Engineering Fe-N4 Electronic Structure with Adjacent Co-N2C2 and Co Nanoclusters on Carbon Nanotubes for Efficient Oxygen Electrocatalysis
Corresponding Author: Gaixia Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 232
Abstract
Regulating the local configuration of atomically dispersed transition-metal atom catalysts is the key to oxygen electrocatalysis performance enhancement. Unlike the previously reported single-atom or dual-atom configurations, we designed a new type of binary-atom catalyst, through engineering Fe-N4 electronic structure with adjacent Co-N2C2 and nitrogen-coordinated Co nanoclusters, as oxygen electrocatalysts. The resultant optimized electronic structure of the Fe-N4 active center favors the binding capability of intermediates and enhances oxygen reduction reaction (ORR) activity in both alkaline and acid conditions. In addition, anchoring M–N–C atomic sites on highly graphitized carbon supports guarantees of efficient charge- and mass-transports, and escorts the high bifunctional catalytic activity of the entire catalyst. Further, through the combination of electrochemical studies and in-situ X-ray absorption spectroscopy analyses, the ORR degradation mechanisms under highly oxidative conditions during oxygen evolution reaction processes were revealed. This work developed a new binary-atom catalyst and systematically investigates the effect of highly oxidative environments on ORR electrochemical behavior. It demonstrates the strategy for facilitating oxygen electrocatalytic activity and stability of the atomically dispersed M–N–C catalysts.
Highlights:
1 Engineering Fe-N4 electronic structure with adjacent Co-N2C2 and Co sub-nanoclusters to optimize the electronic structure of the Fe-N4 active center is first demonstrated.
2 Electrochemical studies reveal that the amorphous carbon corrosion leads to significantly increased charge- and mass-transport resistances.
3 The operando X-ray absorption spectroscopy allows an investigation of the effect of highly oxidative environments on electrochemical behavior.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Wu, J. Qiao, K. Li, X. Zhou, Y. Liu et al., A large-scale synthesis of heteroatom (N and S) co-doped hierarchically porous carbon (HPC) derived from polyquaternium for superior oxygen reduction reactivity. Green Chem. 18, 2699–2709 (2016). https://doi.org/10.1039/c5gc02625c
- D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015). https://doi.org/10.1038/nchem.2085
- J.Z. Li, M.J. Chen, D.A. Cullen, S. Hwang, M.Y. Wang et al., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8
- L.Y. Zhang, T. Zeng, L. Zheng, Y. Wang, W. Yuan et al., Epitaxial growth of Pt–Pd bimetallic heterostructures for the oxygen reduction reaction. Adv. Powder Mater. 2, 100131 (2023). https://doi.org/10.1016/j.apmate.2023.100131
- Y. Zhou, N. Wang, L. Xing, X. Zhang, R. Zhong et al., The emerging coupled low-PGM and PGM-free catalysts for oxygen reduction reaction. Chem. Catal. 3, 100484 (2023). https://doi.org/10.1016/j.checat.2022.12.001
- M. Wu, Q. Tang, F. Dong, Z. Bai, L. Zhang et al., Fe/N/S-composited hierarchically porous carbons with optimized surface functionality, composition and nanoarchitecture as electrocatalysts for oxygen reduction reaction. J. Catal. 352, 208–217 (2017). https://doi.org/10.1016/j.jcat.2017.05.011
- X.F. Yang, A. Wang, B. Qiao, J. Li, J. Liu et al., Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013). https://doi.org/10.1021/ar300361m
- H. Zhang, G. Liu, L. Shi, J. Ye, Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8, 1701343 (2018). https://doi.org/10.1002/aenm.201701343
- J.X. Wu, W.X. Chen, C.T. He, K. Zheng, L.L. Zhuo et al., Atomically dispersed dual-metal sites showing unique reactivity and dynamism for electrocatalysis. Nano-Micro Lett. 15, 120 (2023). https://doi.org/10.1007/s40820-023-01080-y
- Y. Dai, F. Kong, X. Tai, Y. Zhang, B. Liu et al., Advances in graphene-supported single-atom catalysts for clean energy conversion. Electrochem Energy Rev. (2022). https://doi.org/10.1007/s41918-022-00142-w
- Z. Wang, X. Jin, C. Zhu, Y. Liu, H. Tan et al., Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 33, e2104718 (2021). https://doi.org/10.1002/adma.202104718
- F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
- A. Han, B. Wang, A. Kumar, Y. Qin, J. Jin et al., Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 3, 1800471 (2019). https://doi.org/10.1002/smtd.201800471
- J. Zhang, J. Zhang, F. He, Y. Chen, J. Zhu et al., Defect and doping Co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 13, 65 (2021). https://doi.org/10.1007/s40820-020-00579-y
- M. Wu, G. Zhang, H. Yang, X. Liu, M. Dubois et al., Aqueous Zn-based rechargeable batteries: recent progress and future perspectives. InfoMat (2021). https://doi.org/10.1002/inf2.12265
- J. Zhao, J. Lian, Z. Zhao, X. Wang, J. Zhang, A review of in-situ techniques for probing active sites and mechanisms of electrocatalytic oxygen reduction reactions. Nano-Micro Lett. 15, 19 (2022). https://doi.org/10.1007/s40820-022-00984-5
- M. Wu, G. Zhang, M. Wu, J. Prakash, S. Sun, Rational design of multifunctional air electrodes for rechargeable Zn–Air batteries: Recent progress and future perspectives. Energy Storage Mater. 21, 253–286 (2019). https://doi.org/10.1016/j.ensm.2019.05.018
- Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9, 5422 (2018). https://doi.org/10.1038/s41467-018-07850-2
- K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
- M. Wu, G. Zhang, L. Du, D. Yang, H. Yang et al., Defect electrocatalysts and alkaline electrolyte membranes in solid-state zinc–air batteries: recent advances, challenges, and future perspectives. Small Methods 5, 2000868 (2020). https://doi.org/10.1002/smtd.202000868
- J. Pan, X.L. Tian, S. Zaman, Z. Dong, H. Liu et al., Recent progress on transition metal oxides as bifunctional catalysts for lithium-air and zinc-air batteries. Batteries Supercaps 2, 336–347 (2018). https://doi.org/10.1002/batt.201800082
- W. Shao, R. Yan, M. Zhou, L. Ma, C. Roth et al., Carbon-based electrodes for advanced zinc-air batteries: oxygen-catalytic site regulation and nanostructure design. Electrochem. Energy Rev. 6, 11 (2023). https://doi.org/10.1007/s41918-023-00181-x
- X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M. Wang et al., Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018). https://doi.org/10.1002/adma.201706758
- A. Zitolo, N. Ranjbar-Sahraie, T. Mineva, J. Li, Q. Jia et al., Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 8, 957 (2017). https://doi.org/10.1038/s41467-017-01100-7
- M. Wu, G. Zhang, Y. Hu, J. Wang, T. Sun et al., Graphitic-shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N-doped carbon as an efficient electrocatalyst for rechargeable Zn–air battery. Carbon Energy 3, 176–187 (2020). https://doi.org/10.1002/cey2.52
- M. Wu, G. Zhang, J. Qiao, N. Chen, W. Chen et al., Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. Nano Energy 61, 86–95 (2019). https://doi.org/10.1016/j.nanoen.2019.04.031
- P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
- X. Ma, H. Meng, M. Cai, P.K. Shen, Bimetallic carbide nanocomposite enhanced Pt catalyst with high activity and stability for the oxygen reduction reaction. J. Am. Chem. Soc. 134, 1954–1957 (2012). https://doi.org/10.1021/ja2093053
- X. Fan, Z. Peng, R. Ye, H. Zhou, X. Guo, M3C (M: Fe Co, Ni) nanocrystals encased in graphene nanoribbons: an active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 9, 7407–7418 (2015). https://doi.org/10.1021/acsnano.5b02420
- Z. Kou, T. Meng, B. Guo, I.S. Amiinu, W. Li et al., A generic conversion strategy: from 2D metal carbides (MxCy) to M-self-doped graphene toward high-efficiency energy applications. Adv. Funct. Mater. 27, 1604904 (2017). https://doi.org/10.1002/adfm.201604904
- H. Khani, N.S. Grundish, D.O. Wipf, J.B. Goodenough, Graphitic-shell encapsulation of metal electrocatalysts for oxygen evolution, oxygen reduction, and hydrogen evolution in alkaline solution. Adv. Energy Mater. 10, 1903215 (2019). https://doi.org/10.1002/aenm.201903215
- L. Jiao, G. Wan, R. Zhang, H. Zhou, S.H. Yu et al., From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media. Angew. Chem. Int. Ed. 57, 8525–8529 (2018). https://doi.org/10.1002/anie.201803262
- C. Guan, A. Sumboja, W. Zang, Y. Qian, H. Zhang et al., Decorating Co/CoNx nanops in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Storage Mater. 16, 243–250 (2019). https://doi.org/10.1016/j.ensm.2018.06.001
- T. Sun, S. Zhao, W. Chen, D. Zhai, J. Dong et al., Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA 115, 12692–12697 (2018). https://doi.org/10.1073/pnas.1813605115
- H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos et al., Single atomic iron catalysts for oxygen reduction in acidic media: p size control and thermal activation. J. Am. Chem. Soc. 139, 14143–14149 (2017). https://doi.org/10.1021/jacs.7b06514
- S.H. Yin, J. Yang, Y. Han, G. Li, L.Y. Wan et al., Construction of highly active metal-containing nanops and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angew. Chem. Int. Ed. 132, 22160–22163 (2020). https://doi.org/10.1002/ange.202010013
- J. Liu, M. Jiao, L. Lu, H.M. Barkholtz, Y. Li et al., High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 8, 15938 (2017). https://doi.org/10.1038/ncomms15938
- L. Zhang, L.T. Roling, X. Wang, M. Vara, M. Chi et al., Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015). https://doi.org/10.1126/science.aab0801
- A. Bergmann, T.E. Jones, E. Martinez Moreno, D. Teschner, P. Chernev et al., Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 1, 711–719 (2018). https://doi.org/10.1038/s41929-018-0141-2
- Y. Tang, X. Li, H. Lv, D. Xie, W. Wang et al., Stabilized Co3+/Co4+ redox pair in in situ produced CoSe2−x-derived cobalt oxides for alkaline Zn batteries with 10,000-cycle lifespan and 19-V voltage plateau. Adv. Energy Mater. 10, 2000892 (2020). https://doi.org/10.1002/aenm.202000892
- S. Lu, Y. Shi, W. Zhou, Z. Zhang, F. Wu et al., Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation. J. Am. Chem. Soc. 144, 3250–3258 (2022). https://doi.org/10.1021/jacs.1c13374
- S. Lu, W. Zhou, Y. Shi, C. Liu, Y. Yu et al., Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. Chem 8, 1415–1426 (2022). https://doi.org/10.1016/j.chempr.2022.01.016
- M. Wu, G. Zhang, N. Chen, Y. Hu, T. Regier et al., Self-reconstruction of Co/Co2P heterojunctions confined in N-doped carbon nanotubes for zinc–air flow batteries. ACS Energy Lett. (2021). https://doi.org/10.1021/acsenergylett.1c00037
- Y. Li, M. Gong, Y. Liang, J. Feng, J.E. Kim et al., Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 4, 1805 (2013). https://doi.org/10.1038/ncomms2812
- D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai et al., Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015). https://doi.org/10.1021/ja511559d
- M.J. Wu, G.X. Zhang, N. Chen, W.F. Chen, J.L. Qiao et al., A self-supported electrode as a high-performance binder- and carbon-free cathode for rechargeable hybrid zinc batteries. Energy Storage Mater. 24, 272–280 (2020). https://doi.org/10.1016/j.ensm.2019.08.009
- M. Wu, G. Zhang, H. Tong, X. Liu, L. Du et al., Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. Nano Energy 79, 105409 (2021). https://doi.org/10.1016/j.nanoen.2020.105409
- J. Li, M.T. Sougrati, A. Zitolo, J.M. Ablett, I.C. Oğuz et al., Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 4, 10–19 (2020). https://doi.org/10.1038/s41929-020-00545-2
References
M. Wu, J. Qiao, K. Li, X. Zhou, Y. Liu et al., A large-scale synthesis of heteroatom (N and S) co-doped hierarchically porous carbon (HPC) derived from polyquaternium for superior oxygen reduction reactivity. Green Chem. 18, 2699–2709 (2016). https://doi.org/10.1039/c5gc02625c
D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015). https://doi.org/10.1038/nchem.2085
J.Z. Li, M.J. Chen, D.A. Cullen, S. Hwang, M.Y. Wang et al., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8
L.Y. Zhang, T. Zeng, L. Zheng, Y. Wang, W. Yuan et al., Epitaxial growth of Pt–Pd bimetallic heterostructures for the oxygen reduction reaction. Adv. Powder Mater. 2, 100131 (2023). https://doi.org/10.1016/j.apmate.2023.100131
Y. Zhou, N. Wang, L. Xing, X. Zhang, R. Zhong et al., The emerging coupled low-PGM and PGM-free catalysts for oxygen reduction reaction. Chem. Catal. 3, 100484 (2023). https://doi.org/10.1016/j.checat.2022.12.001
M. Wu, Q. Tang, F. Dong, Z. Bai, L. Zhang et al., Fe/N/S-composited hierarchically porous carbons with optimized surface functionality, composition and nanoarchitecture as electrocatalysts for oxygen reduction reaction. J. Catal. 352, 208–217 (2017). https://doi.org/10.1016/j.jcat.2017.05.011
X.F. Yang, A. Wang, B. Qiao, J. Li, J. Liu et al., Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013). https://doi.org/10.1021/ar300361m
H. Zhang, G. Liu, L. Shi, J. Ye, Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8, 1701343 (2018). https://doi.org/10.1002/aenm.201701343
J.X. Wu, W.X. Chen, C.T. He, K. Zheng, L.L. Zhuo et al., Atomically dispersed dual-metal sites showing unique reactivity and dynamism for electrocatalysis. Nano-Micro Lett. 15, 120 (2023). https://doi.org/10.1007/s40820-023-01080-y
Y. Dai, F. Kong, X. Tai, Y. Zhang, B. Liu et al., Advances in graphene-supported single-atom catalysts for clean energy conversion. Electrochem Energy Rev. (2022). https://doi.org/10.1007/s41918-022-00142-w
Z. Wang, X. Jin, C. Zhu, Y. Liu, H. Tan et al., Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 33, e2104718 (2021). https://doi.org/10.1002/adma.202104718
F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
A. Han, B. Wang, A. Kumar, Y. Qin, J. Jin et al., Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 3, 1800471 (2019). https://doi.org/10.1002/smtd.201800471
J. Zhang, J. Zhang, F. He, Y. Chen, J. Zhu et al., Defect and doping Co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 13, 65 (2021). https://doi.org/10.1007/s40820-020-00579-y
M. Wu, G. Zhang, H. Yang, X. Liu, M. Dubois et al., Aqueous Zn-based rechargeable batteries: recent progress and future perspectives. InfoMat (2021). https://doi.org/10.1002/inf2.12265
J. Zhao, J. Lian, Z. Zhao, X. Wang, J. Zhang, A review of in-situ techniques for probing active sites and mechanisms of electrocatalytic oxygen reduction reactions. Nano-Micro Lett. 15, 19 (2022). https://doi.org/10.1007/s40820-022-00984-5
M. Wu, G. Zhang, M. Wu, J. Prakash, S. Sun, Rational design of multifunctional air electrodes for rechargeable Zn–Air batteries: Recent progress and future perspectives. Energy Storage Mater. 21, 253–286 (2019). https://doi.org/10.1016/j.ensm.2019.05.018
Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9, 5422 (2018). https://doi.org/10.1038/s41467-018-07850-2
K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
M. Wu, G. Zhang, L. Du, D. Yang, H. Yang et al., Defect electrocatalysts and alkaline electrolyte membranes in solid-state zinc–air batteries: recent advances, challenges, and future perspectives. Small Methods 5, 2000868 (2020). https://doi.org/10.1002/smtd.202000868
J. Pan, X.L. Tian, S. Zaman, Z. Dong, H. Liu et al., Recent progress on transition metal oxides as bifunctional catalysts for lithium-air and zinc-air batteries. Batteries Supercaps 2, 336–347 (2018). https://doi.org/10.1002/batt.201800082
W. Shao, R. Yan, M. Zhou, L. Ma, C. Roth et al., Carbon-based electrodes for advanced zinc-air batteries: oxygen-catalytic site regulation and nanostructure design. Electrochem. Energy Rev. 6, 11 (2023). https://doi.org/10.1007/s41918-023-00181-x
X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M. Wang et al., Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018). https://doi.org/10.1002/adma.201706758
A. Zitolo, N. Ranjbar-Sahraie, T. Mineva, J. Li, Q. Jia et al., Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 8, 957 (2017). https://doi.org/10.1038/s41467-017-01100-7
M. Wu, G. Zhang, Y. Hu, J. Wang, T. Sun et al., Graphitic-shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N-doped carbon as an efficient electrocatalyst for rechargeable Zn–air battery. Carbon Energy 3, 176–187 (2020). https://doi.org/10.1002/cey2.52
M. Wu, G. Zhang, J. Qiao, N. Chen, W. Chen et al., Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. Nano Energy 61, 86–95 (2019). https://doi.org/10.1016/j.nanoen.2019.04.031
P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
X. Ma, H. Meng, M. Cai, P.K. Shen, Bimetallic carbide nanocomposite enhanced Pt catalyst with high activity and stability for the oxygen reduction reaction. J. Am. Chem. Soc. 134, 1954–1957 (2012). https://doi.org/10.1021/ja2093053
X. Fan, Z. Peng, R. Ye, H. Zhou, X. Guo, M3C (M: Fe Co, Ni) nanocrystals encased in graphene nanoribbons: an active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 9, 7407–7418 (2015). https://doi.org/10.1021/acsnano.5b02420
Z. Kou, T. Meng, B. Guo, I.S. Amiinu, W. Li et al., A generic conversion strategy: from 2D metal carbides (MxCy) to M-self-doped graphene toward high-efficiency energy applications. Adv. Funct. Mater. 27, 1604904 (2017). https://doi.org/10.1002/adfm.201604904
H. Khani, N.S. Grundish, D.O. Wipf, J.B. Goodenough, Graphitic-shell encapsulation of metal electrocatalysts for oxygen evolution, oxygen reduction, and hydrogen evolution in alkaline solution. Adv. Energy Mater. 10, 1903215 (2019). https://doi.org/10.1002/aenm.201903215
L. Jiao, G. Wan, R. Zhang, H. Zhou, S.H. Yu et al., From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media. Angew. Chem. Int. Ed. 57, 8525–8529 (2018). https://doi.org/10.1002/anie.201803262
C. Guan, A. Sumboja, W. Zang, Y. Qian, H. Zhang et al., Decorating Co/CoNx nanops in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Storage Mater. 16, 243–250 (2019). https://doi.org/10.1016/j.ensm.2018.06.001
T. Sun, S. Zhao, W. Chen, D. Zhai, J. Dong et al., Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA 115, 12692–12697 (2018). https://doi.org/10.1073/pnas.1813605115
H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos et al., Single atomic iron catalysts for oxygen reduction in acidic media: p size control and thermal activation. J. Am. Chem. Soc. 139, 14143–14149 (2017). https://doi.org/10.1021/jacs.7b06514
S.H. Yin, J. Yang, Y. Han, G. Li, L.Y. Wan et al., Construction of highly active metal-containing nanops and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angew. Chem. Int. Ed. 132, 22160–22163 (2020). https://doi.org/10.1002/ange.202010013
J. Liu, M. Jiao, L. Lu, H.M. Barkholtz, Y. Li et al., High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 8, 15938 (2017). https://doi.org/10.1038/ncomms15938
L. Zhang, L.T. Roling, X. Wang, M. Vara, M. Chi et al., Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015). https://doi.org/10.1126/science.aab0801
A. Bergmann, T.E. Jones, E. Martinez Moreno, D. Teschner, P. Chernev et al., Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 1, 711–719 (2018). https://doi.org/10.1038/s41929-018-0141-2
Y. Tang, X. Li, H. Lv, D. Xie, W. Wang et al., Stabilized Co3+/Co4+ redox pair in in situ produced CoSe2−x-derived cobalt oxides for alkaline Zn batteries with 10,000-cycle lifespan and 19-V voltage plateau. Adv. Energy Mater. 10, 2000892 (2020). https://doi.org/10.1002/aenm.202000892
S. Lu, Y. Shi, W. Zhou, Z. Zhang, F. Wu et al., Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation. J. Am. Chem. Soc. 144, 3250–3258 (2022). https://doi.org/10.1021/jacs.1c13374
S. Lu, W. Zhou, Y. Shi, C. Liu, Y. Yu et al., Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. Chem 8, 1415–1426 (2022). https://doi.org/10.1016/j.chempr.2022.01.016
M. Wu, G. Zhang, N. Chen, Y. Hu, T. Regier et al., Self-reconstruction of Co/Co2P heterojunctions confined in N-doped carbon nanotubes for zinc–air flow batteries. ACS Energy Lett. (2021). https://doi.org/10.1021/acsenergylett.1c00037
Y. Li, M. Gong, Y. Liang, J. Feng, J.E. Kim et al., Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 4, 1805 (2013). https://doi.org/10.1038/ncomms2812
D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai et al., Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015). https://doi.org/10.1021/ja511559d
M.J. Wu, G.X. Zhang, N. Chen, W.F. Chen, J.L. Qiao et al., A self-supported electrode as a high-performance binder- and carbon-free cathode for rechargeable hybrid zinc batteries. Energy Storage Mater. 24, 272–280 (2020). https://doi.org/10.1016/j.ensm.2019.08.009
M. Wu, G. Zhang, H. Tong, X. Liu, L. Du et al., Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. Nano Energy 79, 105409 (2021). https://doi.org/10.1016/j.nanoen.2020.105409
J. Li, M.T. Sougrati, A. Zitolo, J.M. Ablett, I.C. Oğuz et al., Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 4, 10–19 (2020). https://doi.org/10.1038/s41929-020-00545-2