Highly Stretchable Shape Memory Self-Soldering Conductive Tape with Reversible Adhesion Switched by Temperature
Corresponding Author: Rujun Ma
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 124
Abstract
With practical interest in the future applications of next-generation electronic devices, it is imperative to develop new conductive interconnecting materials appropriate for modern electronic devices to replace traditional rigid solder tin and silver paste of high melting temperature or corrosive solvent requirements. Herein, we design highly stretchable shape memory self-soldering conductive (SMSC) tape with reversible adhesion switched by temperature, which is composed of silver particles encapsulated by shape memory polymer. SMSC tape has perfect shape and conductivity memory property and anti-fatigue ability even under the strain of 90%. It also exhibits an initial conductivity of 2772 S cm−1 and a maximum tensile strain of ~ 100%. The maximum conductivity could be increased to 5446 S cm−1 by decreasing the strain to 17%. Meanwhile, SMSC tape can easily realize a heating induced reversible strong-to-weak adhesion transition for self-soldering circuit. The combination of stable conductivity, excellent shape memory performance, and temperature-switching reversible adhesion enables SMSC tape to serve two functions of electrode and solder simultaneously. This provides a new way for conductive interconnecting materials to meet requirements of modern electronic devices in the future.
Highlights:
1 Shape memory self-soldering tape used as conductive interconnecting material.
2 Perfect shape and conductivity memory performance and anti-fatigue performance.
3 Reversible strong-to-weak adhesion switched by temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Joo, D. Jung, S.H. Sunwoo, J.H. Koo, D.H. Kim, Material design and fabrication strategies for stretchable metallic nanocomposites. Small 16, 1906270 (2020). https://doi.org/10.1002/smll.201906270
- S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim et al., Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018). https://doi.org/10.1038/s41565-018-0226-8
- R. Ma, S. Chou, Y. Xie, Q. Pei, Morphological/nanostructural control toward intrinsically stretchable organic electronics. Chem. Soc. Rev. 48, 1741–1786 (2019). https://doi.org/10.1039/c8cs00834e
- R. Ma, B. Kang, S. Cho, M. Choi, S. Baik, Extraordinarily high conductivity of stretchable fibers of polyurethane and silver nanoflowers. ACS Nano 9, 10876–10886 (2015). https://doi.org/10.1021/acsnano.5b03864
- J. Liang, K. Tong, Q. Pei, A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 28, 5986–5996 (2016). https://doi.org/10.1002/adma.201600772
- N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara et al., Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015). https://doi.org/10.1038/ncomms8461
- J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo et al., Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27, 2433–2439 (2015). https://doi.org/10.1002/adma.201500009
- B. Tian, Q. Liu, C. Luo, Y. Feng, W. Wu, Multifunctional ultrastretchable printed soft electronic devices for wearable applications. Adv. Electron. Mater. 6, 1900922 (2020). https://doi.org/10.1002/aelm.202070006
- N. Matsuhisa, D. Inoue, P. Zalar, H. Jin, Y. Matsuba et al., Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017). https://doi.org/10.1038/NMAT4904
- C.S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou et al., Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354, 1257–1260 (2016). https://doi.org/10.1126/science.aag2879
- M. Park, J. Im, M. Shin, Y. Min, J. Park et al., Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7, 803–809 (2012). https://doi.org/10.1038/nnano.2012.206
- X. Wu, Y. Han, X. Zhang, C. Lu, Spirally structured conductive composites for highly stretchable, robust conductors and sensors. ACS Appl. Mater. Interfaces 9, 23007–23016 (2017). https://doi.org/10.1021/acsami.7b06256
- H.S. Lee, Y. Jo, J.H. Joo, K. Woo, Z. Zhong et al., Three-dimensionally printed stretchable conductors from surfactant-mediated composite pastes. ACS Appl. Mater. Interfaces 11, 12622–12631 (2019). https://doi.org/10.1021/acsami.8b21570
- Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su et al., Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013). https://doi.org/10.1038/nature12401
- H. Li, J. Liang, Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives. Adv. Mater. 32, 1805864 (2019). https://doi.org/10.1002/adma.201805864
- M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016). https://doi.org/10.1038/ncomms12647
- Z. Yang, Z. Zhai, Z. Song, Y. Wu, J. Liang et al., Conductive and elastic 3d helical fibers for use in washable and wearable electronics. Adv. Mater. 32, 1907495 (2020). https://doi.org/10.1002/adma.201907495
- R. Aradhana, S. Mohanty, S.K. Nayak, A review on epoxy-based electrically conductive adhesives. Int J. Adhes. Adhes. 99, 102596 (2020). https://doi.org/10.1016/j.ijadhadh.2020.102596
- X. Long, Q. Jia, Z. Li, S.X. Wen, Reverse analysis of constitutive properties of sintered silver particles from nanoindentations. Int. J. Solids Struct. 191, 351–362 (2020). https://doi.org/10.1016/j.ijsolstr.2020.01.014
- X. Long, B. Hu, Y. Feng, C. Chang, M. Li, Correlation of microstructure and constitutive behaviour of sintered silver particles via nanoindentation. Int. J. Mech. Sci. 161, 105020 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105020
- T. Heckmann, T. Souvignet, S. Lepeer, D. Naccache, Low-temperature low-cost 58 Bismuth-42 Tin alloy forensic chip re-balling and re-soldering. Digit. Investig. 19, 60–68 (2016). https://doi.org/10.1016/j.diin.2016.10.003
- L.E. Felton, C.H. Raeder, D.B. Knorr, The properties of tin-bismuth alloy solders. JOM 45, 28–32 (1993). https://doi.org/10.1007/BF03222377
- N.A. Ezaham, N.R.A. Razak, M.A.A.M. Salleh, Influence of bismuth on the solidification of tin copper lead-free solder alloy. AIP Conf. Proc. 2045, 020104 (2018). https://doi.org/10.1063/1.5080917
- T. Satoh, T. Ishizaki, M. Usui, Effect of bismuth-tin alloy particle diameter on bonding strength of copper nanoparticles/bismuth-tin solder hybrid joints. J. Mater. Sci. Mater. Electron. 29, 7161–7176 (2018). https://doi.org/10.1007/s10854-018-8704-1
- S. Jin, M. Kim, S. Kanayama, H. Nishikawa, Microstructure and mechanical properties of indium-bismuth alloys for low melting-temperature solder. J. Mater. Sci. Mater. Electron. 29, 16460–16468 (2018). https://doi.org/10.1007/s10854-018-9738-0
- R. Ma, S. Kwon, Q. Zheng, H.Y. Kwon, J.I. Kim, Carbon-nanotube/silver networks in nitrile butadiene rubber for highly conductive flexible adhesives. Adv. Mater. 24, 3344–3349 (2012). https://doi.org/10.1002/adma.201201273
- G. Cao, L. Wang, Y. Tian, Highly dispersed polypyrrole nanotubes for improving the conductivity of electrically conductive adhesives. J. Mater. Sci. Mater. Electron. 31, 9675–9684 (2020). https://doi.org/10.1007/s10854-020-03513-5
- Q. Yan, M. Zhou, H. Fu, A reversible and highly conductive adhesive: towards self-healing and recyclable flexible electronics. J. Mater. Chem. C 8, 7772–7785 (2020). https://doi.org/10.1039/C9TC06765E
- F. Wang, L. Feng, Y. Huang, W. Shen, H. Ma, Effect of the gradient distribution of multiwalled carbon nanotubes on the bond strength and corrosion resistance of waterborne polyurethane conductive nanocomposites. Prog. Org. Coat. 140, 105507 (2020). https://doi.org/10.1016/j.porgcoat.2019.105507
- B. Kim, T. Park, J. Kim, E. Kim, Waterborne polyacrylic/PEDOT nanocomposites for conductive transparent adhesives. J. Nanosci. Nanotechnol. 13, 7631–7636 (2013). https://doi.org/10.1166/jnn.2013.7822
- T. Wang, C.H. Lei, A.B. Dalton, C. Creton, Y. Lin et al., Waterborne, nanocomposite pressure-sensitive adhesives with high tack energy, optical transparency, and electrical conductivity. Adv. Mater. 18, 2730–2734 (2006). https://doi.org/10.1002/adma.200601335
- J.M. Krahn, A.G. Pattantyus-Abraham, C. Menon, Polymeric electro-dry-adhesives for use on conducting surfaces. Proc. Inst. Mech. Eng. Pt. L-J. Mater. Design Appl. 228, 109–114 (2014). https://doi.org/10.1177/1464420713509376
- Y. Ko, J. Oh, K.T. Park, S. Kim, W. Huh et al., Stretchable conductive adhesives with superior electrical stability as printable interconnects in washable textile electronics. ACS Appl. Mater. Interfaces 11, 37043–37050 (2019). https://doi.org/10.1021/acsami.9b11557
- L. Qu, L. Dai, M. Stone, Z. Xia, Z.L. Wang, Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322, 238–242 (2008). https://doi.org/10.1126/science.1159503
- M. Xu, F. Du, S. Ganguli, A. Roy, L. Dai, Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range. Nat. Commun. 7, 13450 (2016). https://doi.org/10.1038/ncomms13450
- Y. Wang, H. Lai, Z. Cheng, H. Zhang, Y. Liu et al., Smart superhydrophobic shape memory adhesive surface toward selective capture/release of microdroplets. ACS Appl. Mater. Interfaces 11, 10988–10997 (2019). https://doi.org/10.1021/acsami.9b00278
- J. Dong, W. Zou, F. Chen, Q. Zhao, A soft shape memory reversible dry adhesive. Chin. J. Polym. Sci. 36, 953–959 (2018). https://doi.org/10.1007/s10118-018-2119-6
- H. Zhang, H. Lai, Z. Cheng, D. Zhang, P. Liu et al., In-situ switchable superhydrophobic shape memory microstructure patterns with reversible wettability and adhesion. Appl. Surf. Sci. 525, 146525 (2020). https://doi.org/10.1016/j.apsusc.2020.146525
- C.M. Ajmal, S. Bae, S. Baik, A superior method for constructing electrical percolation network of nanocomposite fibers: in situ thermally reduced silver nanoparticles. Small 15, 1803255 (2019). https://doi.org/10.1002/smll.201803255
- Z. Ren, W. Hu, C. Liu, S. Li, X. Niu et al., Phase-changing bistable electroactive polymer exhibiting sharp rigid-to-rubbery transition. Macromolecules 49, 134–140 (2016). https://doi.org/10.1021/acs.macromol.5b02382
- R. Matsui, K. Takeda, H. Tobushi, E. Pieczyska, Mechanical properties and advanced subjects in shape memory alloys and polymers. J. Theor. Appl. Mech. 56, 447–456 (2018). https://doi.org/10.15632/jtam-pl.56.2.44
- X. Long, Y. Wang, L.M. Keer, Y. Yao, Mechanical effects of isolated defects within a lead-free solder bump subjected to coupled thermal-electrical loading. J. Micromechanics Mol. Phys. 01, 1650004 (2016). https://doi.org/10.1142/S2424913016500041
- W. Wang, Z. Chen, S. Wang, X. Long, Mechanics-based acceleration for estimating thermal fatigue life of electronic packaging structure. Microelectron. Reliab. 107, 113616 (2020). https://doi.org/10.1016/j.microrel.2020.113616
- X. Long, Y. Liu, F. Jia, Y. Wu, Y. Fu et al., Thermal fatigue life of Sn–3.0Ag–0.5Cu solder joint under temperature cycling coupled with electric current. J. Mater. Sci. Mater. El. 30, 7654–7664 (2019). https://doi.org/10.1007/s10854-019-01081-x
References
H. Joo, D. Jung, S.H. Sunwoo, J.H. Koo, D.H. Kim, Material design and fabrication strategies for stretchable metallic nanocomposites. Small 16, 1906270 (2020). https://doi.org/10.1002/smll.201906270
S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim et al., Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018). https://doi.org/10.1038/s41565-018-0226-8
R. Ma, S. Chou, Y. Xie, Q. Pei, Morphological/nanostructural control toward intrinsically stretchable organic electronics. Chem. Soc. Rev. 48, 1741–1786 (2019). https://doi.org/10.1039/c8cs00834e
R. Ma, B. Kang, S. Cho, M. Choi, S. Baik, Extraordinarily high conductivity of stretchable fibers of polyurethane and silver nanoflowers. ACS Nano 9, 10876–10886 (2015). https://doi.org/10.1021/acsnano.5b03864
J. Liang, K. Tong, Q. Pei, A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 28, 5986–5996 (2016). https://doi.org/10.1002/adma.201600772
N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara et al., Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015). https://doi.org/10.1038/ncomms8461
J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo et al., Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27, 2433–2439 (2015). https://doi.org/10.1002/adma.201500009
B. Tian, Q. Liu, C. Luo, Y. Feng, W. Wu, Multifunctional ultrastretchable printed soft electronic devices for wearable applications. Adv. Electron. Mater. 6, 1900922 (2020). https://doi.org/10.1002/aelm.202070006
N. Matsuhisa, D. Inoue, P. Zalar, H. Jin, Y. Matsuba et al., Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017). https://doi.org/10.1038/NMAT4904
C.S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou et al., Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354, 1257–1260 (2016). https://doi.org/10.1126/science.aag2879
M. Park, J. Im, M. Shin, Y. Min, J. Park et al., Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7, 803–809 (2012). https://doi.org/10.1038/nnano.2012.206
X. Wu, Y. Han, X. Zhang, C. Lu, Spirally structured conductive composites for highly stretchable, robust conductors and sensors. ACS Appl. Mater. Interfaces 9, 23007–23016 (2017). https://doi.org/10.1021/acsami.7b06256
H.S. Lee, Y. Jo, J.H. Joo, K. Woo, Z. Zhong et al., Three-dimensionally printed stretchable conductors from surfactant-mediated composite pastes. ACS Appl. Mater. Interfaces 11, 12622–12631 (2019). https://doi.org/10.1021/acsami.8b21570
Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su et al., Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013). https://doi.org/10.1038/nature12401
H. Li, J. Liang, Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives. Adv. Mater. 32, 1805864 (2019). https://doi.org/10.1002/adma.201805864
M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016). https://doi.org/10.1038/ncomms12647
Z. Yang, Z. Zhai, Z. Song, Y. Wu, J. Liang et al., Conductive and elastic 3d helical fibers for use in washable and wearable electronics. Adv. Mater. 32, 1907495 (2020). https://doi.org/10.1002/adma.201907495
R. Aradhana, S. Mohanty, S.K. Nayak, A review on epoxy-based electrically conductive adhesives. Int J. Adhes. Adhes. 99, 102596 (2020). https://doi.org/10.1016/j.ijadhadh.2020.102596
X. Long, Q. Jia, Z. Li, S.X. Wen, Reverse analysis of constitutive properties of sintered silver particles from nanoindentations. Int. J. Solids Struct. 191, 351–362 (2020). https://doi.org/10.1016/j.ijsolstr.2020.01.014
X. Long, B. Hu, Y. Feng, C. Chang, M. Li, Correlation of microstructure and constitutive behaviour of sintered silver particles via nanoindentation. Int. J. Mech. Sci. 161, 105020 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105020
T. Heckmann, T. Souvignet, S. Lepeer, D. Naccache, Low-temperature low-cost 58 Bismuth-42 Tin alloy forensic chip re-balling and re-soldering. Digit. Investig. 19, 60–68 (2016). https://doi.org/10.1016/j.diin.2016.10.003
L.E. Felton, C.H. Raeder, D.B. Knorr, The properties of tin-bismuth alloy solders. JOM 45, 28–32 (1993). https://doi.org/10.1007/BF03222377
N.A. Ezaham, N.R.A. Razak, M.A.A.M. Salleh, Influence of bismuth on the solidification of tin copper lead-free solder alloy. AIP Conf. Proc. 2045, 020104 (2018). https://doi.org/10.1063/1.5080917
T. Satoh, T. Ishizaki, M. Usui, Effect of bismuth-tin alloy particle diameter on bonding strength of copper nanoparticles/bismuth-tin solder hybrid joints. J. Mater. Sci. Mater. Electron. 29, 7161–7176 (2018). https://doi.org/10.1007/s10854-018-8704-1
S. Jin, M. Kim, S. Kanayama, H. Nishikawa, Microstructure and mechanical properties of indium-bismuth alloys for low melting-temperature solder. J. Mater. Sci. Mater. Electron. 29, 16460–16468 (2018). https://doi.org/10.1007/s10854-018-9738-0
R. Ma, S. Kwon, Q. Zheng, H.Y. Kwon, J.I. Kim, Carbon-nanotube/silver networks in nitrile butadiene rubber for highly conductive flexible adhesives. Adv. Mater. 24, 3344–3349 (2012). https://doi.org/10.1002/adma.201201273
G. Cao, L. Wang, Y. Tian, Highly dispersed polypyrrole nanotubes for improving the conductivity of electrically conductive adhesives. J. Mater. Sci. Mater. Electron. 31, 9675–9684 (2020). https://doi.org/10.1007/s10854-020-03513-5
Q. Yan, M. Zhou, H. Fu, A reversible and highly conductive adhesive: towards self-healing and recyclable flexible electronics. J. Mater. Chem. C 8, 7772–7785 (2020). https://doi.org/10.1039/C9TC06765E
F. Wang, L. Feng, Y. Huang, W. Shen, H. Ma, Effect of the gradient distribution of multiwalled carbon nanotubes on the bond strength and corrosion resistance of waterborne polyurethane conductive nanocomposites. Prog. Org. Coat. 140, 105507 (2020). https://doi.org/10.1016/j.porgcoat.2019.105507
B. Kim, T. Park, J. Kim, E. Kim, Waterborne polyacrylic/PEDOT nanocomposites for conductive transparent adhesives. J. Nanosci. Nanotechnol. 13, 7631–7636 (2013). https://doi.org/10.1166/jnn.2013.7822
T. Wang, C.H. Lei, A.B. Dalton, C. Creton, Y. Lin et al., Waterborne, nanocomposite pressure-sensitive adhesives with high tack energy, optical transparency, and electrical conductivity. Adv. Mater. 18, 2730–2734 (2006). https://doi.org/10.1002/adma.200601335
J.M. Krahn, A.G. Pattantyus-Abraham, C. Menon, Polymeric electro-dry-adhesives for use on conducting surfaces. Proc. Inst. Mech. Eng. Pt. L-J. Mater. Design Appl. 228, 109–114 (2014). https://doi.org/10.1177/1464420713509376
Y. Ko, J. Oh, K.T. Park, S. Kim, W. Huh et al., Stretchable conductive adhesives with superior electrical stability as printable interconnects in washable textile electronics. ACS Appl. Mater. Interfaces 11, 37043–37050 (2019). https://doi.org/10.1021/acsami.9b11557
L. Qu, L. Dai, M. Stone, Z. Xia, Z.L. Wang, Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322, 238–242 (2008). https://doi.org/10.1126/science.1159503
M. Xu, F. Du, S. Ganguli, A. Roy, L. Dai, Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range. Nat. Commun. 7, 13450 (2016). https://doi.org/10.1038/ncomms13450
Y. Wang, H. Lai, Z. Cheng, H. Zhang, Y. Liu et al., Smart superhydrophobic shape memory adhesive surface toward selective capture/release of microdroplets. ACS Appl. Mater. Interfaces 11, 10988–10997 (2019). https://doi.org/10.1021/acsami.9b00278
J. Dong, W. Zou, F. Chen, Q. Zhao, A soft shape memory reversible dry adhesive. Chin. J. Polym. Sci. 36, 953–959 (2018). https://doi.org/10.1007/s10118-018-2119-6
H. Zhang, H. Lai, Z. Cheng, D. Zhang, P. Liu et al., In-situ switchable superhydrophobic shape memory microstructure patterns with reversible wettability and adhesion. Appl. Surf. Sci. 525, 146525 (2020). https://doi.org/10.1016/j.apsusc.2020.146525
C.M. Ajmal, S. Bae, S. Baik, A superior method for constructing electrical percolation network of nanocomposite fibers: in situ thermally reduced silver nanoparticles. Small 15, 1803255 (2019). https://doi.org/10.1002/smll.201803255
Z. Ren, W. Hu, C. Liu, S. Li, X. Niu et al., Phase-changing bistable electroactive polymer exhibiting sharp rigid-to-rubbery transition. Macromolecules 49, 134–140 (2016). https://doi.org/10.1021/acs.macromol.5b02382
R. Matsui, K. Takeda, H. Tobushi, E. Pieczyska, Mechanical properties and advanced subjects in shape memory alloys and polymers. J. Theor. Appl. Mech. 56, 447–456 (2018). https://doi.org/10.15632/jtam-pl.56.2.44
X. Long, Y. Wang, L.M. Keer, Y. Yao, Mechanical effects of isolated defects within a lead-free solder bump subjected to coupled thermal-electrical loading. J. Micromechanics Mol. Phys. 01, 1650004 (2016). https://doi.org/10.1142/S2424913016500041
W. Wang, Z. Chen, S. Wang, X. Long, Mechanics-based acceleration for estimating thermal fatigue life of electronic packaging structure. Microelectron. Reliab. 107, 113616 (2020). https://doi.org/10.1016/j.microrel.2020.113616
X. Long, Y. Liu, F. Jia, Y. Wu, Y. Fu et al., Thermal fatigue life of Sn–3.0Ag–0.5Cu solder joint under temperature cycling coupled with electric current. J. Mater. Sci. Mater. El. 30, 7654–7664 (2019). https://doi.org/10.1007/s10854-019-01081-x