2022). https://doi.org/10.1038/s41928-022-00803-0
G.M. Matrone, U. Bruno, C. Forró, C. Lubrano, S. Cinti et al., Electrical and optical modulation of a PEDOT: PSS-based electrochemical transistor for multiple neurotransmitter-mediated artificial synapses. Adv. Mater. Technol. 8, 2201911 (2023). https://doi.org/10.1002/admt.202201911
D. Kim, J.S. Lee, Neurotransmitter-induced excitatory and inhibitory functions in artificial synapses. Adv. Funct. Mater. 32, 2200497 (2022). https://doi.org/10.1002/adfm.202200497
C. Ausilio, C. Lubrano, D. Rana, G.M. Matrone, U. Bruno et al., Concealing organic neuromorphic devices with neuronal-inspired supported lipid bilayers. Adv. Sci. 11, e2305860 (2024). https://doi.org/10.1002/advs.202305860
D. Kim, J.-S. Lee, Emulating the signal transmission in a neural system using polymer membranes. ACS Appl. Mater. Interfaces 14, 42308–42316 (2022). https://doi.org/10.1021/acsami.2c12166
R. Liu, X. Zhu, J. Duan, J. Chen, Z. Xie et al., Versatile neuromorphic modulation and biosensing based on N-type small-molecule organic mixed ionic-electronic conductors. Angew. Chem. Int. Ed. 63, e202315537 (2024). https://doi.org/10.1002/anie.202315537
H.R. Lee, D. Lee, J.H. Oh, A hippocampus-inspired dual-gated organic artificial synapse for simultaneous sensing of a neurotransmitter and light. Adv. Mater. 33, e2100119 (2021). https://doi.org/10.1002/adma.202100119
D.-G. Seo, G.-T. Go, H.-L. Park, T.-W. Lee, Organic synaptic transistors for flexible and stretchable artificial sensory nerves. MRS Bull. 46, 321–329 (2021). https://doi.org/10.1557/s43577-021-00093-5
B.W. Connors, M.A. Long, Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27, 393–418 (2004). https://doi.org/10.1146/annurev.neuro.26.041002.131128
J. Rivnay, P. Leleux, M. Sessolo, D. Khodagholy, T. Hervé et al., Organic electrochemical transistors with maximum transconductance at zero gate bias. Adv. Mater. 25, 7010–7014 (2013). https://doi.org/10.1002/adma.201303080
Y. Liang, F. Brings, V. Maybeck, S. Ingebrandt, B. Wolfrum et al., Tuning channel architecture of interdigitated organic electrochemical transistors for recording the action potentials of electrogenic cells. Adv. Funct. Mater. 29, 1902085 (2019). https://doi.org/10.1002/adfm.201902085
C. Eckel, J. Lenz, A. Melianas, A. Salleo, R. Thomas Weitz, Nanoscopic electrolyte-gated vertical organic transistors with low operation voltage and five orders of magnitude switching range for neuromorphic systems. Nano Lett. 22, 973–978 (2022). https://doi.org/10.1021/acs.nanolett.1c03832
D.T. Duong, Y. Tuchman, P. Chakthranont, P. Cavassin, R. Colucci et al., A universal platform for fabricating organic electrochemical devices. Adv. Electron. Mater. 4, 1800090 (2018). https://doi.org/10.1002/aelm.201800090
I. Krauhausen, C.T. Coen, S. Spolaor, P. Gkoupidenis, Y. van de Burgt, Brain-inspired organic electronics: merging neuromorphic computing and bioelectronics using conductive polymers. Adv. Funct. Mater. 34, 2307729 (2024). https://doi.org/10.1002/adfm.202307729
S. Fabiano, S. Braun, X. Liu, E. Weverberghs, P. Gerbaux et al., Poly(ethylene imine) impurities induce n-doping reaction in organic (semi)conductors. Adv. Mater. 26, 6000–6006 (2014). https://doi.org/10.1002/adma.201401986
T.P.A. van der Pol, S.T. Keene, B.W.H. Saes, S.C.J. Meskers, A. Salleo et al., The mechanism of dedoping PEDOT: PSS by aliphatic polyamines. J. Phys. Chem. C 123, 24328–24337 (2019). https://doi.org/10.1021/acs.jpcc.9b07718
R.A. John, F. Liu, N.A. Chien, M.R. Kulkarni, C. Zhu et al., Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 30, e1800220 (2018). https://doi.org/10.1002/adma.201800220
D.I. Son, C.H. You, W.T. Kim, J.H. Jung, T.W. Kim, Electrical bistabilities and memory mechanisms of organic bistable devices based on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites. Appl. Phys. Lett. 94, 132103 (2009). https://doi.org/10.1063/1.3111445
Y. Zhou, S.-T. Han, P. Sonar, V.L. Roy, Nonvolatile multilevel data storage memory device from controlled ambipolar charge trapping mechanism. Sci. Rep. 3, 2319 (2013). https://doi.org/10.1038/srep02319
T. Xiong, C. Li, X. He, B. Xie, J. Zong et al., Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 379, 156–161 (2023). https://doi.org/10.1126/science.adc9150
P. Zhang, M. Xia, F. Zhuge, Y. Zhou, Z. Wang et al., Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses. Nano Lett. 19, 4279–4286 (2019). https://doi.org/10.1021/acs.nanolett.9b00525
J.S. Najem, G.J. Taylor, R.J. Weiss, M.S. Hasan, G. Rose et al., Memristive ion channel-doped biomembranes as synaptic mimics. ACS Nano 12, 4702–4711 (2018). https://doi.org/10.1021/acsnano.8b01282
Y. Qian, J. Li, W. Li, C.-H. Hou, Z. Feng et al., High synaptic plasticity enabled by controlled ion migration in organic heterojunction memristors. J. Mater. Chem. C 12, 9669–9676 (2024). https://doi.org/10.1039/D4TC01257G
P. Robin, N. Kavokine, L. Bocquet, Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 373, 687–691 (2021). https://doi.org/10.1126/science.abf7923
C.-H. Kim, S. Sung, M.-H. Yoon, Synaptic organic transistors with a vacuum-deposited charge-trapping nanosheet. Sci. Rep. 6, 33355 (2016). https://doi.org/10.1038/srep33355
D.A. Bernards, G.G. Malliaras, Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 17, 3538–3544 (2007). https://doi.org/10.1002/adfm.200601239
Y. van de Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018). https://doi.org/10.1038/s41928-018-0103-3
Y. Sun, H. Wang, D. Xie, Recent advance in synaptic plasticity modulation techniques for neuromorphic applications. Nano-Micro Lett. 16, 211 (2024). https://doi.org/10.1007/s40820-024-01445-x
S. Sagar, K. Udaya Mohanan, S. Cho, L.A. Majewski, B.C. Das, Emulation of synaptic functions with low voltage organic memtransistor for hardware oriented neuromorphic computing. Sci. Rep. 12, 3808 (2022). https://doi.org/10.1038/s41598-022-07505-9
L.F. Abbott, W.G. Regehr, Synaptic computation. Nature 431, 796–803 (2004). https://doi.org/10.1038/nature03010
L.-A. Kong, J. Sun, C. Qian, Y. Fu, J. Wang et al., Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors. Org. Electron. 47, 126–132 (2017). https://doi.org/10.1016/j.orgel.2017.05.017
J.Y. Gerasimov, R. Gabrielsson, R. Forchheimer, E. Stavrinidou, D.T. Simon et al., An evolvable organic electrochemical transistor for neuromorphic applications. Adv. Sci. 6, 1801339 (2019). https://doi.org/10.1002/advs.201801339
P.C. Harikesh, C.-Y. Yang, D. Tu, J.Y. Gerasimov, A.M. Dar et al., Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 13, 901 (2022). https://doi.org/10.1038/s41467-022-28483-6
S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang et al., A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 25, 1774–1779 (2013). https://doi.org/10.1002/adma.201203680
X. Wang, Y. Yan, E. Li, Y. Liu, D. Lai et al., Stretchable synaptic transistors with tunable synaptic behavior. Nano Energy 75, 104952 (2020). https://doi.org/10.1016/j.nanoen.2020.104952
X. Xu, H. Zhang, L. Shao, R. Ma, M. Guo et al., An aqueous electrolyte gated artificial synapse with synaptic plasticity selectively mediated by biomolecules. Angew. Chem. Int. Ed. 62, e202302723 (2023). https://doi.org/10.1002/anie.202302723
M.J. Panzer, C. Daniel Frisbie, Exploiting ionic coupling in electronic devices: electrolyte-gated organic field-effect transistors. Adv. Mater. 20, 3177–3180 (2008). https://doi.org/10.1002/adma.200800617
J. Rivnay, P. Leleux, M. Ferro, M. Sessolo, A. Williamson et al., High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 1, e1400251 (2015). https://doi.org/10.1126/sciadv.1400251
H. Tang, Y. Liang, C.-Y. Yang, X. Luo, J. Yu et al., Polyethylene glycol-decorated n-type conducting polymers with improved ion accessibility for high-performance organic electrochemical transistors. Mater. Horiz. 11, 5419–5428 (2024). https://doi.org/10.1039/D4MH00979G
Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14, 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
G.-T. Go, Y. Lee, D.-G. Seo, M. Pei, W. Lee et al., Achieving microstructure-controlled synaptic plasticity and long-term retention in ion-gel-gated organic synaptic transistors. Adv. Intell. Syst. 2, 2000012 (2020). https://doi.org/10.1002/aisy.202000012
T.D. Nguyen, T.Q. Trung, Y. Lee, N.-E. Lee, Stretchable and stable electrolyte-gated organic electrochemical transistor synapse with a nafion membrane for enhanced synaptic properties. Adv. Eng. Mater. 24, 2100918 (2022). https://doi.org/10.1002/adem.202100918
D. Khodagholy, J. Rivnay, M. Sessolo, M. Gurfinkel, P. Leleux et al., High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133 (2013). https://doi.org/10.1038/ncomms3133
J.S. Wilkes, M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun. 965–967 (1992). https://doi.org/10.1039/c39920000965
M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009). https://doi.org/10.1038/nmat2448
T. Fujimoto, K. Awaga, Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15, 8983–9006 (2013). https://doi.org/10.1039/c3cp50755f
H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki et al., High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 19, 1046–1053 (2009). https://doi.org/10.1002/adfm.200801633
Y. Yadav, S.K. Ghosh, S.P. Singh, High-performance organic field-effect transistors gated by imidazolium-based ionic liquids. ACS Appl. Electron. Mater. 3, 1496–1504 (2021). https://doi.org/10.1021/acsaelm.1c00117
Y. Zhong, P.D. Nayak, S. Wustoni, J. Surgailis, J.Z. Parrado Agudelo et al., Ionic liquid gated organic electrochemical transistors with broadened bandwidth. ACS Appl. Mater. Interfaces 16, 61457–61466 (2024). https://doi.org/10.1021/acsami.3c11214
J. Lee, M.J. Panzer, Y. He, T.P. Lodge, C.D. Frisbie, Ion gel gated polymer thin-film transistors. J. Am. Chem. Soc. 129, 4532–4533 (2007). https://doi.org/10.1021/ja070875e
D. Wang, S. Zhao, R. Yin, L. Li, Z. Lou et al., Recent advanced applications of ion-gel in ionic-gated transistor. npj Flex. Electron. 5, 13 (2021). https://doi.org/10.1038/s41528-021-00110-2
M.J. Panzer, C. Daniel Frisbie, Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. J. Am. Chem. Soc. 127, 6960–6961 (2005). https://doi.org/10.1021/ja051579+
F. Calahorro, P.G. Izquierdo, The presynaptic machinery at the synapse of C. elegans. Invert. Neurosci. 18, 4 (2018). https://doi.org/10.1007/s10158-018-0207-5
H. Shim, S. Jang, A. Thukral, S. Jeong, H. Jo et al., Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors. Proc. Natl. Acad. Sci. U.S.A. 119, e2204852119 (2022). https://doi.org/10.1073/pnas.2204852119
S. Dai, Y. Dai, Z. Zhao, F. Xia, Y. Li et al., Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence. Matter 5, 3375–3390 (2022). https://doi.org/10.1016/j.matt.2022.07.016
S.P. Lacour, G. Courtine, J. Guck, Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016). https://doi.org/10.1038/natrevmats.2016.63
T. Sun, B. Feng, J. Huo, Y. Xiao, W. Wang et al., Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro. Lett. 16, 14 (2023). https://doi.org/10.1007/s40820-023-01235-x
W. Huang, Y. Wang, Y. Zhang, J. Zhu, D. Liu et al., Intrinsically stretchable carbon nanotube synaptic transistors with associative learning ability and mechanical deformation response. Carbon 189, 386–394 (2022). https://doi.org/10.1016/j.carbon.2021.12.081
J. Chen, W. Huang, D. Zheng, Z. Xie, X. Zhuang et al., Highly stretchable organic electrochemical transistors with strain-resistant performance. Nat. Mater. 21, 564–571 (2022). https://doi.org/10.1038/s41563-022-01239-9
D. Liu, X. Tian, J. Bai, Y. Wang, Y. Cheng et al., Intrinsically stretchable organic electrochemical transistors with rigid-device-benchmarkable performance. Adv. Sci. 9, e2203418 (2022). https://doi.org/10.1002/advs.202203418
H. Shim, S. Jang, J.G. Jang, Z.Y. Rao, J.I. Hong et al., Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Res. 15, 758–764 (2022). https://doi.org/10.1007/s12274-021-3602-x
X. Wang, H. Yang, E. Li, C. Cao, W. Zheng et al., Stretchable transistor-structured artificial synapses for neuromorphic electronics. Small 19, e2205395 (2023). https://doi.org/10.1002/smll.202205395
L. Liu, W. Xu, Y. Ni, Z. Xu, B. Cui et al., Stretchable neuromorphic transistor that combines multisensing and information processing for epidermal gesture recognition. ACS Nano 16, 2282–2291 (2022). https://doi.org/10.1021/acsnano.1c08482
B. Winther-Jensen, O. Winther-Jensen, M. Forsyth, D.R. MacFarlane, High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode. Science 321, 671–674 (2008). https://doi.org/10.1126/science.1159267
D. Simatos, M. Nikolka, J. Charmet, Electrolyte-gated organic field-effect transistors with high operational stability and lifetime in practical electrolytes. SmartMat 5, e1291 (2024). https://doi.org/10.1002/smm2.1291
S.T. Keene, A. Melianas, Y. van de Burgt, A. Salleo, Mechanisms for enhanced state retention and stability in redox-gated organic neuromorphic devices. Adv. Electron. Mater. 5, 1800686 (2019). https://doi.org/10.1002/aelm.201800686
M. Nikolka, I. Nasrallah, B. Rose, M.K. Ravva, K. Broch et al., High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 16, 356–362 (2017). https://doi.org/10.1038/nmat4785
O. Knopfmacher, M.L. Hammock, A.L. Appleton, G. Schwartz, J. Mei et al., Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 5, 2954 (2014). https://doi.org/10.1038/ncomms3954
I. Pereiro, A. Fomitcheva Khartchenko, L. Petrini, G.V. Kaigala, Nip the bubble in the bud: a guide to avoid gas nucleation in microfluidics. Lab Chip 19, 2296–2314 (2019). https://doi.org/10.1039/c9lc00211a
S.-W. Lee, S. Kim, K.-N. Kim, M.-J. Sung, T.-W. Lee, Increasing the stability of electrolyte-gated organic synaptic transistors for neuromorphic implants. Biosens. Bioelectron. 261, 116444 (2024). https://doi.org/10.1016/j.bios.2024.116444
Y. Zheng, L. Michalek, Q. Liu, Y. Wu, H. Kim et al., Environmentally stable and stretchable polymer electronics enabled by surface-tethered nanostructured molecular-level protection. Nat. Nanotechnol. 18, 1175–1184 (2023). https://doi.org/10.1038/s41565-023-01418-y
J. Sung, M. Kim, S. Chung, Y. Jang, S. Kim et al., Modulating alkyl groups in copolymer to control ion transport in electrolyte-gated organic transistors for neuromorphic computing. Small Struct. 6, 2570004 (2025). https://doi.org/10.1002/sstr.202570004
T.M. Jessell, E.R. Kandel, Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication. Cell 72, 1–30 (1993). https://doi.org/10.1016/s0092-8674(05)80025-x
J. Hu, M.-J. Jing, Y.-T. Huang, B.-H. Kou, Z. Li et al., A photoelectrochemical retinomorphic synapse. Adv. Mater. 36, e2405887 (2024). https://doi.org/10.1002/adma.202405887
S. Shaham, Chemosensory organs as models of neuronal synapses. Nat. Rev. Neurosci. 11, 212–217 (2010). https://doi.org/10.1038/nrn2740
H.W. Song, D. Moon, Y. Won, Y.K. Cha, J. Yoo et al., A pattern recognition artificial olfactory system based on human olfactory receptors and organic synaptic devices. Sci. Adv. 10, eadl2882 (2024). https://doi.org/10.1126/sciadv.adl2882
C. Han, J. Han, M. He, X. Han, Z. Wu et al., Photonic synaptic transistor with memory mode switching for neuromorphic visual system. Laser Photonics Rev. 18, 2300976 (2024). https://doi.org/10.1002/lpor.202300976
K. Chen, H. Hu, I. Song, H.B. Gobeze, W.-J. Lee et al., Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photon. 17, 629–637 (2023). https://doi.org/10.1038/s41566-023-01232-x
Y. Li, G. He, W. Wang, C. Fu, S. Jiang et al., A high-performance organic lithium salt-doped OFET with the optical radical effect for photoelectric pulse synaptic simulation and neuromorphic memory learning. Mater. Horiz. 11, 3867–3877 (2024). https://doi.org/10.1039/D4MH00297K
S.W. Cho, C. Jo, Y.-H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14, 203 (2022). https://doi.org/10.1007/s40820-022-00945-y
H. Chen, Y. Cai, Y. Han, H. Huang, Towards artificial visual sensory system: organic optoelectronic synaptic materials and devices. Angew. Chem. Int. Ed. 63, e202313634 (2024). https://doi.org/10.1002/anie.202313634
D. Hao, J. Zhang, S. Dai, J. Zhang, J. Huang, Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces 12, 39487–39495 (2020). https://doi.org/10.1021/acsami.0c10851
Q. Liu, L. Yin, C. Zhao, Z. Wu, J. Wang et al., All-in-one metal-oxide heterojunction artificial synapses for visual sensory and neuromorphic computing systems. Nano Energy 97, 107171 (2022). https://doi.org/10.1016/j.nanoen.2022.107171
B.H. Jeong, J. Lee, M. Ku, J. Lee, D. Kim et al., RGB color-discriminable photonic synapse for neuromorphic vision system. Nano-Micro Lett. 17, 78 (2024). https://doi.org/10.1007/s40820-024-01579-y
C.K. Machens, Building the human brain. Science 338, 1156–1157 (2012). https://doi.org/10.1126/science.1231865
Y. Wang, W. Gao, S. Yang, Q. Chen, C. Ye et al., Humanoid intelligent display platform for audiovisual interaction and sound identification. Nano-Micro Lett. 15, 221 (2023). https://doi.org/10.1007/s40820-023-01199-y
Y. Xu, Z. Deng, C. Jin, W. Liu, X. Shi et al., An organic electrochemical synaptic transistor array for neuromorphic computation of sound localization. Appl. Phys. Lett. 123, 133701 (2023). https://doi.org/10.1063/5.0167865
H. Lee, L.J. MacPherson, C.A. Parada, C.S. Zuker, N.J.P. Ryba, Rewiring the taste system. Nature 548, 330–333 (2017). https://doi.org/10.1038/nature23299
Y. Zhang, Y. Ma, L. Wang, C. Li, L. Wu et al., Nanofluidic membrane-assisted organic electrochemical transistors for bioinspired gustatory sensation based on selective cation transport. Small 20, e2403629 (2024). https://doi.org/10.1002/smll.202403629
C. Sun, X. Liu, Q. Jiang, X. Ye, X. Zhu et al., Emerging electrolyte-gated transistors for neuromorphic perception. Sci. Technol. Adv. Mater. 24, 2162325 (2023). https://doi.org/10.1080/14686996.2022.2162325
H. Wei, J. Gong, J. Liu, G. He, Y. Ni et al., Thermally and mechanically stable perovskite artificial synapse as tuned by phase engineering for efferent neuromuscular control. Nano Lett. 24, 9311–9321 (2024). https://doi.org/10.1021/acs.nanolett.4c02240
Y. Dong, W. An, Z. Wang, D. Zhang, An artificial intelligence-assisted flexible and wearable mechanoluminescent strain sensor system. Nano-Micro Lett. 17, 62 (2024). https://doi.org/10.1007/s40820-024-01572-5
J. Zeng, J. Zhao, T. Bu, G. Liu, Y. Qi et al., A flexible tribotronic artificial synapse with bioinspired neurosensory behavior. Nano-Micro Lett. 15, 18 (2022). https://doi.org/10.1007/s40820-022-00989-0
S. Qu, L. Sun, S. Zhang, J. Liu, Y. Li et al., An artificially-intelligent Cornea with tactile sensation enables sensory expansion and interaction. Nat. Commun. 14, 7181 (2023). https://doi.org/10.1038/s41467-023-42240-3
W. Xu, L. Wang, D.C. Yang, A. Hajibabaei, Y. Lee et al., Supra-binary polarization in a ferroelectric nanowire. Adv. Mater. 33, e2101981 (2021). https://doi.org/10.1002/adma.202101981
H. Wei, R. Shi, L. Sun, H. Yu, J. Gong et al., Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. Nat. Commun. 12, 1068 (2021). https://doi.org/10.1038/s41467-021-21319-9
C. Jiang, J. Liu, Y. Ni, S. Qu, L. Liu et al., Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement. Nat. Commun. 14, 1344 (2023). https://doi.org/10.1038/s41467-023-36935-w
E. Musk, Neuralink, An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019). https://doi.org/10.2196/16194
Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15, 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
S. Zhong, L. Su, M. Xu, D. Loke, B. Yu et al., Recent advances in artificial sensory neurons: biological fundamentals, devices, applications, and challenges. Nano-Micro Lett. 17, 61 (2024). https://doi.org/10.1007/s40820-024-01550-x
X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2021). https://doi.org/10.1007/s40820-021-00740-1
T. Sarkar, K. Lieberth, A. Pavlou, T. Frank, V. Mailaender et al., An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774–783 (2022). https://doi.org/10.1038/s41928-022-00859-y
R.S. Kass, The channelopathies: novel insights into molecular and genetic mechanisms of human disease. J. Clin. Invest. 115, 1986–1989 (2005). https://doi.org/10.1172/JCI26011