Arrayed Cobalt Phosphide Electrocatalyst Achieves Low Energy Consumption and Persistent H2 Liberation from Anodic Chemical Conversion
Corresponding Author: Huijuan Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 154
Abstract
Electrochemical reduction of water to hydrogen (H2) offers a promising strategy for production of clean energy, but the design and optimization of electrochemical apparatus present challenges in terms of H2 recovery and energy consumption. Using cobalt phosphide nanoarrays (Co2P/CoP NAs) as a charge mediator, we effectively separated the H2 and O2 evolution of alkaline water electrolysis in time, thereby achieving a membrane-free pathway for H2 purification. The hierarchical array structure and synergistic optimization of the electronic configuration of metallic Co2P and metalloid CoP make the Co2P/CoP NAs high-efficiency bifunctional electrocatalysts for both charge storage and hydrogen evolution. Theoretical investigations revealed that the introduction of Co2P into CoP leads to a moderate hydrogen adsorption free energy and low water dissociation barrier, which are beneficial for boosting HER activity. Meanwhile, Co2P/CoP NAs with high capacitance could maintain a cathodic H2 evolution time of 1500 s at 10 mA cm−2 driven by a low average voltage of 1.38 V. Alternatively, the energy stored in the mediator could be exhausted via coupling with the anodic oxidation of ammonia, whereby only 0.21 V was required to hold the current for 1188 s. This membrane-free architecture demonstrates the potential for developing hydrogen purification technology at low cost.
Highlights:
1 A template approach for the synthesis of porous cobalt phosphide nanoarrays (Co2P/CoP NAs) is reported, which exhibits superior electrocatalytic activity and stability toward charge storage and hydrogen evolution.
2 Using Co2P/CoP NAs as a charge mediator, the H2 and O2 evolution of alkaline water electrolysis is separated effectively in time, thereby achieving a membrane-free pathway for H2 purification.
3 Introduction of easily oxidized chemicals to replace water oxidation triggers a low energy consumption path toward H2 purification.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Yu, Z.Y. Yu, X.L. Zhang, Y.R. Zheng, Y. Duan et al., “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 141, 7537–7543 (2019). https://doi.org/10.1021/jacs.9b02527
- Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nano-Micro Lett. 12, 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
- C.T. Dinh, A. Jain, F.P.G. de Arquer, P. De Luna et al., Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 4, 107–114 (2018). https://doi.org/10.1038/s41560-018-0296-8
- S. Deng, K. Zhang, D. Xie, Y. Zhang, Y. Zhang et al., High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. 11, 12 (2019). https://doi.org/10.1007/s40820-019-0242-8
- J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, P. Xu, D. Yuan, Synthesis of 3D hexagram-like cobalt-manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10, 6 (2018). https://doi.org/10.1007/s40820-017-0160-6
- K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010). https://doi.org/10.1016/j.pecs.2009.11.002
- X. Han, X. Ling, D. Yu, D. Xie, L. Li et al., Atomically dispersed binary Co–Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31, 1905622 (2019). https://doi.org/10.1002/adma.201905622
- S. Giancola, M. Zatoń, Á. Reyes-Carmona, M. Dupont, A. Donnadio, S. Cavaliere, J. Rozière, D.J. Jones, Composite short side chain PFSA membranes for PEM water electrolysis. J. Membr. Sci. 570, 69–76 (2019). https://doi.org/10.1016/j.memsci.2018.09.063
- X. Han, W. Zhang, X. Ma, C. Zhong, N. Zhao, W. Hu, Y. Deng, Identifying the activation of bimetallic sites in NiCo2S4@g–C3N4–CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 31, 1808281 (2019). https://doi.org/10.1002/adma.201808281
- Z. Kang, G. Yang, J. Mo, Y. Li, S. Yu et al., Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells. Nano Energy 47, 434–441 (2018). https://doi.org/10.1016/j.nanoen.2018.03.015
- L. Chen, X. Dong, Y. Wang, Y. Xia, Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat. Commun. 7, 11741 (2016). https://doi.org/10.1038/ncomms11741
- T. Wu, S. Sun, J. Song, S. Xi, Y. Du et al., Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763–772 (2019). https://doi.org/10.1038/s41929-019-0325-4
- Z. Zhang, X. Li, C. Zhong, N. Zhao, Y. Deng, X. Han, W. Hu, Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction. Angew. Chem. Int. Ed. 59, 7245–7250 (2020). https://doi.org/10.1002/anie.202001703
- Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li, Y. Zhu, G. Zhang, Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat. Commun. 11, 1853 (2020). https://doi.org/10.1038/s41467-020-15563-8
- K. Zhang, G. Zhang, J. Qu, H. Liu, Intensification of anodic charge transfer by contaminant degradation for efficient H2 production. J. Mater. Chem. A 6, 10297–10303 (2018). https://doi.org/10.1039/C8TA01849A
- Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 10, 5335 (2019). https://doi.org/10.1038/s41467-019-13375-z
- X. Liu, J. He, S. Zhao, Y. Liu, Z. Zhao, J. Luo, G. Hu, X. Sun, Y. Ding, Self-powered H2 production with bifunctional hydrazine as sole consumable. Nat. Commun. 9, 4365 (2018). https://doi.org/10.1038/s41467-018-06815-9
- W. Xu, D. Du, R. Lan, J. Humphreys, D.N. Miller, M. Walker, Z. Wu, J.T.S. Irvine, S. Tao, Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Appl. Catal. B Environ. 237, 1101–1109 (2018). https://doi.org/10.1016/j.apcatb.2016.11.003
- A. Estejab, D.A. Daramola, G.G. Botte, Mathematical model of a parallel plate ammonia electrolyzer for combined wastewater remediation and hydrogen production. Water Res. 77, 133–145 (2015). https://doi.org/10.1016/j.watres.2015.03.013
- H. Dotan, A. Landman, S.W. Sheehan, K.D. Malviya, G.E. Shter et al., Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting. Nat. Energy 4, 786–795 (2019). https://doi.org/10.1038/s41560-019-0462-7
- Y. Ma, Z. Guo, X. Dong, Y. Wang, Y. Xia, Organic proton-buffer electrode to separate hydrogen and oxygen evolution in acid water electrolysis. Angew. Chem. Int. Ed. 58, 4622–4626 (2019). https://doi.org/10.1002/anie.201814625
- J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao, C. Wei, Z.J. Xu, Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10, 75 (2018). https://doi.org/10.1007/s40820-018-0229-x
- L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu et al., Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2018). https://doi.org/10.1038/s41929-018-0203-5
- Y. Li, Z. Dong, L. Jiao, Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 10, 1902104 (2019). https://doi.org/10.1002/aenm.201902104
- K.U.D. Calvinho, A.B. Laursen, K.M.K. Yap, T.A. Goetjen, S. Hwang et al., Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ. Sci. 11, 2550–2559 (2018). https://doi.org/10.1039/C8EE00936H
- H. Li, Q. Li, P. Wen, T.B. Williams, S. Adhikari et al., Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc-air battery. Adv. Mater. 30, 1705796 (2018). https://doi.org/10.1002/adma.201705796
- X. Liu, W. Li, X. Zhao, Y. Liu, C.W. Nan, L.Z. Fan, Two birds with one stone: metal–organic framework derived micro-/nanostructured Ni2P/Ni hybrids embedded in porous carbon for electrocatalysis and energy storage. Adv. Funct. Mater. 29, 1901510 (2019). https://doi.org/10.1002/adfm.201901510
- T. Liu, A. Li, C. Wang, W. Zhou, S. Liu, L. Guo, Interfacial electron transfer of Ni2P–NiP2 polymorphs inducing enhanced electrochemical properties. Adv. Mater. 30, 1803590 (2018). https://doi.org/10.1002/adma.201803590
- Z.H. Xue, H. Su, Q.Y. Yu, B. Zhang, H.H. Wang, X.H. Li, J.S. Chen, Janus Co/CoP nanoparticles as efficient Mott–Schottky electrocatalysts for overall water splitting in wide pH range. Adv. Energy Mater. 7, 1602355 (2017). https://doi.org/10.1002/aenm.201602355
- M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 (2002). https://doi.org/10.1088/0953-8984/14/11/301
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- K. Zhang, G. Zhang, J. Qu, H. Liu, Zinc substitution-induced subtle lattice distortion mediates the active center of cobalt diselenide electrocatalysts for enhanced oxygen evolution. Small 16, 1907001 (2020). https://doi.org/10.1002/smll.201907001
- X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei, J. Liu, X. Sun, Hierarchical ZnxCo3−xO4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 26, 1889–1895 (2014). https://doi.org/10.1021/cm4040903
- W. Gao, M. Yan, H.Y. Cheung, Z. Xia, X. Zhou et al., Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. Nano Energy 38, 290–296 (2017). https://doi.org/10.1016/j.nanoen.2017.06.002
- L. Zhou, M. Shao, J. Li, S. Jiang, M. Wei, X. Duan, Two-dimensional ultrathin arrays of CoP: electronic modulation toward high performance overall water splitting. Nano Energy 41, 583–590 (2017). https://doi.org/10.1016/j.nanoen.2017.10.009
- J. Wen, B. Xu, J. Zhou, Toward flexible and wearable embroidered supercapacitors from cobalt phosphides-decorated conductive fibers. Nano-Micro Lett. 11, 89 (2019). https://doi.org/10.1007/s40820-019-0321-x
- H. Liang, C. Xia, Q. Jiang, A.N. Gandi, U. Schwingenschlögl, H.N. Alshareef, Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors. Nano Energy 35, 331–340 (2017). https://doi.org/10.1016/j.nanoen.2017.04.007
- F. Ning, M. Shao, C. Zhang, S. Xu, M. Wei, X. Duan, Co3O4@layered double hydroxide core/shell hierarchical nanowire arrays for enhanced supercapacitance performance. Nano Energy 7, 134–142 (2014). https://doi.org/10.1016/j.nanoen.2014.05.002
- T. Liu, L. Zhang, W. You, J. Yu, Core–shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 14, 1702407 (2018). https://doi.org/10.1002/smll.201702407
- K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng et al., Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 10, 1743 (2019). https://doi.org/10.1038/s41467-019-09765-y
- J. Yang, A.R. Mohmad, Y. Wang, R. Fullon, X. Song et al., Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309–1314 (2019). https://doi.org/10.1038/s41563-019-0463-8
- J. Zhang, Y. Zhao, X. Guo, C. Chen, C.L. Dong et al., Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1
- M. Hou, L. Chen, Z. Guo, X. Dong, Y. Wang, Y. Xia, A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production. Nat. Commun. 9, 438 (2018). https://doi.org/10.1038/s41467-018-02877-x
- A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Ammonia for power. Prog. Energy Combust. Sci. 69, 63–102 (2018). https://doi.org/10.1016/j.pecs.2018.07.001
- D.R. MacFarlane, P.V. Cherepanov, J. Choi, B.H.R. Suryanto, R.Y. Hodgetts, J.M. Bakker, F.M. FerreroVallana, A.N. Simonov, A roadmap to the ammonia economy. Joule 4, 1–20 (2020). https://doi.org/10.1016/j.joule.2020.04.004
- X. Liu, K. Ni, B. Wen, R. Guo, C. Niu et al., Deep reconstruction of nickel-based precatalysts for water oxidation catalysis. ACS Energy Lett. 4, 2585–2592 (2019). https://doi.org/10.1021/acsenergylett.9b01922
- H. Sun, X. Xu, Z. Yan, X. Chen, F. Cheng, P.S. Weiss, J. Chen, Porous multishelled Ni2P hollow microspheres as an active electrocatalyst for hydrogen and oxygen evolution. Chem. Mater. 29, 8539–8547 (2017). https://doi.org/10.1021/acs.chemmater.7b03627
- T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang et al., Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 7, 1700020 (2017). https://doi.org/10.1002/aenm.201700020
- H.Y. Wang, S.F. Hung, Y.Y. Hsu, L. Zhang, J. Miao, T.S. Chan, Q. Xiong, B. Liu, In situ spectroscopic identification of μ-OO bridging on spinel Co3O4 water oxidation electrocatalyst. J. Phys. Chem. Lett. 7, 4847–4853 (2016). https://doi.org/10.1021/acs.jpclett.6b02147
References
X. Yu, Z.Y. Yu, X.L. Zhang, Y.R. Zheng, Y. Duan et al., “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 141, 7537–7543 (2019). https://doi.org/10.1021/jacs.9b02527
Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nano-Micro Lett. 12, 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
C.T. Dinh, A. Jain, F.P.G. de Arquer, P. De Luna et al., Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 4, 107–114 (2018). https://doi.org/10.1038/s41560-018-0296-8
S. Deng, K. Zhang, D. Xie, Y. Zhang, Y. Zhang et al., High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. 11, 12 (2019). https://doi.org/10.1007/s40820-019-0242-8
J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, P. Xu, D. Yuan, Synthesis of 3D hexagram-like cobalt-manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10, 6 (2018). https://doi.org/10.1007/s40820-017-0160-6
K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010). https://doi.org/10.1016/j.pecs.2009.11.002
X. Han, X. Ling, D. Yu, D. Xie, L. Li et al., Atomically dispersed binary Co–Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31, 1905622 (2019). https://doi.org/10.1002/adma.201905622
S. Giancola, M. Zatoń, Á. Reyes-Carmona, M. Dupont, A. Donnadio, S. Cavaliere, J. Rozière, D.J. Jones, Composite short side chain PFSA membranes for PEM water electrolysis. J. Membr. Sci. 570, 69–76 (2019). https://doi.org/10.1016/j.memsci.2018.09.063
X. Han, W. Zhang, X. Ma, C. Zhong, N. Zhao, W. Hu, Y. Deng, Identifying the activation of bimetallic sites in NiCo2S4@g–C3N4–CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 31, 1808281 (2019). https://doi.org/10.1002/adma.201808281
Z. Kang, G. Yang, J. Mo, Y. Li, S. Yu et al., Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells. Nano Energy 47, 434–441 (2018). https://doi.org/10.1016/j.nanoen.2018.03.015
L. Chen, X. Dong, Y. Wang, Y. Xia, Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat. Commun. 7, 11741 (2016). https://doi.org/10.1038/ncomms11741
T. Wu, S. Sun, J. Song, S. Xi, Y. Du et al., Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763–772 (2019). https://doi.org/10.1038/s41929-019-0325-4
Z. Zhang, X. Li, C. Zhong, N. Zhao, Y. Deng, X. Han, W. Hu, Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction. Angew. Chem. Int. Ed. 59, 7245–7250 (2020). https://doi.org/10.1002/anie.202001703
Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li, Y. Zhu, G. Zhang, Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat. Commun. 11, 1853 (2020). https://doi.org/10.1038/s41467-020-15563-8
K. Zhang, G. Zhang, J. Qu, H. Liu, Intensification of anodic charge transfer by contaminant degradation for efficient H2 production. J. Mater. Chem. A 6, 10297–10303 (2018). https://doi.org/10.1039/C8TA01849A
Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 10, 5335 (2019). https://doi.org/10.1038/s41467-019-13375-z
X. Liu, J. He, S. Zhao, Y. Liu, Z. Zhao, J. Luo, G. Hu, X. Sun, Y. Ding, Self-powered H2 production with bifunctional hydrazine as sole consumable. Nat. Commun. 9, 4365 (2018). https://doi.org/10.1038/s41467-018-06815-9
W. Xu, D. Du, R. Lan, J. Humphreys, D.N. Miller, M. Walker, Z. Wu, J.T.S. Irvine, S. Tao, Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Appl. Catal. B Environ. 237, 1101–1109 (2018). https://doi.org/10.1016/j.apcatb.2016.11.003
A. Estejab, D.A. Daramola, G.G. Botte, Mathematical model of a parallel plate ammonia electrolyzer for combined wastewater remediation and hydrogen production. Water Res. 77, 133–145 (2015). https://doi.org/10.1016/j.watres.2015.03.013
H. Dotan, A. Landman, S.W. Sheehan, K.D. Malviya, G.E. Shter et al., Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting. Nat. Energy 4, 786–795 (2019). https://doi.org/10.1038/s41560-019-0462-7
Y. Ma, Z. Guo, X. Dong, Y. Wang, Y. Xia, Organic proton-buffer electrode to separate hydrogen and oxygen evolution in acid water electrolysis. Angew. Chem. Int. Ed. 58, 4622–4626 (2019). https://doi.org/10.1002/anie.201814625
J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao, C. Wei, Z.J. Xu, Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10, 75 (2018). https://doi.org/10.1007/s40820-018-0229-x
L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu et al., Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2018). https://doi.org/10.1038/s41929-018-0203-5
Y. Li, Z. Dong, L. Jiao, Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 10, 1902104 (2019). https://doi.org/10.1002/aenm.201902104
K.U.D. Calvinho, A.B. Laursen, K.M.K. Yap, T.A. Goetjen, S. Hwang et al., Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ. Sci. 11, 2550–2559 (2018). https://doi.org/10.1039/C8EE00936H
H. Li, Q. Li, P. Wen, T.B. Williams, S. Adhikari et al., Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc-air battery. Adv. Mater. 30, 1705796 (2018). https://doi.org/10.1002/adma.201705796
X. Liu, W. Li, X. Zhao, Y. Liu, C.W. Nan, L.Z. Fan, Two birds with one stone: metal–organic framework derived micro-/nanostructured Ni2P/Ni hybrids embedded in porous carbon for electrocatalysis and energy storage. Adv. Funct. Mater. 29, 1901510 (2019). https://doi.org/10.1002/adfm.201901510
T. Liu, A. Li, C. Wang, W. Zhou, S. Liu, L. Guo, Interfacial electron transfer of Ni2P–NiP2 polymorphs inducing enhanced electrochemical properties. Adv. Mater. 30, 1803590 (2018). https://doi.org/10.1002/adma.201803590
Z.H. Xue, H. Su, Q.Y. Yu, B. Zhang, H.H. Wang, X.H. Li, J.S. Chen, Janus Co/CoP nanoparticles as efficient Mott–Schottky electrocatalysts for overall water splitting in wide pH range. Adv. Energy Mater. 7, 1602355 (2017). https://doi.org/10.1002/aenm.201602355
M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 (2002). https://doi.org/10.1088/0953-8984/14/11/301
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
K. Zhang, G. Zhang, J. Qu, H. Liu, Zinc substitution-induced subtle lattice distortion mediates the active center of cobalt diselenide electrocatalysts for enhanced oxygen evolution. Small 16, 1907001 (2020). https://doi.org/10.1002/smll.201907001
X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei, J. Liu, X. Sun, Hierarchical ZnxCo3−xO4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 26, 1889–1895 (2014). https://doi.org/10.1021/cm4040903
W. Gao, M. Yan, H.Y. Cheung, Z. Xia, X. Zhou et al., Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. Nano Energy 38, 290–296 (2017). https://doi.org/10.1016/j.nanoen.2017.06.002
L. Zhou, M. Shao, J. Li, S. Jiang, M. Wei, X. Duan, Two-dimensional ultrathin arrays of CoP: electronic modulation toward high performance overall water splitting. Nano Energy 41, 583–590 (2017). https://doi.org/10.1016/j.nanoen.2017.10.009
J. Wen, B. Xu, J. Zhou, Toward flexible and wearable embroidered supercapacitors from cobalt phosphides-decorated conductive fibers. Nano-Micro Lett. 11, 89 (2019). https://doi.org/10.1007/s40820-019-0321-x
H. Liang, C. Xia, Q. Jiang, A.N. Gandi, U. Schwingenschlögl, H.N. Alshareef, Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors. Nano Energy 35, 331–340 (2017). https://doi.org/10.1016/j.nanoen.2017.04.007
F. Ning, M. Shao, C. Zhang, S. Xu, M. Wei, X. Duan, Co3O4@layered double hydroxide core/shell hierarchical nanowire arrays for enhanced supercapacitance performance. Nano Energy 7, 134–142 (2014). https://doi.org/10.1016/j.nanoen.2014.05.002
T. Liu, L. Zhang, W. You, J. Yu, Core–shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 14, 1702407 (2018). https://doi.org/10.1002/smll.201702407
K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng et al., Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 10, 1743 (2019). https://doi.org/10.1038/s41467-019-09765-y
J. Yang, A.R. Mohmad, Y. Wang, R. Fullon, X. Song et al., Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309–1314 (2019). https://doi.org/10.1038/s41563-019-0463-8
J. Zhang, Y. Zhao, X. Guo, C. Chen, C.L. Dong et al., Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1
M. Hou, L. Chen, Z. Guo, X. Dong, Y. Wang, Y. Xia, A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production. Nat. Commun. 9, 438 (2018). https://doi.org/10.1038/s41467-018-02877-x
A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Ammonia for power. Prog. Energy Combust. Sci. 69, 63–102 (2018). https://doi.org/10.1016/j.pecs.2018.07.001
D.R. MacFarlane, P.V. Cherepanov, J. Choi, B.H.R. Suryanto, R.Y. Hodgetts, J.M. Bakker, F.M. FerreroVallana, A.N. Simonov, A roadmap to the ammonia economy. Joule 4, 1–20 (2020). https://doi.org/10.1016/j.joule.2020.04.004
X. Liu, K. Ni, B. Wen, R. Guo, C. Niu et al., Deep reconstruction of nickel-based precatalysts for water oxidation catalysis. ACS Energy Lett. 4, 2585–2592 (2019). https://doi.org/10.1021/acsenergylett.9b01922
H. Sun, X. Xu, Z. Yan, X. Chen, F. Cheng, P.S. Weiss, J. Chen, Porous multishelled Ni2P hollow microspheres as an active electrocatalyst for hydrogen and oxygen evolution. Chem. Mater. 29, 8539–8547 (2017). https://doi.org/10.1021/acs.chemmater.7b03627
T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang et al., Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 7, 1700020 (2017). https://doi.org/10.1002/aenm.201700020
H.Y. Wang, S.F. Hung, Y.Y. Hsu, L. Zhang, J. Miao, T.S. Chan, Q. Xiong, B. Liu, In situ spectroscopic identification of μ-OO bridging on spinel Co3O4 water oxidation electrocatalyst. J. Phys. Chem. Lett. 7, 4847–4853 (2016). https://doi.org/10.1021/acs.jpclett.6b02147