Carbon Nanofiber/Polyaniline Composite Aerogel with Excellent Electromagnetic Interference Shielding, Low Thermal Conductivity, and Extremely Low Heat Release
Corresponding Author: Hsing‑Lin Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 80
Abstract
The rapid development of communication technology and high-frequency electronic devices has created a need for more advanced electromagnetic interference (EMI) shielding materials. In response to this demand, a study has been conducted to develop multifunctional carbon nanofibers (CNFs)/polyaniline (PANI) aerogels with excellent electromagnetic interference shielding, flame retardancy, and thermal insulation performance. The process involved freeze-drying of electrospun CNFs and PANI nanoparticles followed by in situ growth PANI to coat the CNFs, creating the core–shell structured CNFs/PANI composite fiber and its hybrid aerogels (CP-3@PANI). The interaction between PANI and aniline (ANI) provides attachment sites, allowing additional ANI adsorption into the aerogel for in situ polymerization. This results in PANI uniformly covering the surface of the CNFs, creating a core–shell composite fiber with a flexible CNF core and PANI shell. This process enhances the utilization rate of the ANI monomer and increases the PANI content loaded onto the aerogel. Additionally, effective connections are established between the CNFs, forming a stable, conductive three-dimensional network structure. The prepared CP-3@PANI aerogels exhibit excellent EMI shielding efficiency (SE) of 85.4 dB and specific EMI SE (SE d−1) of 791.2 dB cm3 g⁻1 in the X-band. Due to the synergistic flame-retardant effect of CNFs, PANI, and the dopant (phytic acid), the CP-3@PANI aerogels demonstrate outstanding flame-retardant and thermal insulation properties, with a peak heat release rate (PHRR) as low as 7.8 W g⁻1 and a total heat release of only 0.58 kJ g⁻1. This study provides an effective strategy for preparing multifunctional integrated EMI shielding materials.
Highlights:
1 Using electrospun high-strength carbon nanofibers as the aerogel scaffold, high loading of polyaniline in the aerogel was achieved through seed polymerization, forming the core–shell structure fibers and simultaneously connecting the fibers as a stable conductive network.
2 Combining carbon-based materials with conductive polymers like polyaniline significantly improves shielding performance, achieving electromagnetic interference shielding efficiency of up to 84.5 dB and SE d−1 values greater than 791.2 dB cm3 g⁻1. Flame retardancy reduces PHRR by 65.8%, and thermal insulation with low thermal conductivity of 0.104 W m⁻1 K⁻1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.-Y. Shi, S.-Y. Liao, Q.-F. Wang, X.-Y. Xu, X.-Y. Wang et al., Enhancing the interaction of carbon nanotubes by metal-organic decomposition with improved mechanical strength and ultra-broadband EMI shielding performance. Nano-Micro Lett. 16, 134 (2024). https://doi.org/10.1007/s40820-024-01344-1
- Y. Xie, S. Liu, K. Huang, B. Chen, P. Shi et al., Ultra-broadband strong electromagnetic interference shielding with ferromagnetic graphene quartz fabric. Adv. Mater. 34, e2202982 (2022). https://doi.org/10.1002/adma.202202982
- Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32, e1907411 (2020). https://doi.org/10.1002/adma.201907411
- Y. Li, X. Tian, S.-P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30, 1907451 (2020). https://doi.org/10.1002/adfm.201907451
- Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong et al., Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 14, e1800534 (2018). https://doi.org/10.1002/smll.201800534
- M. Chen, M. Li, Y. Gao, S. He, J. Zhan et al., Flexible and robust core-shell PANI/PVDF@PANI nanofiber membrane for high-performance electromagnetic interference shielding. Nano Lett. 24, 2643–2651 (2024). https://doi.org/10.1021/acs.nanolett.3c05021
- Y. Wei, S. Jiang, J. Li, J. Tosin Aladejana, T. Zhang et al., A soy protein-based adhesive with improved mechanical and electromagnetic shielding properties by employment of core@double-shell BT@PDA@PANI fillers. Chem. Eng. J. 458, 141512 (2023). https://doi.org/10.1016/j.cej.2023.141512
- L. Zhang, B.-W. Liu, Y.-Z. Wang, T. Fu, H.-B. Zhao, P-doped PANI/AgMWs nano/micro coating towards high-efficiency flame retardancy and electromagnetic interference shielding. Compos. Part B Eng. 238, 109944 (2022). https://doi.org/10.1016/j.compositesb.2022.109944
- R. Shao, G. Wang, J. Chai, G. Wang, G. Zhao, Flexible, reliable, and lightweight multiwalled carbon nanotube/polytetrafluoroethylene membranes with dual-nanofibrous structure for outstanding EMI shielding and multifunctional applications. Small 20, e2308992 (2024). https://doi.org/10.1002/smll.202308992
- R. Ding, Q. Yan, F. Xue, P. Li, J. Xiong et al., Dual protective porous Ti3C2Tx MXene/polyimide composite film for thermal insulation and electromagnetic interference shielding. Small 19, e2304946 (2023). https://doi.org/10.1002/smll.202304946
- S. Gong, X. Sheng, X. Li, M. Sheng, H. Wu et al., A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick–mortar” sandwich structure. Adv. Funct. Mater. 32, 2200570 (2022). https://doi.org/10.1002/adfm.202200570
- H.-G. Shi, H.-B. Zhao, B.-W. Liu, Y.-Z. Wang, Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13, 26505–26514 (2021). https://doi.org/10.1021/acsami.1c07363
- M.P. Vidyashree, K. Sushmita, P. Nagarajan, M.K. Kokila, S. Bose, Mimicking ‘sea-urchin’ like heirarchical carbon structures self-assembled from carbon fibers for green EMI shielding. Chem. Eng. J. Adv. 13, 100430 (2023). https://doi.org/10.1016/j.ceja.2022.100430
- N. Sun, Q. Cui, K. Qiao, Y. Zhang, J. Zhou et al., Mussel-like carbon fiber/MnO2 nanosheet heterostructures for mechanically strong carbon fiber/polyamide composites with excellent electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 184, 108260 (2024). https://doi.org/10.1016/j.compositesa.2024.108260
- Y. Hu, M. Jiang, X. Cong, G. Liu, X. Yi et al., Lightweight, multifunctional recycled carbon fibre/MXene/PEDOT: PSS nonwoven veils with double-layered structure for excellent electromagnetic interference shielding. Chem. Eng. J. 489, 151122 (2024). https://doi.org/10.1016/j.cej.2024.151122
- A.B. Kharissova, O.V. Kharissova, B.I. Kharisov, Y.P. Méndez, Carbon negative footprint materials: a review. Nano Struct. Nano Objects 37, 101100 (2024). https://doi.org/10.1016/j.nanoso.2024.101100
- B. Qiu, X. Zhang, S. Xia, T. Sun, Y. Ling et al., Magnetic graphene oxide/carbon fiber composites with improved interfacial properties and electromagnetic interference shielding performance. Compos. Part A Appl. Sci. Manuf. 155, 106811 (2022). https://doi.org/10.1016/j.compositesa.2022.106811
- V. Kumar, M.A. Muflikhun, T. Yokozeki, Improved environmental stability, electrical and EMI shielding properties of vapor-grown carbon fiber-filled polyaniline-based nanocomposite. Polym. Eng. Sci. 59, 956–963 (2019). https://doi.org/10.1002/pen.25045
- S. Javaria Kazmi, M. Nadeem, A. Younis, S. Loomba, B. Shabbir et al., PANI/CFO@CNTs ternary composite system for EMI shielding applications. J. Magn. Magn. Mater. 563, 170037 (2022). https://doi.org/10.1016/j.jmmm.2022.170037
- P. Das, A.B. Deoghare, S. Ranjan-Maity, Synergistically improved thermal stability and electromagnetic interference shielding effectiveness (EMI SE) of in situ synthesized polyaniline/sulphur doped reduced graphene oxide (PANI/S-RGO) nanocomposites. Ceram. Int. 48, 11031–11042 (2022). https://doi.org/10.1016/j.ceramint.2021.12.323
- D. Xing, M. Rana, B. Hao, Q. Zheng, P.-C. Ma, Development of CNTs-carbonized cotton fiber/PANI 3D-nanocomposites for flexible energy storage and electromagnetic shielding applications. Electrochim. Acta 427, 140847 (2022). https://doi.org/10.1016/j.electacta.2022.140847
- Z. Xie, H. Chen, M. Xie, D. Zhang, H. Zhao et al., Electrical percolation networks of MWCNT/graphene/polyaniline nanocomposites with enhanced electromagnetic interference shielding efficiency. Appl. Surf. Sci. 655, 159613 (2024). https://doi.org/10.1016/j.apsusc.2024.159613
- M. Hou, M. Xu, B. Li, Enhanced electrical conductivity of cellulose nanofiber/graphene composite paper with a sandwich structure. ACS Sustain. Chem. Eng. 6, 2983–2990 (2018). https://doi.org/10.1021/acssuschemeng.7b02683
- Y. Xu, Y. Yang, H. Duan, J. Gao, D.-X. Yan et al., Flexible and highly conductive sandwich nylon/nickel film for ultra-efficient electromagnetic interference shielding. Appl. Surf. Sci. 455, 856–863 (2018). https://doi.org/10.1016/j.apsusc.2018.06.061
- Z. Niu, F. Qu, F. Chen, X. Ma, B. Chen et al., Multifunctional integrated organic-inorganic-metal hybrid aerogel for excellent thermal insulation and electromagnetic shielding performance. Nano-Micro Lett. 16, 200 (2024). https://doi.org/10.1007/s40820-024-01409-1
- C.-H. Huang, Y.-E. Dong, Multifunctional composite foam with high strength and sound-absorbing based on step assembly strategy for high performance electromagnetic shielding. Polym. Compos. 44, 4993–5002 (2023). https://doi.org/10.1002/pc.27465
- V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Functionalized graphene–PVDF foam composites for EMI shielding. Macromol. Mater. Eng. 296, 894–898 (2011). https://doi.org/10.1002/mame.201100035
- J. Song, K. Xu, J. He, H. Ye, L. Xu, Three-dimensional graphene/carbon nanotube electromagnetic shielding composite material based on melamine resin foam template. Polym. Compos. 44, 2836–2845 (2023). https://doi.org/10.1002/pc.27284
- X.-F. Liu, J.-F. He, Y.-G. Li, H. Li, W. Lei et al., Foam-gelcasting preparation of porous SiC ceramic for high-temperature thermal insulation and infrared stealth. Rare Met. 42, 3829–3838 (2023). https://doi.org/10.1007/s12598-023-02348-3
- J. Zhu, Y. Ding, S. Agarwal, A. Greiner, H. Zhang et al., Nanofibre preparation of non-processable polymers by solid-state polymerization of molecularly self-assembled monomers. Nanoscale 9, 18169–18174 (2017). https://doi.org/10.1039/c7nr07159k
- Y. Zheng, Z. Man, Y. Zhang, G. Wu, W. Lu et al., High-performance stretchable supercapacitors based on centrifugal electrospinning-directed hetero-structured graphene–polyaniline hierarchical fabric. Adv. Fiber Mater. 5, 1759–1772 (2023). https://doi.org/10.1007/s42765-023-00304-5
- W. Xie, F. Yao, H. Gu, A. Du, Q. Lei et al., Magnetoresistive and piezoresistive polyaniline nanoarrays in situ polymerized surrounding magnetic graphene aerogel. Adv. Compos. Hybrid Mater. 5, 1003–1016 (2022). https://doi.org/10.1007/s42114-021-00413-y
- R. Kanwal, M.F. Maqsood, M. Ali Raza, A. Inam, M. Waris et al., Polypyrrole coated carbon fiber/magnetite/graphene oxide reinforced hybrid epoxy composites for high strength and electromagnetic interference shielding. Mater. Today Commun. 38, 107684 (2024). https://doi.org/10.1016/j.mtcomm.2023.107684
- A.R. Pai, T. Binumol, D.A. Gopakumar, D. Pasquini, B. Seantier et al., Ultra-fast heat dissipating aerogels derived from polyaniline anchored cellulose nanofibers as sustainable microwave absorbers. Carbohydr. Polym. 246, 116663 (2020). https://doi.org/10.1016/j.carbpol.2020.116663
- Z. Feng, C. Liu, X. Li, G. Luo, N. Zhai et al., Designing electronic structures of multiscale helical converters for tailored ultrabroad electromagnetic absorption. Nano-Micro Lett. 17, 20 (2024). https://doi.org/10.1007/s40820-024-01513-2
- H. Yang, Z. Shen, H. Peng, Z. Xiong, C. Liu et al., 1D–3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response. Chem. Eng. J. 417, 128087 (2021). https://doi.org/10.1016/j.cej.2020.128087
- M. Yu, Y. Huang, X. Liu, K. She, X. Zhao et al., Synthetic strategy of biomimetic sea urchin-like Co-NC@PANI modified MXene-based magnetic aerogels with enhanced electromagnetic wave absorption properties. Nano Res. 17, 2025–2037 (2024). https://doi.org/10.1007/s12274-023-6130-z
- M. Ben Ali, F. Wang, R. Boukherroub, W. Lei, M. Xia, Phytic acid-doped polyaniline nanofibers-clay mineral for efficient adsorption of copper (II) ions. J. Colloid Interface Sci. 553, 688–698 (2019). https://doi.org/10.1016/j.jcis.2019.06.065
- Y. Zhou, C. Ding, X. Qian, X. An, Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant. Carbohydr. Polym. 115, 670–676 (2015). https://doi.org/10.1016/j.carbpol.2014.09.025
- Z. Nan, W. Wei, Z. Lin, J. Chang, Y. Hao, Flexible nanocomposite conductors for electromagnetic interference shielding. Nano-Micro Lett. 15, 172 (2023). https://doi.org/10.1007/s40820-023-01122-5
- Z.-D. Xiang, T. Chen, Z.-M. Li, X.-C. Bian, Negative temperature coefficient of resistivity in lightweight conductive carbon nanotube/polymer composites. Macromol. Mater. Eng. 294, 91–95 (2009). https://doi.org/10.1002/mame.200800273
- X. Xu, F. Yao, O.A. Abu Ali, W. Xie, S.F. Mahmoud et al., Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 2002–2011 (2022). https://doi.org/10.1007/s42114-022-00538-8
- B. Li, N. Wu, Q. Wu, Y. Yang, F. Pan et al., From “100%” utilization of MAX/MXene to direct engineering of wearable, multifunctional E-textiles in extreme environments. Adv. Funct. Mater. 33, 2307301 (2023). https://doi.org/10.1002/adfm.202307301
- G.T. Mohanraj, T.K. Chaki, A. Chakraborty, D. Khastgir, AC impedance analysis and EMI shielding effectiveness of conductive SBR composites. Polym. Eng. Sci. 46, 1342–1349 (2006). https://doi.org/10.1002/pen.20593
- Z. Ba, D. Liang, Z. Xiao, Y. Wang, H. Wang et al., Electromagnetic shielding and fire-retardant wood obtained by in situ aniline polymerization. Wood Sci. Technol. 57, 1467–1483 (2023). https://doi.org/10.1007/s00226-023-01504-3
- H. Wang, K. Chen, Y. Shi, Y. Zhu, S. Jiang et al., Flame retardant and multifunctional BC/MXene/MSiCnw/FRTPU aerogel composites with superior electromagnetic interference shielding via “Consolidating” method. Chem. Eng. J. 474, 145904 (2023). https://doi.org/10.1016/j.cej.2023.145904
- B.R. Mattes, H.L. Wang, D. Yang, Y.T. Zhua, W.R. Blumenthala et al., Formation of conductive polyaniline fibers derived from highly concentrated emeraldine base solutions. Synth. Met. 84, 45–49 (1997). https://doi.org/10.1016/S0379-6779(97)80661-3
- X. Ma, S. Liu, H. Luo, H. Guo, S. Jiang et al., MOF@wood derived ultrathin carbon composite film for electromagnetic interference shielding with effective absorption and electrothermal management. Adv. Funct. Mater. 34, 2310126 (2024). https://doi.org/10.1002/adfm.202310126
- M. Nasreen Taj, B. Daruka Prasad, N. Ramarao, H. Nagabhushana, A. Reddy et al., Dielectric and structural properties of polyaniline-tungsten trioxide nanocomposites: for the packing of nano-electronic devices and EMI shielding. Nano Struct. Nano Objects 39, 101219 (2024). https://doi.org/10.1016/j.nanoso.2024.101219
- M. Zahid, R. Anum, S. Siddique, H.F. Shakir, Z.A. Rehan, Polyaniline-based nanocomposites for electromagnetic interference shielding applications: a review. J. Thermoplast. Compos. Mater. 36, 1717–1761 (2023). https://doi.org/10.1177/08927057211022408
- S. Zheng, W. Xu, J. Liu, F. Pan, S. Zhao et al., One-hour ambient-pressure-dried, scalable, stretchable MXene/polyurea aerogel enables synergistic defense against high-frequency mechanical shock and electromagnetic waves. Adv. Funct. Mater. 34, 2402889 (2024). https://doi.org/10.1002/adfm.202402889
- B. Li, H. Tian, L. Li, W. Liu, J. Liu et al., Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. 34, 2314653 (2024). https://doi.org/10.1002/adfm.202314653
- B.D.S. Deeraj, K.J. Shebin, S. Bose, S. Sampath, K. Joseph, Electrospun carbon fibers embedded with core–shell TiC@TiO2 nanostructures and their epoxy composites for potential EMI shielding in the Ku band. Nano Struct. Nano Objects 32, 100912 (2022). https://doi.org/10.1016/j.nanoso.2022.100912
- T. Lin, H. Yu, L. Wang, Q. Ma, H. Huang et al., A study on the fabrication and microwave shielding properties of PANI/C60 heterostructures. Polym. Compos. 42, 1961–1976 (2021). https://doi.org/10.1002/pc.25948
- H. Wang, Y. Jiang, Z. Ma, Y. Shi, Y. Zhu et al., Hyperelastic, robust, fire-safe multifunctional MXene aerogels with unprecedented electromagnetic interference shielding efficiency. Adv. Funct. Mater. 33, 2306884 (2023). https://doi.org/10.1002/adfm.202306884
- L. Liu, J. Feng, Y. Xue, V. Chevali, Y. Zhang et al., 2D MXenes for fire retardancy and fire-warning applications: promises and prospects. Adv. Funct. Mater. 33, 2212124 (2023). https://doi.org/10.1002/adfm.202212124
- L. Hu, R. He, H. Lei, D. Fang, Carbon aerogel for insulation applications: a review. Int. J. Thermophys. 40, 39 (2019). https://doi.org/10.1007/s10765-019-2505-5
- X. Xu, J. Zhou, J. Chen, Thermal transport in conductive polymer–based materials. Adv. Funct. Mater. 30, 1904704 (2020). https://doi.org/10.1002/adfm.201904704
- S. Lin, J. Lin, Z. Xiong, X. He, X. Li et al., Micro-helical Ni3Fe chain encapsulated in ultralight MXene/C aerogel to realize multi-functionality: radar stealth, thermal insulation, fire resistance, and mechanical properties. Chem. Eng. J. 492, 152248 (2024). https://doi.org/10.1016/j.cej.2024.152248
- X. Li, R. Hu, Z. Xiong, D. Wang, Z. Zhang et al., Metal-organic gel leading to customized magnetic-coupling engineering in carbon aerogels for excellent radar stealth and thermal insulation performances. Nano-Micro Lett. 16, 42 (2023). https://doi.org/10.1007/s40820-023-01255-7
References
Y.-Y. Shi, S.-Y. Liao, Q.-F. Wang, X.-Y. Xu, X.-Y. Wang et al., Enhancing the interaction of carbon nanotubes by metal-organic decomposition with improved mechanical strength and ultra-broadband EMI shielding performance. Nano-Micro Lett. 16, 134 (2024). https://doi.org/10.1007/s40820-024-01344-1
Y. Xie, S. Liu, K. Huang, B. Chen, P. Shi et al., Ultra-broadband strong electromagnetic interference shielding with ferromagnetic graphene quartz fabric. Adv. Mater. 34, e2202982 (2022). https://doi.org/10.1002/adma.202202982
Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32, e1907411 (2020). https://doi.org/10.1002/adma.201907411
Y. Li, X. Tian, S.-P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30, 1907451 (2020). https://doi.org/10.1002/adfm.201907451
Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong et al., Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 14, e1800534 (2018). https://doi.org/10.1002/smll.201800534
M. Chen, M. Li, Y. Gao, S. He, J. Zhan et al., Flexible and robust core-shell PANI/PVDF@PANI nanofiber membrane for high-performance electromagnetic interference shielding. Nano Lett. 24, 2643–2651 (2024). https://doi.org/10.1021/acs.nanolett.3c05021
Y. Wei, S. Jiang, J. Li, J. Tosin Aladejana, T. Zhang et al., A soy protein-based adhesive with improved mechanical and electromagnetic shielding properties by employment of core@double-shell BT@PDA@PANI fillers. Chem. Eng. J. 458, 141512 (2023). https://doi.org/10.1016/j.cej.2023.141512
L. Zhang, B.-W. Liu, Y.-Z. Wang, T. Fu, H.-B. Zhao, P-doped PANI/AgMWs nano/micro coating towards high-efficiency flame retardancy and electromagnetic interference shielding. Compos. Part B Eng. 238, 109944 (2022). https://doi.org/10.1016/j.compositesb.2022.109944
R. Shao, G. Wang, J. Chai, G. Wang, G. Zhao, Flexible, reliable, and lightweight multiwalled carbon nanotube/polytetrafluoroethylene membranes with dual-nanofibrous structure for outstanding EMI shielding and multifunctional applications. Small 20, e2308992 (2024). https://doi.org/10.1002/smll.202308992
R. Ding, Q. Yan, F. Xue, P. Li, J. Xiong et al., Dual protective porous Ti3C2Tx MXene/polyimide composite film for thermal insulation and electromagnetic interference shielding. Small 19, e2304946 (2023). https://doi.org/10.1002/smll.202304946
S. Gong, X. Sheng, X. Li, M. Sheng, H. Wu et al., A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick–mortar” sandwich structure. Adv. Funct. Mater. 32, 2200570 (2022). https://doi.org/10.1002/adfm.202200570
H.-G. Shi, H.-B. Zhao, B.-W. Liu, Y.-Z. Wang, Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13, 26505–26514 (2021). https://doi.org/10.1021/acsami.1c07363
M.P. Vidyashree, K. Sushmita, P. Nagarajan, M.K. Kokila, S. Bose, Mimicking ‘sea-urchin’ like heirarchical carbon structures self-assembled from carbon fibers for green EMI shielding. Chem. Eng. J. Adv. 13, 100430 (2023). https://doi.org/10.1016/j.ceja.2022.100430
N. Sun, Q. Cui, K. Qiao, Y. Zhang, J. Zhou et al., Mussel-like carbon fiber/MnO2 nanosheet heterostructures for mechanically strong carbon fiber/polyamide composites with excellent electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 184, 108260 (2024). https://doi.org/10.1016/j.compositesa.2024.108260
Y. Hu, M. Jiang, X. Cong, G. Liu, X. Yi et al., Lightweight, multifunctional recycled carbon fibre/MXene/PEDOT: PSS nonwoven veils with double-layered structure for excellent electromagnetic interference shielding. Chem. Eng. J. 489, 151122 (2024). https://doi.org/10.1016/j.cej.2024.151122
A.B. Kharissova, O.V. Kharissova, B.I. Kharisov, Y.P. Méndez, Carbon negative footprint materials: a review. Nano Struct. Nano Objects 37, 101100 (2024). https://doi.org/10.1016/j.nanoso.2024.101100
B. Qiu, X. Zhang, S. Xia, T. Sun, Y. Ling et al., Magnetic graphene oxide/carbon fiber composites with improved interfacial properties and electromagnetic interference shielding performance. Compos. Part A Appl. Sci. Manuf. 155, 106811 (2022). https://doi.org/10.1016/j.compositesa.2022.106811
V. Kumar, M.A. Muflikhun, T. Yokozeki, Improved environmental stability, electrical and EMI shielding properties of vapor-grown carbon fiber-filled polyaniline-based nanocomposite. Polym. Eng. Sci. 59, 956–963 (2019). https://doi.org/10.1002/pen.25045
S. Javaria Kazmi, M. Nadeem, A. Younis, S. Loomba, B. Shabbir et al., PANI/CFO@CNTs ternary composite system for EMI shielding applications. J. Magn. Magn. Mater. 563, 170037 (2022). https://doi.org/10.1016/j.jmmm.2022.170037
P. Das, A.B. Deoghare, S. Ranjan-Maity, Synergistically improved thermal stability and electromagnetic interference shielding effectiveness (EMI SE) of in situ synthesized polyaniline/sulphur doped reduced graphene oxide (PANI/S-RGO) nanocomposites. Ceram. Int. 48, 11031–11042 (2022). https://doi.org/10.1016/j.ceramint.2021.12.323
D. Xing, M. Rana, B. Hao, Q. Zheng, P.-C. Ma, Development of CNTs-carbonized cotton fiber/PANI 3D-nanocomposites for flexible energy storage and electromagnetic shielding applications. Electrochim. Acta 427, 140847 (2022). https://doi.org/10.1016/j.electacta.2022.140847
Z. Xie, H. Chen, M. Xie, D. Zhang, H. Zhao et al., Electrical percolation networks of MWCNT/graphene/polyaniline nanocomposites with enhanced electromagnetic interference shielding efficiency. Appl. Surf. Sci. 655, 159613 (2024). https://doi.org/10.1016/j.apsusc.2024.159613
M. Hou, M. Xu, B. Li, Enhanced electrical conductivity of cellulose nanofiber/graphene composite paper with a sandwich structure. ACS Sustain. Chem. Eng. 6, 2983–2990 (2018). https://doi.org/10.1021/acssuschemeng.7b02683
Y. Xu, Y. Yang, H. Duan, J. Gao, D.-X. Yan et al., Flexible and highly conductive sandwich nylon/nickel film for ultra-efficient electromagnetic interference shielding. Appl. Surf. Sci. 455, 856–863 (2018). https://doi.org/10.1016/j.apsusc.2018.06.061
Z. Niu, F. Qu, F. Chen, X. Ma, B. Chen et al., Multifunctional integrated organic-inorganic-metal hybrid aerogel for excellent thermal insulation and electromagnetic shielding performance. Nano-Micro Lett. 16, 200 (2024). https://doi.org/10.1007/s40820-024-01409-1
C.-H. Huang, Y.-E. Dong, Multifunctional composite foam with high strength and sound-absorbing based on step assembly strategy for high performance electromagnetic shielding. Polym. Compos. 44, 4993–5002 (2023). https://doi.org/10.1002/pc.27465
V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Functionalized graphene–PVDF foam composites for EMI shielding. Macromol. Mater. Eng. 296, 894–898 (2011). https://doi.org/10.1002/mame.201100035
J. Song, K. Xu, J. He, H. Ye, L. Xu, Three-dimensional graphene/carbon nanotube electromagnetic shielding composite material based on melamine resin foam template. Polym. Compos. 44, 2836–2845 (2023). https://doi.org/10.1002/pc.27284
X.-F. Liu, J.-F. He, Y.-G. Li, H. Li, W. Lei et al., Foam-gelcasting preparation of porous SiC ceramic for high-temperature thermal insulation and infrared stealth. Rare Met. 42, 3829–3838 (2023). https://doi.org/10.1007/s12598-023-02348-3
J. Zhu, Y. Ding, S. Agarwal, A. Greiner, H. Zhang et al., Nanofibre preparation of non-processable polymers by solid-state polymerization of molecularly self-assembled monomers. Nanoscale 9, 18169–18174 (2017). https://doi.org/10.1039/c7nr07159k
Y. Zheng, Z. Man, Y. Zhang, G. Wu, W. Lu et al., High-performance stretchable supercapacitors based on centrifugal electrospinning-directed hetero-structured graphene–polyaniline hierarchical fabric. Adv. Fiber Mater. 5, 1759–1772 (2023). https://doi.org/10.1007/s42765-023-00304-5
W. Xie, F. Yao, H. Gu, A. Du, Q. Lei et al., Magnetoresistive and piezoresistive polyaniline nanoarrays in situ polymerized surrounding magnetic graphene aerogel. Adv. Compos. Hybrid Mater. 5, 1003–1016 (2022). https://doi.org/10.1007/s42114-021-00413-y
R. Kanwal, M.F. Maqsood, M. Ali Raza, A. Inam, M. Waris et al., Polypyrrole coated carbon fiber/magnetite/graphene oxide reinforced hybrid epoxy composites for high strength and electromagnetic interference shielding. Mater. Today Commun. 38, 107684 (2024). https://doi.org/10.1016/j.mtcomm.2023.107684
A.R. Pai, T. Binumol, D.A. Gopakumar, D. Pasquini, B. Seantier et al., Ultra-fast heat dissipating aerogels derived from polyaniline anchored cellulose nanofibers as sustainable microwave absorbers. Carbohydr. Polym. 246, 116663 (2020). https://doi.org/10.1016/j.carbpol.2020.116663
Z. Feng, C. Liu, X. Li, G. Luo, N. Zhai et al., Designing electronic structures of multiscale helical converters for tailored ultrabroad electromagnetic absorption. Nano-Micro Lett. 17, 20 (2024). https://doi.org/10.1007/s40820-024-01513-2
H. Yang, Z. Shen, H. Peng, Z. Xiong, C. Liu et al., 1D–3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response. Chem. Eng. J. 417, 128087 (2021). https://doi.org/10.1016/j.cej.2020.128087
M. Yu, Y. Huang, X. Liu, K. She, X. Zhao et al., Synthetic strategy of biomimetic sea urchin-like Co-NC@PANI modified MXene-based magnetic aerogels with enhanced electromagnetic wave absorption properties. Nano Res. 17, 2025–2037 (2024). https://doi.org/10.1007/s12274-023-6130-z
M. Ben Ali, F. Wang, R. Boukherroub, W. Lei, M. Xia, Phytic acid-doped polyaniline nanofibers-clay mineral for efficient adsorption of copper (II) ions. J. Colloid Interface Sci. 553, 688–698 (2019). https://doi.org/10.1016/j.jcis.2019.06.065
Y. Zhou, C. Ding, X. Qian, X. An, Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant. Carbohydr. Polym. 115, 670–676 (2015). https://doi.org/10.1016/j.carbpol.2014.09.025
Z. Nan, W. Wei, Z. Lin, J. Chang, Y. Hao, Flexible nanocomposite conductors for electromagnetic interference shielding. Nano-Micro Lett. 15, 172 (2023). https://doi.org/10.1007/s40820-023-01122-5
Z.-D. Xiang, T. Chen, Z.-M. Li, X.-C. Bian, Negative temperature coefficient of resistivity in lightweight conductive carbon nanotube/polymer composites. Macromol. Mater. Eng. 294, 91–95 (2009). https://doi.org/10.1002/mame.200800273
X. Xu, F. Yao, O.A. Abu Ali, W. Xie, S.F. Mahmoud et al., Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 2002–2011 (2022). https://doi.org/10.1007/s42114-022-00538-8
B. Li, N. Wu, Q. Wu, Y. Yang, F. Pan et al., From “100%” utilization of MAX/MXene to direct engineering of wearable, multifunctional E-textiles in extreme environments. Adv. Funct. Mater. 33, 2307301 (2023). https://doi.org/10.1002/adfm.202307301
G.T. Mohanraj, T.K. Chaki, A. Chakraborty, D. Khastgir, AC impedance analysis and EMI shielding effectiveness of conductive SBR composites. Polym. Eng. Sci. 46, 1342–1349 (2006). https://doi.org/10.1002/pen.20593
Z. Ba, D. Liang, Z. Xiao, Y. Wang, H. Wang et al., Electromagnetic shielding and fire-retardant wood obtained by in situ aniline polymerization. Wood Sci. Technol. 57, 1467–1483 (2023). https://doi.org/10.1007/s00226-023-01504-3
H. Wang, K. Chen, Y. Shi, Y. Zhu, S. Jiang et al., Flame retardant and multifunctional BC/MXene/MSiCnw/FRTPU aerogel composites with superior electromagnetic interference shielding via “Consolidating” method. Chem. Eng. J. 474, 145904 (2023). https://doi.org/10.1016/j.cej.2023.145904
B.R. Mattes, H.L. Wang, D. Yang, Y.T. Zhua, W.R. Blumenthala et al., Formation of conductive polyaniline fibers derived from highly concentrated emeraldine base solutions. Synth. Met. 84, 45–49 (1997). https://doi.org/10.1016/S0379-6779(97)80661-3
X. Ma, S. Liu, H. Luo, H. Guo, S. Jiang et al., MOF@wood derived ultrathin carbon composite film for electromagnetic interference shielding with effective absorption and electrothermal management. Adv. Funct. Mater. 34, 2310126 (2024). https://doi.org/10.1002/adfm.202310126
M. Nasreen Taj, B. Daruka Prasad, N. Ramarao, H. Nagabhushana, A. Reddy et al., Dielectric and structural properties of polyaniline-tungsten trioxide nanocomposites: for the packing of nano-electronic devices and EMI shielding. Nano Struct. Nano Objects 39, 101219 (2024). https://doi.org/10.1016/j.nanoso.2024.101219
M. Zahid, R. Anum, S. Siddique, H.F. Shakir, Z.A. Rehan, Polyaniline-based nanocomposites for electromagnetic interference shielding applications: a review. J. Thermoplast. Compos. Mater. 36, 1717–1761 (2023). https://doi.org/10.1177/08927057211022408
S. Zheng, W. Xu, J. Liu, F. Pan, S. Zhao et al., One-hour ambient-pressure-dried, scalable, stretchable MXene/polyurea aerogel enables synergistic defense against high-frequency mechanical shock and electromagnetic waves. Adv. Funct. Mater. 34, 2402889 (2024). https://doi.org/10.1002/adfm.202402889
B. Li, H. Tian, L. Li, W. Liu, J. Liu et al., Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. 34, 2314653 (2024). https://doi.org/10.1002/adfm.202314653
B.D.S. Deeraj, K.J. Shebin, S. Bose, S. Sampath, K. Joseph, Electrospun carbon fibers embedded with core–shell TiC@TiO2 nanostructures and their epoxy composites for potential EMI shielding in the Ku band. Nano Struct. Nano Objects 32, 100912 (2022). https://doi.org/10.1016/j.nanoso.2022.100912
T. Lin, H. Yu, L. Wang, Q. Ma, H. Huang et al., A study on the fabrication and microwave shielding properties of PANI/C60 heterostructures. Polym. Compos. 42, 1961–1976 (2021). https://doi.org/10.1002/pc.25948
H. Wang, Y. Jiang, Z. Ma, Y. Shi, Y. Zhu et al., Hyperelastic, robust, fire-safe multifunctional MXene aerogels with unprecedented electromagnetic interference shielding efficiency. Adv. Funct. Mater. 33, 2306884 (2023). https://doi.org/10.1002/adfm.202306884
L. Liu, J. Feng, Y. Xue, V. Chevali, Y. Zhang et al., 2D MXenes for fire retardancy and fire-warning applications: promises and prospects. Adv. Funct. Mater. 33, 2212124 (2023). https://doi.org/10.1002/adfm.202212124
L. Hu, R. He, H. Lei, D. Fang, Carbon aerogel for insulation applications: a review. Int. J. Thermophys. 40, 39 (2019). https://doi.org/10.1007/s10765-019-2505-5
X. Xu, J. Zhou, J. Chen, Thermal transport in conductive polymer–based materials. Adv. Funct. Mater. 30, 1904704 (2020). https://doi.org/10.1002/adfm.201904704
S. Lin, J. Lin, Z. Xiong, X. He, X. Li et al., Micro-helical Ni3Fe chain encapsulated in ultralight MXene/C aerogel to realize multi-functionality: radar stealth, thermal insulation, fire resistance, and mechanical properties. Chem. Eng. J. 492, 152248 (2024). https://doi.org/10.1016/j.cej.2024.152248
X. Li, R. Hu, Z. Xiong, D. Wang, Z. Zhang et al., Metal-organic gel leading to customized magnetic-coupling engineering in carbon aerogels for excellent radar stealth and thermal insulation performances. Nano-Micro Lett. 16, 42 (2023). https://doi.org/10.1007/s40820-023-01255-7