Atomically Dispersed Fe-Co Bimetallic Catalysts for the Promoted Electroreduction of Carbon Dioxide
Corresponding Author: Shuhui Sun
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 25
Abstract
The electroreduction reaction of CO2 (ECO2RR) requires high-performance catalysts to convert CO2 into useful chemicals. Transition metal-based atomically dispersed catalysts are promising for the high selectivity and activity in ECO2RR. This work presents a series of atomically dispersed Co, Fe bimetallic catalysts by carbonizing the Fe-introduced Co-zeolitic-imidazolate-framework (C–Fe–Co–ZIF) for the syngas generation from ECO2RR. The synergistic effect of the bimetallic catalyst promotes CO production. Compared to the pure C–Co–ZIF, C–Fe–Co–ZIF facilitates CO production with a CO Faradaic efficiency (FE) boost of 10%, with optimal FECO of 51.9%, FEH2 of 42.4% at − 0.55 V, and CO current density of 8.0 mA cm−2 at − 0.7 V versus reversible hydrogen electrode (RHE). The H2/CO ratio is tunable from 0.8 to 4.2 in a wide potential window of − 0.35 to − 0.8 V versus RHE. The total FECO+H2 maintains as high as 93% over 10 h. The proper adding amount of Fe could increase the number of active sites and create mild distortions for the nanoscopic environments of Co and Fe, which is essential for the enhancement of the CO production in ECO2RR. The positive impacts of Cu–Co and Ni–Co bimetallic catalysts demonstrate the versatility and potential application of the bimetallic strategy for ECO2RR.
Highlights:
1 X-ray photoelectron spectroscopy results confirmed the increased number of M–N sites in the bimetallic Fe–Co catalyst.
2 Synchrotron-based X-ray absorption fine structure demonstrated that the interaction in the coordination environments of the different transition metal sites facilitated the CO production in electroreduction reaction of CO2 (ECO2RR).
3 This bimetallic strategy has also been extended to fabricate other catalysts such as Cu–Co and Ni–Co, which also exhibited enhanced performance for ECO2RR.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.S. Chen, G.X. Zhang, J. Prakash, Y. Zheng, S.H. Sun, Rational design of novel catalysts with atomic layer deposition for the reduction of carbon dioxide. Adv. Energy Mater. 9(37), 1900889 (2019). https://doi.org/10.1002/aenm.201900889
- Z. Chen, G. Zhang, L. Du, Y. Zheng, L. Sun et al., Nanostructured cobalt-based electrocatalysts for CO2 reduction: Recent progress, challenges, and perspectives. Small 16(52), e2004158 (2020). https://doi.org/10.1002/smll.202004158
- Y. Zhang, X. Su, L. Li, H. Qi, C. Yang et al., Ru/TiO2 catalysts with size-dependent metal/support interaction for tunable reactivity in Fischer-Tropsch synthesis. ACS Catal. 10(21), 12967–12975 (2020). https://doi.org/10.1021/acscatal.0c02780
- V. Andrei, B. Reuillard, E. Reisner, Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite-BiVO4 tandems. Nat. Mater. 19, 189–194 (2019). https://doi.org/10.1038/s41563-019-0501-6
- J. Kang, S. He, W. Zhou, Z. Shen, Y. Li et al., Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis. Nat. Commun. 11(1), 827 (2020). https://doi.org/10.1038/s41467-020-14672-8
- B. Zhang, B. Zhang, Y. Jiang, T. Ma, H. Pan et al., Single-atom electrocatalysts for multi-electron reduction of CO2. Small 17(36), e2101443 (2021). https://doi.org/10.1002/smll.202101443
- S. Zhu, E.P. Delmo, T. Li, X. Qin, J. Tian et al., Recent advances in catalyst structure and composition engineering strategies for regulating CO2 electrochemical reduction. Adv. Mater. (2021). https://doi.org/10.1002/adma.202005484
- X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen et al., Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57(7), 1944–1948 (2018). https://doi.org/10.1002/anie.201712451
- Z. Zhang, J. Xiao, X.J. Chen, S. Yu, L. Yu et al., Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57(50), 16339–16342 (2018). https://doi.org/10.1002/anie.201808593
- H.B. Yang, S.F. Hung, S. Liu, K. Yuan, S. Miao et al., Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3(2), 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
- C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi et al., Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 8(19), 1703487 (2018). https://doi.org/10.1002/aenm.201703487
- J. Gu, C.S. Hsu, L. Bai, H.M. Chen, X. Hu, Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364(6445), 1091–1094 (2019). https://doi.org/10.1126/science.aaw7515
- X. Wang, Z. Wang, Y. Bai, L. Tan, Y. Xu et al., Tuning the selectivity of photoreduction of CO2 to syngas over Pd/layered double hydroxide nanosheets under visible-light up to 600 nm. J. Energy Chem. 46, 1–7 (2020). https://doi.org/10.1016/j.jechem.2019.10.004
- W. Zhou, K. Cheng, J. Kang, C. Zhou, V. Subramanian et al., New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 48(12), 3193–3228 (2019). https://doi.org/10.1039/c8cs00502h
- J. Long, H. Zhang, J. Ming, J. Zhao, Q. Gu et al., High-rate, tunable syngas production with artificial photosynthetic cells. Angew. Chem. Int. Ed. 58(23), 7718–7722 (2019). https://doi.org/10.1002/anie.201902361
- S.J. Shen, C. Han, B. Wang, Y.A. Du, Y.D. Wang, Dual active sites-dependent syngas proportions from aqueous CO2 electroreduction. Appl. Catal. B Environ. 279, 119380 (2020). https://doi.org/10.1016/j.apcatb.2020.119380
- M. Wu, G. Zhang, Y. Hu, J. Wang, T. Sun et al., Graphitic-shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N-doped carbon as an efficient electrocatalyst for rechargeable Zn-air battery. Carbon Energy 3(1), 176–187 (2020). https://doi.org/10.1002/cey2.52
- M. Wu, G. Zhang, N. Chen, W. Chen, J. Qiao et al., A self-supported electrode as a high-performance binder- and carbon-free cathode for rechargeable hybrid zinc batteries. Energy Stor. Mater. 24, 272–280 (2020). https://doi.org/10.1016/j.ensm.2019.08.009
- C.H. Wu, C. Liu, D. Su, H.L. Xin, H.T. Fang et al., Bimetallic synergy in cobalt–palladium nanocatalysts for CO oxidation. Nat. Catal. 2(1), 78–85 (2018). https://doi.org/10.1038/s41929-018-0190-6
- Z. Kou, X. Li, T. Wang, Y. Ma, W. Zang et al., Fundamentals, on-going advances and challenges of electrochemical carbon dioxide reduction. Electrochem. Energy Rev. (2021). https://doi.org/10.1007/s41918-021-00096-5
- Y. Liu, D. Tian, A.N. Biswas, Z. Xie, S. Hwang et al., Transition metal nitrides as promising catalyst supports for tuning CO/H2 syngas production from electrochemical CO2 reduction. Angew. Chem. Int. Ed. 59(28), 11345–11348 (2020). https://doi.org/10.1002/anie.202003625
- M.B. Ross, Y. Li, P.D. Luna, D. Kim, E.H. Sargent et al., Electrocatalytic rate alignment enhances syngas generation. Joule 3(1), 257–264 (2019). https://doi.org/10.1016/j.joule.2018.09.013
- Q. He, D. Liu, J.H. Lee, Y. Liu, Z. Xie et al., Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over CO and Ni single-atom catalysts. Angew. Chem. Int. Ed. 59(8), 3033–3037 (2019). https://doi.org/10.1002/anie.201912719
- S.H. Yin, J. Yang, Y. Han, G. Li, L.Y. Wan et al., Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angew. Chem. Int. Ed. 132(49), 22160–22163 (2020). https://doi.org/10.1002/ange.202010013
- Sarveena, J.M. Vargas, D.K. Shukla, C.T. Meneses, P.M. Zelis et al., Synthesis, phase composition mossbauer and magnetic characterization of iron oxide nanoparticles. Phys. Chem. Chem. Phys. 18(14), 9561–9568 (2016). https://doi.org/10.1039/c5cp07698f
- G. Zhang, X. Yang, M. Dubois, M. Herraiz, R. Chenitz et al., Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and stability of a highly active NC_Ar + NH3 catalyst. Energy Environ. Sci. 12(10), 3015–3037 (2019). https://doi.org/10.1039/c9ee00867e
- Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140(12), 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
- T. Schiros, D. Nordlund, L. Palova, D. Prezzi, L. Zhao et al., Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett. 12(8), 4025–4031 (2012). https://doi.org/10.1021/nl301409h
- L. Jin, B. Liu, P. Wang, H. Yao, L.A. Achola et al., Ultrasmall Au nanocatalysts supported on nitrided carbon for electrocatalytic CO2 reduction: the role of the carbon support in high selectivity. Nanoscale 10(30), 14678–14686 (2018). https://doi.org/10.1039/c8nr04322a
- A. Roy, D. Hursán, K. Artyushkova, P. Atanassov, C. Janáky et al., Nanostructured metal-N-C electrocatalysts for CO2 reduction and hydrogen evolution reactions. Appl. Catal. B 232, 512–520 (2018). https://doi.org/10.1016/j.apcatb.2018.03.093
- Z. Chen, X. Zhang, W. Liu, M. Jiao, K. Mou et al., Amination strategy to boost CO2 electroreduction current density of M-N/C single-atom catalysts to industrial application level. Energy Environ. Sci. 14(4), 2349–2356 (2021). https://doi.org/10.1039/d0ee04052e
- L. Lin, H. Li, C. Yan, H. Li, R. Si et al., Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31(41), e1903470 (2019). https://doi.org/10.1002/adma.201903470
- W. Ren, X. Tan, W. Yang, C. Jia, S. Xu et al., Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58(21), 6972–6976 (2019). https://doi.org/10.1002/anie.201901575
- V.V. Mesilov, V.R. Galakhov, A.F. Gubkin, E.A. Sherstobitova, G.S. Zakharova et al., X-ray diffraction and X-ray spectroscopy studies of cobalt-doped anatase TiO2: Co nanopowders. J. Phys. Chem. C 121(43), 24235–24244 (2017). https://doi.org/10.1021/acs.jpcc.7b05873
- X. Yang, M. Wang, M.J. Zachman, H. Zhou, Y. He et al., Binary atomically dispersed metal-site catalysts with core−shell nanostructures for O2 and CO2 reduction reactions. Small Sci. (2021). https://doi.org/10.1002/smsc.202100046
- W.T. Chen, C.W. Hsu, J.F. Lee, C.W. Pao, I.J. Hsu, Theoretical analysis of Fe k-edge XANES on iron pentacarbonyl. ACS Omega 5(10), 4991–5000 (2020). https://doi.org/10.1021/acsomega.9b03887
- H. Dong, L. Zhang, L. Li, W. Deng, C. Hu et al., Abundant Ce3+ ions in Au-CeOx nanosheets to enhance CO2 electroreduction performance. Small 15(17), e1900289 (2019). https://doi.org/10.1002/smll.201900289
- G.W. Woyessa, J.B. Cruz, M. Rameez, C.H. Hung, Nanocomposite catalyst of graphitic carbon nitride and Cu/Fe mixed metal oxide for electrochemical CO2 reduction to CO. Appl. Catal. B 291, 120052 (2021). https://doi.org/10.1016/j.apcatb.2021.120052
- J. Wang, S. Kattel, C.J. Hawxhurst, J.H. Lee, B.M. Tackett et al., Enhancing activity and reducing cost for electrochemical reduction of CO2 by supporting palladium on metal carbides. Angew. Chem. Int. Ed. 58(19), 6271–6275 (2019). https://doi.org/10.1002/anie.201900781
References
Z.S. Chen, G.X. Zhang, J. Prakash, Y. Zheng, S.H. Sun, Rational design of novel catalysts with atomic layer deposition for the reduction of carbon dioxide. Adv. Energy Mater. 9(37), 1900889 (2019). https://doi.org/10.1002/aenm.201900889
Z. Chen, G. Zhang, L. Du, Y. Zheng, L. Sun et al., Nanostructured cobalt-based electrocatalysts for CO2 reduction: Recent progress, challenges, and perspectives. Small 16(52), e2004158 (2020). https://doi.org/10.1002/smll.202004158
Y. Zhang, X. Su, L. Li, H. Qi, C. Yang et al., Ru/TiO2 catalysts with size-dependent metal/support interaction for tunable reactivity in Fischer-Tropsch synthesis. ACS Catal. 10(21), 12967–12975 (2020). https://doi.org/10.1021/acscatal.0c02780
V. Andrei, B. Reuillard, E. Reisner, Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite-BiVO4 tandems. Nat. Mater. 19, 189–194 (2019). https://doi.org/10.1038/s41563-019-0501-6
J. Kang, S. He, W. Zhou, Z. Shen, Y. Li et al., Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis. Nat. Commun. 11(1), 827 (2020). https://doi.org/10.1038/s41467-020-14672-8
B. Zhang, B. Zhang, Y. Jiang, T. Ma, H. Pan et al., Single-atom electrocatalysts for multi-electron reduction of CO2. Small 17(36), e2101443 (2021). https://doi.org/10.1002/smll.202101443
S. Zhu, E.P. Delmo, T. Li, X. Qin, J. Tian et al., Recent advances in catalyst structure and composition engineering strategies for regulating CO2 electrochemical reduction. Adv. Mater. (2021). https://doi.org/10.1002/adma.202005484
X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen et al., Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57(7), 1944–1948 (2018). https://doi.org/10.1002/anie.201712451
Z. Zhang, J. Xiao, X.J. Chen, S. Yu, L. Yu et al., Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57(50), 16339–16342 (2018). https://doi.org/10.1002/anie.201808593
H.B. Yang, S.F. Hung, S. Liu, K. Yuan, S. Miao et al., Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3(2), 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi et al., Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 8(19), 1703487 (2018). https://doi.org/10.1002/aenm.201703487
J. Gu, C.S. Hsu, L. Bai, H.M. Chen, X. Hu, Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364(6445), 1091–1094 (2019). https://doi.org/10.1126/science.aaw7515
X. Wang, Z. Wang, Y. Bai, L. Tan, Y. Xu et al., Tuning the selectivity of photoreduction of CO2 to syngas over Pd/layered double hydroxide nanosheets under visible-light up to 600 nm. J. Energy Chem. 46, 1–7 (2020). https://doi.org/10.1016/j.jechem.2019.10.004
W. Zhou, K. Cheng, J. Kang, C. Zhou, V. Subramanian et al., New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 48(12), 3193–3228 (2019). https://doi.org/10.1039/c8cs00502h
J. Long, H. Zhang, J. Ming, J. Zhao, Q. Gu et al., High-rate, tunable syngas production with artificial photosynthetic cells. Angew. Chem. Int. Ed. 58(23), 7718–7722 (2019). https://doi.org/10.1002/anie.201902361
S.J. Shen, C. Han, B. Wang, Y.A. Du, Y.D. Wang, Dual active sites-dependent syngas proportions from aqueous CO2 electroreduction. Appl. Catal. B Environ. 279, 119380 (2020). https://doi.org/10.1016/j.apcatb.2020.119380
M. Wu, G. Zhang, Y. Hu, J. Wang, T. Sun et al., Graphitic-shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N-doped carbon as an efficient electrocatalyst for rechargeable Zn-air battery. Carbon Energy 3(1), 176–187 (2020). https://doi.org/10.1002/cey2.52
M. Wu, G. Zhang, N. Chen, W. Chen, J. Qiao et al., A self-supported electrode as a high-performance binder- and carbon-free cathode for rechargeable hybrid zinc batteries. Energy Stor. Mater. 24, 272–280 (2020). https://doi.org/10.1016/j.ensm.2019.08.009
C.H. Wu, C. Liu, D. Su, H.L. Xin, H.T. Fang et al., Bimetallic synergy in cobalt–palladium nanocatalysts for CO oxidation. Nat. Catal. 2(1), 78–85 (2018). https://doi.org/10.1038/s41929-018-0190-6
Z. Kou, X. Li, T. Wang, Y. Ma, W. Zang et al., Fundamentals, on-going advances and challenges of electrochemical carbon dioxide reduction. Electrochem. Energy Rev. (2021). https://doi.org/10.1007/s41918-021-00096-5
Y. Liu, D. Tian, A.N. Biswas, Z. Xie, S. Hwang et al., Transition metal nitrides as promising catalyst supports for tuning CO/H2 syngas production from electrochemical CO2 reduction. Angew. Chem. Int. Ed. 59(28), 11345–11348 (2020). https://doi.org/10.1002/anie.202003625
M.B. Ross, Y. Li, P.D. Luna, D. Kim, E.H. Sargent et al., Electrocatalytic rate alignment enhances syngas generation. Joule 3(1), 257–264 (2019). https://doi.org/10.1016/j.joule.2018.09.013
Q. He, D. Liu, J.H. Lee, Y. Liu, Z. Xie et al., Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over CO and Ni single-atom catalysts. Angew. Chem. Int. Ed. 59(8), 3033–3037 (2019). https://doi.org/10.1002/anie.201912719
S.H. Yin, J. Yang, Y. Han, G. Li, L.Y. Wan et al., Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angew. Chem. Int. Ed. 132(49), 22160–22163 (2020). https://doi.org/10.1002/ange.202010013
Sarveena, J.M. Vargas, D.K. Shukla, C.T. Meneses, P.M. Zelis et al., Synthesis, phase composition mossbauer and magnetic characterization of iron oxide nanoparticles. Phys. Chem. Chem. Phys. 18(14), 9561–9568 (2016). https://doi.org/10.1039/c5cp07698f
G. Zhang, X. Yang, M. Dubois, M. Herraiz, R. Chenitz et al., Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and stability of a highly active NC_Ar + NH3 catalyst. Energy Environ. Sci. 12(10), 3015–3037 (2019). https://doi.org/10.1039/c9ee00867e
Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140(12), 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
T. Schiros, D. Nordlund, L. Palova, D. Prezzi, L. Zhao et al., Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett. 12(8), 4025–4031 (2012). https://doi.org/10.1021/nl301409h
L. Jin, B. Liu, P. Wang, H. Yao, L.A. Achola et al., Ultrasmall Au nanocatalysts supported on nitrided carbon for electrocatalytic CO2 reduction: the role of the carbon support in high selectivity. Nanoscale 10(30), 14678–14686 (2018). https://doi.org/10.1039/c8nr04322a
A. Roy, D. Hursán, K. Artyushkova, P. Atanassov, C. Janáky et al., Nanostructured metal-N-C electrocatalysts for CO2 reduction and hydrogen evolution reactions. Appl. Catal. B 232, 512–520 (2018). https://doi.org/10.1016/j.apcatb.2018.03.093
Z. Chen, X. Zhang, W. Liu, M. Jiao, K. Mou et al., Amination strategy to boost CO2 electroreduction current density of M-N/C single-atom catalysts to industrial application level. Energy Environ. Sci. 14(4), 2349–2356 (2021). https://doi.org/10.1039/d0ee04052e
L. Lin, H. Li, C. Yan, H. Li, R. Si et al., Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31(41), e1903470 (2019). https://doi.org/10.1002/adma.201903470
W. Ren, X. Tan, W. Yang, C. Jia, S. Xu et al., Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58(21), 6972–6976 (2019). https://doi.org/10.1002/anie.201901575
V.V. Mesilov, V.R. Galakhov, A.F. Gubkin, E.A. Sherstobitova, G.S. Zakharova et al., X-ray diffraction and X-ray spectroscopy studies of cobalt-doped anatase TiO2: Co nanopowders. J. Phys. Chem. C 121(43), 24235–24244 (2017). https://doi.org/10.1021/acs.jpcc.7b05873
X. Yang, M. Wang, M.J. Zachman, H. Zhou, Y. He et al., Binary atomically dispersed metal-site catalysts with core−shell nanostructures for O2 and CO2 reduction reactions. Small Sci. (2021). https://doi.org/10.1002/smsc.202100046
W.T. Chen, C.W. Hsu, J.F. Lee, C.W. Pao, I.J. Hsu, Theoretical analysis of Fe k-edge XANES on iron pentacarbonyl. ACS Omega 5(10), 4991–5000 (2020). https://doi.org/10.1021/acsomega.9b03887
H. Dong, L. Zhang, L. Li, W. Deng, C. Hu et al., Abundant Ce3+ ions in Au-CeOx nanosheets to enhance CO2 electroreduction performance. Small 15(17), e1900289 (2019). https://doi.org/10.1002/smll.201900289
G.W. Woyessa, J.B. Cruz, M. Rameez, C.H. Hung, Nanocomposite catalyst of graphitic carbon nitride and Cu/Fe mixed metal oxide for electrochemical CO2 reduction to CO. Appl. Catal. B 291, 120052 (2021). https://doi.org/10.1016/j.apcatb.2021.120052
J. Wang, S. Kattel, C.J. Hawxhurst, J.H. Lee, B.M. Tackett et al., Enhancing activity and reducing cost for electrochemical reduction of CO2 by supporting palladium on metal carbides. Angew. Chem. Int. Ed. 58(19), 6271–6275 (2019). https://doi.org/10.1002/anie.201900781