Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode
Corresponding Author: Kai Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 98
Abstract
Multifunctional architecture with intriguing structural design is highly desired for realizing the promising performances in wearable sensors and flexible energy storage devices. Cellulose nanofiber (CNF) is employed for assisting in building conductive, hyperelastic, and ultralight Ti3C2Tx MXene hybrid aerogels with oriented tracheid-like texture. The biomimetic hybrid aerogels are constructed by a facile bidirectional freezing strategy with CNF, carbon nanotube (CNT), and MXene based on synergistic electrostatic interaction and hydrogen bonding. Entangled CNF and CNT “mortars” bonded with MXene “bricks” of the tracheid structure produce good interfacial binding, and superior mechanical strength (up to 80% compressibility and extraordinary fatigue resistance of 1000 cycles at 50% strain). Benefiting from the biomimetic texture, CNF/CNT/MXene aerogel shows ultralow density of 7.48 mg cm−3 and excellent electrical conductivity (~ 2400 S m−1). Used as pressure sensors, such aerogels exhibit appealing sensitivity performance with the linear sensitivity up to 817.3 kPa−1, which affords their application in monitoring body surface information and detecting human motion. Furthermore, the aerogels can also act as electrode materials of compressive solid-state supercapacitors that reveal satisfactory electrochemical performance (849.2 mF cm−2 at 0.8 mA cm−2) and superior long cycle compression performance (88% after 10,000 cycles at a compressive strain of 30%).
Highlights:
1 Hyperelastic and superlight multifunctional MXene/nanocellulose composite aerogels with high conductivity are designed by constructing biomimetic texture.
2 The MXene/nanocellulose aerogels as flexible pressure sensors exhibit appealing linear sensitivity performance (817.3 kPa−1).
3 The as-prepared compressible supercapacitor with MXene/nanocellulose electrodes reveals superior electrochemical performance (849.2 mF cm−2 at 0.8 mA cm−2).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z
- L. Fan, H. He, C. Nan, Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
- T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater. 48, 244–262 (2022). https://doi.org/10.1016/j.ensm.2022.03.013
- X. Wei, H. Li, W. Yue, S. Gao, Z. Chen et al., A high-accuracy, real-time, intelligent material perception system with a machine-learning motivated pressure-sensitive electronic skin. Matter 5, 1481–1501 (2022). https://doi.org/10.1016/j.matt.2022.02.016
- H. Niu, S. Gao, W. Yue, Y. Li, W. Zhou et al., Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 16, 1904774 (2019). https://doi.org/10.1002/smll.201904774
- Y. Chen, L. Zhang, Y. Yang, B. Pang, W. Xu et al., Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv. Mater. 33, 2005569 (2021). https://doi.org/10.1002/adma.202005569
- T. Xu, H. Du, H. Liu, W. Liu, X. Zhang et al., Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 33, 2101368 (2021). https://doi.org/10.1002/adma.202101368
- Z. Wang, H. Gao, Q. Zhang, Y. Liu, J. Chen et al., Recent advances in 3D graphene architectures and their composites for energy storage applications. Small 15, 1803858 (2019). https://doi.org/10.1002/smll.201803858
- G. Zu, X. Wang, K. Kanamori, K. Nakanishi, Superhydrophobic highly flexible doubly cross-linked aerogel/carbon nanotube composites as strain/pressure sensors. J. Mater. Chem. B 8, 4883–4889 (2020). https://doi.org/10.1039/C9TB02953B
- H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32, 2113082 (2022). https://doi.org/10.1002/adfm.202113082
- V. Rahmanian, T. Pirzada, S. Wang, S.A. Khan, Cellulose-based hybrid aerogels: strategies toward design and functionality. Adv. Mater. 33, 2102892 (2021). https://doi.org/10.1002/adma.202102892
- T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29, 1903960 (2019). https://doi.org/10.1002/adfm.201903960
- Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12, 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
- J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017). https://doi.org/10.1002/adma.201702367
- M. Ding, S. Li, L. Guo, L. Jing, S. Gao et al., Metal ion-induced assembly of MXene aerogels via biomimetic microtextures for electromagnetic interference shielding, capacitive deionization, and microsupercapacitors. Adv. Energy Mater. 11, 2101494 (2021). https://doi.org/10.1002/aenm.202101494
- C. Zhang, Interfacial assembly of two-dimensional MXenes. J. Energy Chem. 60, 417–434 (2021). https://doi.org/10.1016/j.jechem.2020.12.036
- Z. Wu, T. Shang, Y. Deng, Y. Tao, Q.-H. Yang, The assembly of MXenes from 2D to 3D. Adv. Sci. 7, 1903077 (2020). https://doi.org/10.1002/advs.201903077
- P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.-K. Kim et al., Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11, 38046–38054 (2019). https://doi.org/10.1021/acsami.9b12550
- Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose–MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7, 2000979 (2020). https://doi.org/10.1002/advs.202000979
- Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene–graphene composite aerogel. ACS Nano 12, 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
- Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31, 3301–3312 (2019). https://doi.org/10.1021/acs.chemmater.9b00259
- L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14, 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
- X. Wu, B. Han, H.-B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
- Z. Chen, H. Zhuo, Y. Hu, H. Lai, L. Liu et al., Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 30, 1910292 (2020). https://doi.org/10.1002/adfm.201910292
- W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14, 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
- D. Zhao, B. Pang, Y. Zhu, W. Cheng, K. Cao et al. A stiffness-switchable, biomimetic smart material enabled by supramolecular reconfiguration. Adv. Mater. 34, 2107857 (2022). https://doi.org/10.1002/adma.202107857
- H. Liu, H. Du, T. Zheng, K. Liu, X. Ji et al., Cellulose based composite foams and aerogels for advanced energy storage devices. Chem. Eng. J. 426, 130817 (2021). https://doi.org/10.1016/j.cej.2021.130817
- T. Budtova, Cellulose II aerogels: a review. Cellulose 26, 81–121 (2019). https://doi.org/10.1007/s10570-018-2189-1
- C. Ma, Q. Yuan, H. Du, M. Ma, C. Si et al., Multiresponsive MXene (Ti3C2Tx)-decorated textiles for wearable thermal management and human motion monitoring. ACS Appl. Mater. Interfaces 12, 34226–34234 (2020). https://doi.org/10.1021/acsami.0c10750
- T. Xu, D. Yang, S. Zhang, T. Zhao, M. Zhang et al., Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/PEDOT-polyvinyl alcohol hydrogel fibers with dual networks. Carbon 171, 201–210 (2021). https://doi.org/10.1016/j.carbon.2020.08.071
- Z. Deng, P. Tang, X. Wu, H. Zhang, Z.-Z. Yu, Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13, 20539–20547 (2021). https://doi.org/10.1021/acsami.1c02059
- Q. Zheng, Z. Cai, Z. Ma, S. Gong, Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 7, 3263–3271 (2015). https://doi.org/10.1021/am507999s
- W. Tian, A. VahidMohammadi, M.S. Reid, Z. Wang, L. Ouyang et al., Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 31, 1902977 (2019). https://doi.org/10.1002/adma.201902977
- Y. Wan, P. Xiong, J. Liu, F. Feng, X. Xun et al., Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 15, 8439–8449 (2021). https://doi.org/10.1021/acsnano.0c10666
- Z. Zhan, Q. Song, Z. Zhou, C. Lu, Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. J. Mater. Chem. C 7, 9820–9829 (2019). https://doi.org/10.1039/C9TC03309B
- A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016). https://doi.org/10.1002/aelm.201600255
- J. Liu, H.-B. Zhang, X. Xie, R. Yang, Z. Liu et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14, 1802479 (2018). https://doi.org/10.1002/smll.201802479
- S. Zhao, H.-B. Zhang, J. Luo, Q. Wang, B. Xu et al., Highly electrically conductive three dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- Y. Zhang, J. Yu, J. Lu, C. Zhu, D. Qi, Facile construction of 2D MXene (Ti3C2Tx) based aerogels with effective fire-resistance and electromagnetic interference shielding performance. J. Alloys Compd. 870, 159442 (2021). https://doi.org/10.1016/j.jallcom.2021.159442
- Y. Dai, X. Wu, Z. Liu, H.-B. Zhang, Z.-Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
- Q. Wang, T. Xia, X. Jia, J. Zhao, Q. Li et al., Honeycomb-structured carbon aerogels from nanocellulose and skin secretion of Andrias davidianus for highly compressible binder-free supercapacitors. Carbohydr. Polym. 245, 116554 (2020). https://doi.org/10.1016/j.carbpol.2020.116554
- Y. Si, X. Wang, C. Yan, L. Yang, J. Yu et al., Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 28, 9512 (2016). https://doi.org/10.1002/adma.201603143
- J. Xiao, Y. Tan, Y. Song, Q. Zheng, A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor. J. Mater. Chem. A 6, 9074–9080 (2018). https://doi.org/10.1039/C7TA11348J
- L. Li, T. Hu, H. Sun, J. Zhang, A. Wang, Pressure-sensitive and conductive carbon aerogels from poplars catkins for selective oil absorption and oil/water separation. ACS Appl. Mater. Interfaces 9, 18001–18007 (2017). https://doi.org/10.1021/acsami.7b04687
- J. Zhang, B. Li, L. Li, A. Wang, Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose. J. Mater. Chem. A 4, 2069–2074 (2016). https://doi.org/10.1039/C5TA10001A
- B. Yin, X. Liu, H. Gao, T. Fu, J. Yao, Bioinspired and bristled microps for ultrasensitive pressure and strain sensors. Nat. Commun. 9, 5161 (2018). https://doi.org/10.1038/s41467-018-07672-2
- H. Niu, H. Li, S. Gao, Y. Li, X. Wei et al., Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 34, 2202622 (2022). https://doi.org/10.1002/adma.202202622
- C. Liu, Q. Tan, Y. Deng, P. Ye, L. Kong et al., Highly sensitive and stable 3D flexible pressure sensor based on carbon black and multi-walled carbon nanotubes prepared by hydrothermal method. Compos. Commun. 32, 101178 (2022). https://doi.org/10.1016/j.coco.2022.101178
- T. Su, N. Liu, Y. Gao, D. Lei, L. Wang et al., MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy 87, 106151 (2021). https://doi.org/10.1016/j.nanoen.2021.106151
- L. Liu, Z. Niu, J. Chen, Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem. Soc. Rev. 45, 4340–4363 (2016). https://doi.org/10.1039/C6CS00041J
- W. Chen, D. Zhang, K. Yang, M. Luo, P. Yang et al., MXene (Ti3C2Tx)/cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors. Chem. Eng. J. 413, 127524 (2021). https://doi.org/10.1016/j.cej.2020.127524
- J. Nan, G. Zhang, T. Zhu, Z. Wang, L. Wang et al., A highly elastic and fatigue-resistant natural protein-reinforced hydrogel electrolyte for reversible-compressible quasi-solid-state supercapacitors. Adv. Sci. 7, 2000587 (2020). https://doi.org/10.1002/advs.202000587
- S. Yuan, W. Fan, D. Wang, L. Zhang, Y.-E. Miao et al., 3D printed carbon aerogel microlattices for customizable supercapacitors with high areal capacitance. J. Mater. Chem. A 9, 423–432 (2021). https://doi.org/10.1039/d0ta08750e
- Y. Liu, D. Wang, C. Zhang, Y. Zhao, P. Ma et al., Compressible and lightweight MXene/carbon nanofiber aerogel with “layer-strut” bracing microscopic architecture for efficient energy storage. Adv. Fiber Mater. 4, 820–831 (2022). https://doi.org/10.1007/s42765-022-00140-z
- X. Cheng, D. Wang, H. Ke, Y. Li, Y. Cai et al., Hierarchical NiCo2S4/PANI/CNT nanostructures grown on graphene polyamide blend fiber as effective electrode for supercapacitors. Compos. Commun. 30, 101073 (2022). https://doi.org/10.1016/j.coco.2022.101073
- C. Zhu, T.Y.-J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz et al., Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015). https://doi.org/10.1038/ncomms7962
- Z. Yang, L. Jin, G. Lu, Q. Xiao, Y. Zhang et al., Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Adv. Funct. Mater. 24, 3917–3925 (2014). https://doi.org/10.1002/adfm.201304091
- H. Liu, T. Xu, Q. Liang, Q. Zhao, D. Zhao et al., Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv. Compos. Hybrid Mater. 5, 1168–1179 (2022). https://doi.org/10.1007/s42114-022-00427-0
References
P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z
L. Fan, H. He, C. Nan, Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater. 48, 244–262 (2022). https://doi.org/10.1016/j.ensm.2022.03.013
X. Wei, H. Li, W. Yue, S. Gao, Z. Chen et al., A high-accuracy, real-time, intelligent material perception system with a machine-learning motivated pressure-sensitive electronic skin. Matter 5, 1481–1501 (2022). https://doi.org/10.1016/j.matt.2022.02.016
H. Niu, S. Gao, W. Yue, Y. Li, W. Zhou et al., Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 16, 1904774 (2019). https://doi.org/10.1002/smll.201904774
Y. Chen, L. Zhang, Y. Yang, B. Pang, W. Xu et al., Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv. Mater. 33, 2005569 (2021). https://doi.org/10.1002/adma.202005569
T. Xu, H. Du, H. Liu, W. Liu, X. Zhang et al., Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 33, 2101368 (2021). https://doi.org/10.1002/adma.202101368
Z. Wang, H. Gao, Q. Zhang, Y. Liu, J. Chen et al., Recent advances in 3D graphene architectures and their composites for energy storage applications. Small 15, 1803858 (2019). https://doi.org/10.1002/smll.201803858
G. Zu, X. Wang, K. Kanamori, K. Nakanishi, Superhydrophobic highly flexible doubly cross-linked aerogel/carbon nanotube composites as strain/pressure sensors. J. Mater. Chem. B 8, 4883–4889 (2020). https://doi.org/10.1039/C9TB02953B
H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32, 2113082 (2022). https://doi.org/10.1002/adfm.202113082
V. Rahmanian, T. Pirzada, S. Wang, S.A. Khan, Cellulose-based hybrid aerogels: strategies toward design and functionality. Adv. Mater. 33, 2102892 (2021). https://doi.org/10.1002/adma.202102892
T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29, 1903960 (2019). https://doi.org/10.1002/adfm.201903960
Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12, 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017). https://doi.org/10.1002/adma.201702367
M. Ding, S. Li, L. Guo, L. Jing, S. Gao et al., Metal ion-induced assembly of MXene aerogels via biomimetic microtextures for electromagnetic interference shielding, capacitive deionization, and microsupercapacitors. Adv. Energy Mater. 11, 2101494 (2021). https://doi.org/10.1002/aenm.202101494
C. Zhang, Interfacial assembly of two-dimensional MXenes. J. Energy Chem. 60, 417–434 (2021). https://doi.org/10.1016/j.jechem.2020.12.036
Z. Wu, T. Shang, Y. Deng, Y. Tao, Q.-H. Yang, The assembly of MXenes from 2D to 3D. Adv. Sci. 7, 1903077 (2020). https://doi.org/10.1002/advs.201903077
P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.-K. Kim et al., Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11, 38046–38054 (2019). https://doi.org/10.1021/acsami.9b12550
Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose–MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7, 2000979 (2020). https://doi.org/10.1002/advs.202000979
Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene–graphene composite aerogel. ACS Nano 12, 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31, 3301–3312 (2019). https://doi.org/10.1021/acs.chemmater.9b00259
L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14, 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
X. Wu, B. Han, H.-B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
Z. Chen, H. Zhuo, Y. Hu, H. Lai, L. Liu et al., Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 30, 1910292 (2020). https://doi.org/10.1002/adfm.201910292
W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14, 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
D. Zhao, B. Pang, Y. Zhu, W. Cheng, K. Cao et al. A stiffness-switchable, biomimetic smart material enabled by supramolecular reconfiguration. Adv. Mater. 34, 2107857 (2022). https://doi.org/10.1002/adma.202107857
H. Liu, H. Du, T. Zheng, K. Liu, X. Ji et al., Cellulose based composite foams and aerogels for advanced energy storage devices. Chem. Eng. J. 426, 130817 (2021). https://doi.org/10.1016/j.cej.2021.130817
T. Budtova, Cellulose II aerogels: a review. Cellulose 26, 81–121 (2019). https://doi.org/10.1007/s10570-018-2189-1
C. Ma, Q. Yuan, H. Du, M. Ma, C. Si et al., Multiresponsive MXene (Ti3C2Tx)-decorated textiles for wearable thermal management and human motion monitoring. ACS Appl. Mater. Interfaces 12, 34226–34234 (2020). https://doi.org/10.1021/acsami.0c10750
T. Xu, D. Yang, S. Zhang, T. Zhao, M. Zhang et al., Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/PEDOT-polyvinyl alcohol hydrogel fibers with dual networks. Carbon 171, 201–210 (2021). https://doi.org/10.1016/j.carbon.2020.08.071
Z. Deng, P. Tang, X. Wu, H. Zhang, Z.-Z. Yu, Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13, 20539–20547 (2021). https://doi.org/10.1021/acsami.1c02059
Q. Zheng, Z. Cai, Z. Ma, S. Gong, Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 7, 3263–3271 (2015). https://doi.org/10.1021/am507999s
W. Tian, A. VahidMohammadi, M.S. Reid, Z. Wang, L. Ouyang et al., Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 31, 1902977 (2019). https://doi.org/10.1002/adma.201902977
Y. Wan, P. Xiong, J. Liu, F. Feng, X. Xun et al., Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 15, 8439–8449 (2021). https://doi.org/10.1021/acsnano.0c10666
Z. Zhan, Q. Song, Z. Zhou, C. Lu, Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. J. Mater. Chem. C 7, 9820–9829 (2019). https://doi.org/10.1039/C9TC03309B
A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016). https://doi.org/10.1002/aelm.201600255
J. Liu, H.-B. Zhang, X. Xie, R. Yang, Z. Liu et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14, 1802479 (2018). https://doi.org/10.1002/smll.201802479
S. Zhao, H.-B. Zhang, J. Luo, Q. Wang, B. Xu et al., Highly electrically conductive three dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
Y. Zhang, J. Yu, J. Lu, C. Zhu, D. Qi, Facile construction of 2D MXene (Ti3C2Tx) based aerogels with effective fire-resistance and electromagnetic interference shielding performance. J. Alloys Compd. 870, 159442 (2021). https://doi.org/10.1016/j.jallcom.2021.159442
Y. Dai, X. Wu, Z. Liu, H.-B. Zhang, Z.-Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
Q. Wang, T. Xia, X. Jia, J. Zhao, Q. Li et al., Honeycomb-structured carbon aerogels from nanocellulose and skin secretion of Andrias davidianus for highly compressible binder-free supercapacitors. Carbohydr. Polym. 245, 116554 (2020). https://doi.org/10.1016/j.carbpol.2020.116554
Y. Si, X. Wang, C. Yan, L. Yang, J. Yu et al., Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 28, 9512 (2016). https://doi.org/10.1002/adma.201603143
J. Xiao, Y. Tan, Y. Song, Q. Zheng, A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor. J. Mater. Chem. A 6, 9074–9080 (2018). https://doi.org/10.1039/C7TA11348J
L. Li, T. Hu, H. Sun, J. Zhang, A. Wang, Pressure-sensitive and conductive carbon aerogels from poplars catkins for selective oil absorption and oil/water separation. ACS Appl. Mater. Interfaces 9, 18001–18007 (2017). https://doi.org/10.1021/acsami.7b04687
J. Zhang, B. Li, L. Li, A. Wang, Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose. J. Mater. Chem. A 4, 2069–2074 (2016). https://doi.org/10.1039/C5TA10001A
B. Yin, X. Liu, H. Gao, T. Fu, J. Yao, Bioinspired and bristled microps for ultrasensitive pressure and strain sensors. Nat. Commun. 9, 5161 (2018). https://doi.org/10.1038/s41467-018-07672-2
H. Niu, H. Li, S. Gao, Y. Li, X. Wei et al., Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 34, 2202622 (2022). https://doi.org/10.1002/adma.202202622
C. Liu, Q. Tan, Y. Deng, P. Ye, L. Kong et al., Highly sensitive and stable 3D flexible pressure sensor based on carbon black and multi-walled carbon nanotubes prepared by hydrothermal method. Compos. Commun. 32, 101178 (2022). https://doi.org/10.1016/j.coco.2022.101178
T. Su, N. Liu, Y. Gao, D. Lei, L. Wang et al., MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy 87, 106151 (2021). https://doi.org/10.1016/j.nanoen.2021.106151
L. Liu, Z. Niu, J. Chen, Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem. Soc. Rev. 45, 4340–4363 (2016). https://doi.org/10.1039/C6CS00041J
W. Chen, D. Zhang, K. Yang, M. Luo, P. Yang et al., MXene (Ti3C2Tx)/cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors. Chem. Eng. J. 413, 127524 (2021). https://doi.org/10.1016/j.cej.2020.127524
J. Nan, G. Zhang, T. Zhu, Z. Wang, L. Wang et al., A highly elastic and fatigue-resistant natural protein-reinforced hydrogel electrolyte for reversible-compressible quasi-solid-state supercapacitors. Adv. Sci. 7, 2000587 (2020). https://doi.org/10.1002/advs.202000587
S. Yuan, W. Fan, D. Wang, L. Zhang, Y.-E. Miao et al., 3D printed carbon aerogel microlattices for customizable supercapacitors with high areal capacitance. J. Mater. Chem. A 9, 423–432 (2021). https://doi.org/10.1039/d0ta08750e
Y. Liu, D. Wang, C. Zhang, Y. Zhao, P. Ma et al., Compressible and lightweight MXene/carbon nanofiber aerogel with “layer-strut” bracing microscopic architecture for efficient energy storage. Adv. Fiber Mater. 4, 820–831 (2022). https://doi.org/10.1007/s42765-022-00140-z
X. Cheng, D. Wang, H. Ke, Y. Li, Y. Cai et al., Hierarchical NiCo2S4/PANI/CNT nanostructures grown on graphene polyamide blend fiber as effective electrode for supercapacitors. Compos. Commun. 30, 101073 (2022). https://doi.org/10.1016/j.coco.2022.101073
C. Zhu, T.Y.-J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz et al., Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015). https://doi.org/10.1038/ncomms7962
Z. Yang, L. Jin, G. Lu, Q. Xiao, Y. Zhang et al., Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Adv. Funct. Mater. 24, 3917–3925 (2014). https://doi.org/10.1002/adfm.201304091
H. Liu, T. Xu, Q. Liang, Q. Zhao, D. Zhao et al., Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv. Compos. Hybrid Mater. 5, 1168–1179 (2022). https://doi.org/10.1007/s42114-022-00427-0