Machine Learning Tailored Anodes for Efficient Hydrogen Energy Generation in Proton-Conducting Solid Oxide Electrolysis Cells
Corresponding Author: Siyu Ye
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 274
Abstract
In the global trend of vigorously developing hydrogen energy, proton-conducting solid oxide electrolysis cells (P-SOECs) have attracted significant attention due to their advantages of high efficiency and not requiring precious metals. However, the application of P-SOECs faces challenges, particularly in developing high-performance anodes possessing both high catalytic activity and ionic conductivity. In this study, La0.9Ba0.1Co0.7Ni0.3O3−δ (LBCN9173) and La0.9Ca0.1Co0.7Ni0.3O3−δ (LCCN9173) oxides are tailored as promising anodes by machine learning model, achieving the synergistic enhancement of water oxidation reaction kinetics and proton conduction, which is confirmed by comprehensively analyzing experiment and density functional theory calculation results. Furthermore, the anodic reaction mechanisms for P-SOECs with these anodes are elucidated by analyzing distribution of relaxation time spectra and Gibbs energy of water oxidation reaction, manifesting that the dissociation of H2O is facilitated on LBCN9173 anode. As a result, P-SOEC with LBCN9173 anode demonstrates a top-rank current density of 2.45 A cm−2 at 1.3 V and an extremely low polarization resistance of 0.05 Ω cm2 at 650 °C. This multi-scale, multi-faceted research approach not only discovered a high-performance anode but also proved the robust framework for the machine learning-assisted design of anodes for P-SOECs.
Highlights:
1 Machine learning technique was employed to develop anode for proton-conducting solid oxide electrolysis cells (P-SOEC).
2 The screened high-performance La0.9Ba0.1Co0.7Ni0.3O3−δ (LBCN9173) and La0.9Ca0.1Co0.7Ni0.3O3−δ (LCCN9173) anodes achieved a synergistic enhancement of water oxidation reaction kinetics and proton-conducting ability.
3 P-SOECs with LBCN9173 anode demonstrated a top-rank current density of 2.45 A cm−2 and an extremely low polarization resistance of 0.05 Ω cm2 at 650 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wang, Y. Ling, B. Wang, G. Zhai, G. Yang et al., A review of progress in proton ceramic electrochemical cells: material and structural design, coupled with value-added chemical production. Energy Environ. Sci. 16(12), 5721–5770 (2023). https://doi.org/10.1039/D3EE03121G
- C. Tang, Y. Yao, N. Wang, X. Zhang, F. Zheng et al., Green hydrogen production by intermediate-temperature protonic solid oxide electrolysis cells: advances, challenges, and perspectives. InfoMat 6(3), e12515 (2024). https://doi.org/10.1002/inf2.12515
- H.A. Miller, K. Bouzek, J. Hnat, S. Loos, C.I. Bernäcker et al., Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustain. Energy Fuels 4(5), 2114–2133 (2020). https://doi.org/10.1039/C9SE01240K
- J.R. Varcoe, R.C.T. Slade, Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5(2), 187–200 (2005). https://doi.org/10.1002/fuce.200400045
- S. Rauf, M.B. Hanif, Z. Tayyab, M. Veis, M.A.K. Yousaf Shah et al., Alternative strategy for development of dielectric calcium copper titanate-based electrolytes for low-temperature solid oxide fuel cells. Nano-Micro Lett. 17(1), 13 (2024). https://doi.org/10.1007/s40820-024-01523-0
- C. Yin, J. Yang, J. Feng, Y. Sun, Z. Liu et al., Tailoring the reversible phase transition of perovskite nanofiber electrodes for high-performance and durable reversible solid oxide cells. Nano-Micro Lett. 17(1), 150 (2025). https://doi.org/10.1007/s40820-024-01600-4
- C. Tang, K. Akimoto, N. Wang, L. Fadillah, S. Kitano et al., The effect of an anode functional layer on the steam electrolysis performances of protonic solid oxide cells. J. Mater. Chem. A 9(24), 14032–14042 (2021). https://doi.org/10.1039/D1TA02848K
- C. Tang, N. Wang, R. Zhu, S. Kitano, H. Habazaki et al., Design of anode functional layers for protonic solid oxide electrolysis cells. J. Mater. Chem. A 10(29), 15719–15730 (2022). https://doi.org/10.1039/D2TA02760G
- Y. Cheng, S. Zhao, B. Johannessen, J.-P. Veder, M. Saunders et al., Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 30(13), 1706287 (2018). https://doi.org/10.1002/adma.201706287
- Y.H. Kim, H. Jeong, B.R. Won, H. Jeon, C.H. Park et al., Nanop exsolution on perovskite oxides: insights into mechanism, characteristics and novel strategies. Nano-Micro Lett. 16(1), 33 (2023). https://doi.org/10.1007/s40820-023-01258-4
- N. Wang, C. Tang, L. Du, R. Zhu, L. Xing et al., Advanced cathode materials for protonic ceramic fuel cells: recent progress and future perspectives. Adv. Energy Mater. 12(34), 2201882 (2022). https://doi.org/10.1002/aenm.202201882
- N. Wang, S. Hinokuma, T. Ina, H. Toriumi, M. Katayama et al., Incorporation of bulk proton carriers in cubic perovskite manganite driven by interplays of oxygen and manganese redox. Chem. Mater. 31(20), 8383–8393 (2019). https://doi.org/10.1021/acs.chemmater.9b02131
- S. Li, Z. Lü, B. Wei, X. Huang, J. Miao et al., A study of (Ba0.5Sr0.5)1–x SmxCo0.8Fe0.2O3−δ as a cathode material for IT-SOFCs. J. Alloys Compd. 426(1–2), 408–414 (2006). https://doi.org/10.1016/j.jallcom.2006.02.040
- X. Zhang, C. Tang, Y. Yang, F. Zheng, Q. Su et al., Novel high-entropy air electrodes enhancing electrochemical performances of reversible protonic ceramic cells. Adv. Funct. Mater. 2421083 (2025).https://doi.org/10.1002/adfm.202421083
- G.C. Kostogloudis, C. Ftikos, Properties of A-site-deficient La0.6Sr0.4Co0.2Fe0.8O3−δ-based perovskite oxides. Solid State Ion. 126(1–2), 143–151 (1999). https://doi.org/10.1016/S0167-2738(99)00230-1
- B. Wei, Z. Lü, X. Huang, J. Miao, X. Sha et al., Crystal structure, thermal expansion and electrical conductivity of perovskite oxides Ba x Sr1−x Co0.8Fe0.2O3−δ (0.3≤ x ≤0.7). J. Eur. Ceram. Soc. 26(13), 2827–2832 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.06.047
- F. Tietz, I. Arul Raj, M. Zahid, D. Stöver, Electrical conductivity and thermal expansion of La0.8Sr0.2(Mn, Fe, Co)O3-δ perovskites. Solid State Ion. 177(125), 1753–1756 (2006). https://doi.org/10.1016/j.ssi.2005.12.017
- V.V. Kharton, E.N. Naumovich, A.A. Yaremchenko, F.M.B. Marques, Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. J. Solid State Electrochem. 5(3), 160–187 (2001). https://doi.org/10.1007/s100080000141
- K. Singh, P.K. Addo, V. Thangadurai, J. Prado-Gonjal, B. Molero-Sánchez, LaNi0.6Co0.4–xFexO3–δ as air-side contact material for La0.3Ca0.7Fe0.7Cr0.3O3–δ reversible solid oxide fuel cell electrodes. Crystals 12(1), 73 (2022). https://doi.org/10.3390/cryst12010073
- J. Dąbrowa, A. Olszewska, A. Falkenstein, C. Schwab, M. Szymczak et al., An innovative approach to design SOFC air electrode materials: high entropy La1−xSrx(Co, Cr, Fe, Mn, Ni)O3−δ (x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the Sol–gel method. J. Mater. Chem. A 8(46), 24455–24468 (2020). https://doi.org/10.1039/D0TA06356H
- X. Xu, H. Wang, M. Fronzi, X. Wang, L. Bi et al., Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J. Mater. Chem. A 7(36), 20624–20632 (2019). https://doi.org/10.1039/C9TA05300J
- Z. Liu, Y. Bai, H. Sun, D. Guan, W. Li et al., Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells. Nat. Commun. 15(1), 472 (2024). https://doi.org/10.1038/s41467-024-44767-5
- R. Ren, Z. Wang, C. Xu, W. Sun, J. Qiao et al., Tuning the defects of the triple conducting oxide BaCo0.4Fe0.4Zr0.1Y0.1O3−δ perovskite toward enhanced cathode activity of protonic ceramic fuel cells. J. Mater. Chem. A 7(31), 18365–18372 (2019). https://doi.org/10.1039/C9TA04335G
- Z. Luo, X. Hu, Y. Zhou, Y. Ding, W. Zhang et al., Harnessing high-throughput computational methods to accelerate the discovery of optimal proton conductors for high-performance and durable protonic ceramic electrochemical cells. Adv. Mater. 36(18), 2311159 (2024). https://doi.org/10.1002/adma.202311159
- S. Zhai, H. Xie, P. Cui, D. Guan, J. Wang et al., A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nat. Energy 7(9), 866–875 (2022). https://doi.org/10.1038/s41560-022-01098-3
- B. Yuan, N. Wang, C. Tang, L. Meng, L. Du et al., Advances and challenges in high-performance cathodes for protonic solid oxide fuel cells and machine learning-guided perspectives. Nano Energy 122, 109306 (2024). https://doi.org/10.1016/j.nanoen.2024.109306
- X. Hu, Y. Zhou, Z. Luo, H. Li, N. Shi et al., Data-driven discovery of electrode materials for protonic ceramic cells. Energy Environ. Sci. 17(23), 9335–9345 (2024). https://doi.org/10.1039/d4ee03762f
- N. Wang, B. Yuan, F. Zheng, S. Mo, X. Zhang et al., Machine-learning assisted screening proton conducting Co/Fe based oxide for the air electrode of protonic solid oxide cell. Adv. Funct. Mater. 34(12), 2309855 (2024). https://doi.org/10.1002/adfm.202309855
- N. Wang, B. Yuan, C. Tang, L. Du, R. Zhu et al., Machine-learning-accelerated development of efficient mixed protonic–electronic conducting oxides as the air electrodes for protonic ceramic cells. Adv. Mater. 34(51), 2203446 (2022). https://doi.org/10.1002/adma.202203446
- R. Zohourian, R. Merkle, G. Raimondi, J. Maier, Mixed-conducting perovskites as cathode materials for protonic ceramic fuel cells: understanding the trends in proton uptake. Adv. Funct. Mater. 28(35), 1801241 (2018). https://doi.org/10.1002/adfm.201801241
- K.D. Kreuer, S. Adams, W. Münch, A. Fuchs, U. Klock et al., Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ion. 145(1–4), 295–306 (2001). https://doi.org/10.1016/S0167-2738(01)00953-5
- J. Hyodo, K. Tsujikawa, M. Shiga, Y. Okuyama, Y. Yamazaki, Accelerated discovery of proton-conducting perovskite oxide by capturing physicochemical fundamentals of hydration. ACS Energy Lett. 6(8), 2985–2992 (2021). https://doi.org/10.1021/acsenergylett.1c01239
- D. Hu, J. Kim, H. Niu, L.M. Daniels, T.D. Manning et al., High-performance protonic ceramic fuel cell cathode using protophilic mixed ion and electron conducting material. J. Mater. Chem. A 10(5), 2559–2566 (2022). https://doi.org/10.1039/D1TA07113K
- Y. Okuyama, T. Kozai, T. Sakai, M. Matsuka, H. Matsumoto, Proton transport properties of La0.9M0.1YbO3−δ (M =Ba, Sr, Ca, Mg). Electrochim. Acta 95, 54–59 (2013). https://doi.org/10.1016/j.electacta.2013.01.156
- S. Choi, C.J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi et al., Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3(3), 202–210 (2018). https://doi.org/10.1038/s41560-017-0085-9
- R. Ren, Z. Wang, X. Meng, X. Wang, C. Xu et al., Tailoring the oxygen vacancy to achieve fast intrinsic proton transport in a perovskite cathode for protonic ceramic fuel cells. ACS Appl. Energy Mater. 3(5), 4914–4922 (2020). https://doi.org/10.1021/acsaem.0c00486
- I. Cho, J. Yun, B. Seong, J. Kim, S.H. Choi et al., Correlation between hydration properties and electrochemical performances on Ln cation size effect in layered perovskite for protonic ceramic fuel cells. J. Energy Chem. 88, 1–9 (2024). https://doi.org/10.1016/j.jechem.2023.09.004
- C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders et al., Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349(6254), 1321–1326 (2015). https://doi.org/10.1126/science.aab3987
- N. Wang, H. Toriumi, Y. Sato, C. Tang, T. Nakamura et al., La0.8Sr0.2Co1-xNixO3-δ as the efficient triple conductor air electrode for protonic ceramic cells. ACS Appl. Energy Mater. 4(1), 554–563 (2021). https://doi.org/10.1021/acsaem.0c02447
- C. Tang, B. Yuan, X. Zhang, F. Zheng, Q. Su et al., Rationally designed air electrode boosting electrochemical performance of protonic ceramic cells. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202402654
- F. He, M. Hou, D. Liu, Y. Ding, K. Sasaki et al., Phase segregation of a composite air electrode unlocks the high performance of reversible protonic ceramic electrochemical cells. Energy Environ. Sci. 17(11), 3898–3907 (2024). https://doi.org/10.1039/D4EE01608D
- N. Shi, K. Zhu, Y. Xie, D. Huan, J. Hyodo et al., Investigation of water impacts on surface properties and performance of air-electrode in reversible protonic ceramic cells. Small 20(36), 2400501 (2024). https://doi.org/10.1002/smll.202400501
- L. Chen, G. Wang, K. Toyoura, D. Han, High-temperature protonic conduction in La2NiO4+δ-based ruddlesden–popper type oxides: correlation with concentration of interstitial oxide ions. Small 20(29), 2311473 (2024). https://doi.org/10.1002/smll.202311473
- N. Wang, C. Tang, L. Du, Z.-Q. Liu, W. Li et al., Single-phase La0.8Sr0.2Co1-x MnxO3-δ electrocatalyst as a triple H+/O2-/e- conductor enabling high-performance intermediate-temperature water electrolysis. J. Materiomics 8(5), 1020–1030 (2022). https://doi.org/10.1016/j.jmat.2022.02.012
- N. Wang, S. Hinokuma, T. Ina, C. Zhu, H. Habazaki et al., Mixed proton–electron–oxide ion triple conducting manganite as an efficient cobalt-free cathode for protonic ceramic fuel cells. J. Mater. Chem. A 8(21), 11043–11055 (2020). https://doi.org/10.1039/D0TA03899G
- R. Tang, X. Men, L. Zhang, L. Bi, Z. Liu, Bio-inspired honeycomb-shaped La0·5Sr0·5Fe0·9P0·1O3-δ as a high-performing cathode for proton-conducting SOFCs. Int. J. Hydrog. Energy 48(40), 15248–15257 (2023). https://doi.org/10.1016/j.ijhydene.2023.01.071
- J. Dai, Y. Zhu, H.A. Tahini, Q. Lin, Y. Chen et al., Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 11(1), 5657 (2020). https://doi.org/10.1038/s41467-020-19433-1
- X. Feng, Y. Wang, H. Zheng, P. Wang, X. Wang et al., Strategic potassium doping in perovskites: a pathway to superior oxygen reduction reaction and hydration activity in reversible proton ceramic electrochemical cells. J. Power. Sources 630, 236136 (2025). https://doi.org/10.1016/j.jpowsour.2024.236136
- X. Yang, G. Li, Y. Zhou, C. Sun, L. Bi, Tailoring Pr0.5Sr0.5FeO3 oxides with Mn cations as a cathode for proton-conducting solid oxide fuel cells. Electrochem. Commun. 161, 107685 (2024). https://doi.org/10.1016/j.elecom.2024.107685
- Y. Liu, H. Huang, L. Xue, J. Sun, X. Wang et al., Recent advances in the heteroatom doping of perovskite oxides for efficient electrocatalytic reactions. Nanoscale 13(47), 19840–19856 (2021). https://doi.org/10.1039/D1NR05797A
- X. Lei, Z. Peng, P. Liang, D. Wu, X. Chao et al., Realizing oxygen ion conduction in perovskite structure NaNbO3 by A-site Bismuth doping. J. Alloys Compd. 924, 166506 (2022). https://doi.org/10.1016/j.jallcom.2022.166506
- H. Zhang, W. Li, J. Essman, C. Quarti, I. Metcalf et al., Ultrafast relaxation of lattice distortion in two-dimensional perovskites. Nat. Phys. 19(4), 545–550 (2023). https://doi.org/10.1038/s41567-022-01903-6
- S. He, H. Dai, L. Bi, A highly efficient Sb-doped La0.5Sr0.5FeO3-δ cathode for protonic ceramic fuel cells. Ceram. Int. 50(1), 1284–1292 (2024). https://doi.org/10.1016/j.ceramint.2023.10.090
- P. Yao, J. Zhang, Q. Qiu, G. Li, Y. Zhao et al., Design of a perovskite oxide cathode for a protonic ceramic fuel cell. Ceram. Int. 50(1), 2373–2382 (2024). https://doi.org/10.1016/j.ceramint.2023.11.015
- K.D. Kreuer, Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ion. 125(1–4), 285–302 (1999). https://doi.org/10.1016/S0167-2738(99)00188-5
- M. Liang, Y. Wang, Y. Song, D. Guan, J. Wu et al., High-temperature water oxidation activity of a perovskite-based nanocomposite towards application as air electrode in reversible protonic ceramic cells. Appl. Catal. B Environ. 331, 122682 (2023). https://doi.org/10.1016/j.apcatb.2023.122682
- H. Ding, W. Wu, C. Jiang, Y. Ding, W. Bian et al., Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nat. Commun. 11(1), 1907 (2020). https://doi.org/10.1038/s41467-020-15677-z
- Y. Zhou, E. Liu, Y. Chen, Y. Liu, L. Zhang et al., An active and robust air electrode for reversible protonic ceramic electrochemical cells. ACS Energy Lett. 6(4), 1511–1520 (2021). https://doi.org/10.1021/acsenergylett.1c00432
- Y. Song, Y. Chen, W. Wang, C. Zhou, Y. Zhong et al., Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode. Joule 3(11), 2842–2853 (2019). https://doi.org/10.1016/j.joule.2019.07.004
- K. Watanabe, Y. Yamaguchi, K. Nomura, H. Sumi, M. Mori et al., Effect of cobalt content on electrochemical performance for La0.6Sr0.4CoxFe1-xO3-δ and BaZr0.8Yb0.2O3-δ composite cathodes in protonic ceramic fuel cells. Ceram. Int. 49(12), 21085–21090 (2023). https://doi.org/10.1016/j.ceramint.2023.03.105
- H. Shimada, Y. Yamaguchi, H. Sumi, Y. Mizutani, Performance comparison of perovskite composite cathodes with BaZr0.1Ce0.7Y0.1Yb0.1O3–δ in anode-supported protonic ceramic fuel cells. J. Electrochem. Soc. 167(12), 124506 (2020). https://doi.org/10.1149/1945-7111/abab26
- W. Tang, H. Ding, W. Bian, W. Wu, W. Li et al., Understanding of A-site deficiency in layered perovskites: promotion of dual reaction kinetics for water oxidation and oxygen reduction in protonic ceramic electrochemical cells. J. Mater. Chem. A 8(29), 14600–14608 (2020). https://doi.org/10.1039/D0TA05137C
- Y. Song, J. Liu, Y. Wang, D. Guan, A. Seong et al., Nanocomposites: a new opportunity for developing highly active and durable bifunctional air electrodes for reversible protonic ceramic cells. Adv. Energy Mater. 11(36), 2101899 (2021). https://doi.org/10.1002/aenm.202101899
- M. Liang, Y. Song, D. Liu, L. Xu, M. Xu et al., Magnesium tuned triple conductivity and bifunctionality of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite towards reversible protonic ceramic electrochemical cells. Appl. Catal. B Environ. 318, 121868 (2022). https://doi.org/10.1016/j.apcatb.2022.121868
- Z. Liu, D. Cheng, Y. Zhu, M. Liang, M. Yang et al., Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells. Chem. Eng. J. 450, 137787 (2022). https://doi.org/10.1016/j.cej.2022.137787
- K. Xu, H. Zhang, Y. Xu, F. He, Y. Zhou et al., An efficient steam-induced heterostructured air electrode for protonic ceramic electrochemical cells. Adv. Funct. Mater. 32(23), 2110998 (2022). https://doi.org/10.1002/adfm.202110998
- C. Lu, R. Ren, Z. Zhu, G. Pan, G. Wang et al., BaCo0.4Fe0.4Nb0.1Sc0.1O3-δ perovskite oxide with super hydration capacity for a high-activity proton ceramic electrolytic cell oxygen electrode. Chem. Eng. J. 472, 144878 (2023). https://doi.org/10.1016/j.cej.2023.144878
- Z. Liu, Y. Lin, H. Nie, D. Liu, Y. Li et al., Highly active nanocomposite air electrode with fast proton diffusion channels via Er doping-induced phase separation for reversible proton ceramic electrochemical cells. Adv. Funct. Mater. 34(7), 2311140 (2024). https://doi.org/10.1002/adfm.202311140
- N. Yu, I.T. Bello, X. Chen, T. Liu, Z. Li et al., Rational design of ruddlesden-popper perovskite ferrites as air electrode for highly active and durable reversible protonic ceramic cells. Nano-Micro Lett. 16(1), 177 (2024). https://doi.org/10.1007/s40820-024-01397-2
- K. Zhu, L. Zhang, N. Shi, B. Qiu, X. Hu et al., A superior catalytic air electrode with temperature-induced exsolution toward protonic ceramic cells. ACS Nano 18(6), 5141–5151 (2024). https://doi.org/10.1021/acsnano.3c12609
- X. Chen, N. Yu, Y. Song, T. Liu, H. Xu et al., Synergistic bulk and surface engineering for expeditious and durable reversible protonic ceramic electrochemical cells air electrode. Adv. Mater. 36(32), 2403998 (2024). https://doi.org/10.1002/adma.202403998
- Y. Zhang, Y. Wang, Z. Liu, Z. Wang, Y. Wang et al., Constructing robust and efficient ceramic cells air electrodes through collaborative optimization bulk and surface phases. Adv. Funct. Mater. 1, 2422531 (2025). https://doi.org/10.1002/adfm.202422531
- X. Yu, L. Ge, Y. Mi, B. Wu, Z. Yu et al., Superior active and durable air electrode for protonic ceramic cells by metal-oxide bond engineering. Small 21(8), 2408607 (2025). https://doi.org/10.1002/smll.202408607
- W. Wu, H. Ding, Y. Zhang, Y. Ding, P. Katiyar et al., 3D self-architectured steam electrode enabled efficient and durable hydrogen production in a proton-conducting solid oxide electrolysis cell at temperatures lower than 600 °C. Adv. Sci. 5(11), 1800360 (2018). https://doi.org/10.1002/advs.201800360
- S. Choi, T.C. Davenport, S.M. Haile, Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency. Energy Environ. Sci. 12(1), 206–215 (2019). https://doi.org/10.1039/C8EE02865F
- J.-S. Shin, H. Park, K. Park, M. Saqib, M. Jo et al., Activity of layered swedenborgite structured Y0.8Er0.2BaCo3.2Ga0.8O7+δ for oxygen electrode reactions in at intermediate temperature reversible ceramic cells. J. Mater. Chem. A 9(1), 607–621 (2021). https://doi.org/10.1039/D0TA11000K
- F. He, S. Liu, T. Wu, M. Yang, W. Li et al., Catalytic self-assembled air electrode for highly active and durable reversible protonic ceramic electrochemical cells. Adv. Funct. Mater. 32(48), 2206756 (2022). https://doi.org/10.1002/adfm.202206756
- C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu et al., Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4(3), 230–240 (2019). https://doi.org/10.1038/s41560-019-0333-2
- Y. Cai, Y. Chen, M. Akbar, B. Jin, Z. Tu et al., A bulk-heterostructure nanocomposite electrolyte of Ce0.8Sm0.2O2-δ-SrTiO3 for low-temperature solid oxide fuel cells. Nano-Micro Lett. 13(1), 46 (2021). https://doi.org/10.1007/s40820-020-00574-3
- Z. Li, X. Mao, D. Feng, M. Li, X. Xu et al., Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures. Nat. Commun. 15(1), 9318 (2024). https://doi.org/10.1038/s41467-024-53578-7
- Y. Cai, C. Wang, H. Yuan, Y. Guo, J.-H. Cho et al., Exploring negative thermal expansion materials with bulk framework structures and their relevant scaling relationships through multi-step machine learning. Mater. Horiz. 11(12), 2914–2925 (2024). https://doi.org/10.1039/D3MH01509B
- S. Han, B.G. Lee, D.-W. Lim, J. Kim, Machine learning-based prediction of proton conductivity in metal–organic frameworks. Chem. Mater. 36(22), 11280–11287 (2024). https://doi.org/10.1021/acs.chemmater.4c02368
References
Y. Wang, Y. Ling, B. Wang, G. Zhai, G. Yang et al., A review of progress in proton ceramic electrochemical cells: material and structural design, coupled with value-added chemical production. Energy Environ. Sci. 16(12), 5721–5770 (2023). https://doi.org/10.1039/D3EE03121G
C. Tang, Y. Yao, N. Wang, X. Zhang, F. Zheng et al., Green hydrogen production by intermediate-temperature protonic solid oxide electrolysis cells: advances, challenges, and perspectives. InfoMat 6(3), e12515 (2024). https://doi.org/10.1002/inf2.12515
H.A. Miller, K. Bouzek, J. Hnat, S. Loos, C.I. Bernäcker et al., Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustain. Energy Fuels 4(5), 2114–2133 (2020). https://doi.org/10.1039/C9SE01240K
J.R. Varcoe, R.C.T. Slade, Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5(2), 187–200 (2005). https://doi.org/10.1002/fuce.200400045
S. Rauf, M.B. Hanif, Z. Tayyab, M. Veis, M.A.K. Yousaf Shah et al., Alternative strategy for development of dielectric calcium copper titanate-based electrolytes for low-temperature solid oxide fuel cells. Nano-Micro Lett. 17(1), 13 (2024). https://doi.org/10.1007/s40820-024-01523-0
C. Yin, J. Yang, J. Feng, Y. Sun, Z. Liu et al., Tailoring the reversible phase transition of perovskite nanofiber electrodes for high-performance and durable reversible solid oxide cells. Nano-Micro Lett. 17(1), 150 (2025). https://doi.org/10.1007/s40820-024-01600-4
C. Tang, K. Akimoto, N. Wang, L. Fadillah, S. Kitano et al., The effect of an anode functional layer on the steam electrolysis performances of protonic solid oxide cells. J. Mater. Chem. A 9(24), 14032–14042 (2021). https://doi.org/10.1039/D1TA02848K
C. Tang, N. Wang, R. Zhu, S. Kitano, H. Habazaki et al., Design of anode functional layers for protonic solid oxide electrolysis cells. J. Mater. Chem. A 10(29), 15719–15730 (2022). https://doi.org/10.1039/D2TA02760G
Y. Cheng, S. Zhao, B. Johannessen, J.-P. Veder, M. Saunders et al., Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 30(13), 1706287 (2018). https://doi.org/10.1002/adma.201706287
Y.H. Kim, H. Jeong, B.R. Won, H. Jeon, C.H. Park et al., Nanop exsolution on perovskite oxides: insights into mechanism, characteristics and novel strategies. Nano-Micro Lett. 16(1), 33 (2023). https://doi.org/10.1007/s40820-023-01258-4
N. Wang, C. Tang, L. Du, R. Zhu, L. Xing et al., Advanced cathode materials for protonic ceramic fuel cells: recent progress and future perspectives. Adv. Energy Mater. 12(34), 2201882 (2022). https://doi.org/10.1002/aenm.202201882
N. Wang, S. Hinokuma, T. Ina, H. Toriumi, M. Katayama et al., Incorporation of bulk proton carriers in cubic perovskite manganite driven by interplays of oxygen and manganese redox. Chem. Mater. 31(20), 8383–8393 (2019). https://doi.org/10.1021/acs.chemmater.9b02131
S. Li, Z. Lü, B. Wei, X. Huang, J. Miao et al., A study of (Ba0.5Sr0.5)1–x SmxCo0.8Fe0.2O3−δ as a cathode material for IT-SOFCs. J. Alloys Compd. 426(1–2), 408–414 (2006). https://doi.org/10.1016/j.jallcom.2006.02.040
X. Zhang, C. Tang, Y. Yang, F. Zheng, Q. Su et al., Novel high-entropy air electrodes enhancing electrochemical performances of reversible protonic ceramic cells. Adv. Funct. Mater. 2421083 (2025).https://doi.org/10.1002/adfm.202421083
G.C. Kostogloudis, C. Ftikos, Properties of A-site-deficient La0.6Sr0.4Co0.2Fe0.8O3−δ-based perovskite oxides. Solid State Ion. 126(1–2), 143–151 (1999). https://doi.org/10.1016/S0167-2738(99)00230-1
B. Wei, Z. Lü, X. Huang, J. Miao, X. Sha et al., Crystal structure, thermal expansion and electrical conductivity of perovskite oxides Ba x Sr1−x Co0.8Fe0.2O3−δ (0.3≤ x ≤0.7). J. Eur. Ceram. Soc. 26(13), 2827–2832 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.06.047
F. Tietz, I. Arul Raj, M. Zahid, D. Stöver, Electrical conductivity and thermal expansion of La0.8Sr0.2(Mn, Fe, Co)O3-δ perovskites. Solid State Ion. 177(125), 1753–1756 (2006). https://doi.org/10.1016/j.ssi.2005.12.017
V.V. Kharton, E.N. Naumovich, A.A. Yaremchenko, F.M.B. Marques, Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. J. Solid State Electrochem. 5(3), 160–187 (2001). https://doi.org/10.1007/s100080000141
K. Singh, P.K. Addo, V. Thangadurai, J. Prado-Gonjal, B. Molero-Sánchez, LaNi0.6Co0.4–xFexO3–δ as air-side contact material for La0.3Ca0.7Fe0.7Cr0.3O3–δ reversible solid oxide fuel cell electrodes. Crystals 12(1), 73 (2022). https://doi.org/10.3390/cryst12010073
J. Dąbrowa, A. Olszewska, A. Falkenstein, C. Schwab, M. Szymczak et al., An innovative approach to design SOFC air electrode materials: high entropy La1−xSrx(Co, Cr, Fe, Mn, Ni)O3−δ (x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the Sol–gel method. J. Mater. Chem. A 8(46), 24455–24468 (2020). https://doi.org/10.1039/D0TA06356H
X. Xu, H. Wang, M. Fronzi, X. Wang, L. Bi et al., Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J. Mater. Chem. A 7(36), 20624–20632 (2019). https://doi.org/10.1039/C9TA05300J
Z. Liu, Y. Bai, H. Sun, D. Guan, W. Li et al., Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells. Nat. Commun. 15(1), 472 (2024). https://doi.org/10.1038/s41467-024-44767-5
R. Ren, Z. Wang, C. Xu, W. Sun, J. Qiao et al., Tuning the defects of the triple conducting oxide BaCo0.4Fe0.4Zr0.1Y0.1O3−δ perovskite toward enhanced cathode activity of protonic ceramic fuel cells. J. Mater. Chem. A 7(31), 18365–18372 (2019). https://doi.org/10.1039/C9TA04335G
Z. Luo, X. Hu, Y. Zhou, Y. Ding, W. Zhang et al., Harnessing high-throughput computational methods to accelerate the discovery of optimal proton conductors for high-performance and durable protonic ceramic electrochemical cells. Adv. Mater. 36(18), 2311159 (2024). https://doi.org/10.1002/adma.202311159
S. Zhai, H. Xie, P. Cui, D. Guan, J. Wang et al., A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nat. Energy 7(9), 866–875 (2022). https://doi.org/10.1038/s41560-022-01098-3
B. Yuan, N. Wang, C. Tang, L. Meng, L. Du et al., Advances and challenges in high-performance cathodes for protonic solid oxide fuel cells and machine learning-guided perspectives. Nano Energy 122, 109306 (2024). https://doi.org/10.1016/j.nanoen.2024.109306
X. Hu, Y. Zhou, Z. Luo, H. Li, N. Shi et al., Data-driven discovery of electrode materials for protonic ceramic cells. Energy Environ. Sci. 17(23), 9335–9345 (2024). https://doi.org/10.1039/d4ee03762f
N. Wang, B. Yuan, F. Zheng, S. Mo, X. Zhang et al., Machine-learning assisted screening proton conducting Co/Fe based oxide for the air electrode of protonic solid oxide cell. Adv. Funct. Mater. 34(12), 2309855 (2024). https://doi.org/10.1002/adfm.202309855
N. Wang, B. Yuan, C. Tang, L. Du, R. Zhu et al., Machine-learning-accelerated development of efficient mixed protonic–electronic conducting oxides as the air electrodes for protonic ceramic cells. Adv. Mater. 34(51), 2203446 (2022). https://doi.org/10.1002/adma.202203446
R. Zohourian, R. Merkle, G. Raimondi, J. Maier, Mixed-conducting perovskites as cathode materials for protonic ceramic fuel cells: understanding the trends in proton uptake. Adv. Funct. Mater. 28(35), 1801241 (2018). https://doi.org/10.1002/adfm.201801241
K.D. Kreuer, S. Adams, W. Münch, A. Fuchs, U. Klock et al., Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ion. 145(1–4), 295–306 (2001). https://doi.org/10.1016/S0167-2738(01)00953-5
J. Hyodo, K. Tsujikawa, M. Shiga, Y. Okuyama, Y. Yamazaki, Accelerated discovery of proton-conducting perovskite oxide by capturing physicochemical fundamentals of hydration. ACS Energy Lett. 6(8), 2985–2992 (2021). https://doi.org/10.1021/acsenergylett.1c01239
D. Hu, J. Kim, H. Niu, L.M. Daniels, T.D. Manning et al., High-performance protonic ceramic fuel cell cathode using protophilic mixed ion and electron conducting material. J. Mater. Chem. A 10(5), 2559–2566 (2022). https://doi.org/10.1039/D1TA07113K
Y. Okuyama, T. Kozai, T. Sakai, M. Matsuka, H. Matsumoto, Proton transport properties of La0.9M0.1YbO3−δ (M =Ba, Sr, Ca, Mg). Electrochim. Acta 95, 54–59 (2013). https://doi.org/10.1016/j.electacta.2013.01.156
S. Choi, C.J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi et al., Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3(3), 202–210 (2018). https://doi.org/10.1038/s41560-017-0085-9
R. Ren, Z. Wang, X. Meng, X. Wang, C. Xu et al., Tailoring the oxygen vacancy to achieve fast intrinsic proton transport in a perovskite cathode for protonic ceramic fuel cells. ACS Appl. Energy Mater. 3(5), 4914–4922 (2020). https://doi.org/10.1021/acsaem.0c00486
I. Cho, J. Yun, B. Seong, J. Kim, S.H. Choi et al., Correlation between hydration properties and electrochemical performances on Ln cation size effect in layered perovskite for protonic ceramic fuel cells. J. Energy Chem. 88, 1–9 (2024). https://doi.org/10.1016/j.jechem.2023.09.004
C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders et al., Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349(6254), 1321–1326 (2015). https://doi.org/10.1126/science.aab3987
N. Wang, H. Toriumi, Y. Sato, C. Tang, T. Nakamura et al., La0.8Sr0.2Co1-xNixO3-δ as the efficient triple conductor air electrode for protonic ceramic cells. ACS Appl. Energy Mater. 4(1), 554–563 (2021). https://doi.org/10.1021/acsaem.0c02447
C. Tang, B. Yuan, X. Zhang, F. Zheng, Q. Su et al., Rationally designed air electrode boosting electrochemical performance of protonic ceramic cells. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202402654
F. He, M. Hou, D. Liu, Y. Ding, K. Sasaki et al., Phase segregation of a composite air electrode unlocks the high performance of reversible protonic ceramic electrochemical cells. Energy Environ. Sci. 17(11), 3898–3907 (2024). https://doi.org/10.1039/D4EE01608D
N. Shi, K. Zhu, Y. Xie, D. Huan, J. Hyodo et al., Investigation of water impacts on surface properties and performance of air-electrode in reversible protonic ceramic cells. Small 20(36), 2400501 (2024). https://doi.org/10.1002/smll.202400501
L. Chen, G. Wang, K. Toyoura, D. Han, High-temperature protonic conduction in La2NiO4+δ-based ruddlesden–popper type oxides: correlation with concentration of interstitial oxide ions. Small 20(29), 2311473 (2024). https://doi.org/10.1002/smll.202311473
N. Wang, C. Tang, L. Du, Z.-Q. Liu, W. Li et al., Single-phase La0.8Sr0.2Co1-x MnxO3-δ electrocatalyst as a triple H+/O2-/e- conductor enabling high-performance intermediate-temperature water electrolysis. J. Materiomics 8(5), 1020–1030 (2022). https://doi.org/10.1016/j.jmat.2022.02.012
N. Wang, S. Hinokuma, T. Ina, C. Zhu, H. Habazaki et al., Mixed proton–electron–oxide ion triple conducting manganite as an efficient cobalt-free cathode for protonic ceramic fuel cells. J. Mater. Chem. A 8(21), 11043–11055 (2020). https://doi.org/10.1039/D0TA03899G
R. Tang, X. Men, L. Zhang, L. Bi, Z. Liu, Bio-inspired honeycomb-shaped La0·5Sr0·5Fe0·9P0·1O3-δ as a high-performing cathode for proton-conducting SOFCs. Int. J. Hydrog. Energy 48(40), 15248–15257 (2023). https://doi.org/10.1016/j.ijhydene.2023.01.071
J. Dai, Y. Zhu, H.A. Tahini, Q. Lin, Y. Chen et al., Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 11(1), 5657 (2020). https://doi.org/10.1038/s41467-020-19433-1
X. Feng, Y. Wang, H. Zheng, P. Wang, X. Wang et al., Strategic potassium doping in perovskites: a pathway to superior oxygen reduction reaction and hydration activity in reversible proton ceramic electrochemical cells. J. Power. Sources 630, 236136 (2025). https://doi.org/10.1016/j.jpowsour.2024.236136
X. Yang, G. Li, Y. Zhou, C. Sun, L. Bi, Tailoring Pr0.5Sr0.5FeO3 oxides with Mn cations as a cathode for proton-conducting solid oxide fuel cells. Electrochem. Commun. 161, 107685 (2024). https://doi.org/10.1016/j.elecom.2024.107685
Y. Liu, H. Huang, L. Xue, J. Sun, X. Wang et al., Recent advances in the heteroatom doping of perovskite oxides for efficient electrocatalytic reactions. Nanoscale 13(47), 19840–19856 (2021). https://doi.org/10.1039/D1NR05797A
X. Lei, Z. Peng, P. Liang, D. Wu, X. Chao et al., Realizing oxygen ion conduction in perovskite structure NaNbO3 by A-site Bismuth doping. J. Alloys Compd. 924, 166506 (2022). https://doi.org/10.1016/j.jallcom.2022.166506
H. Zhang, W. Li, J. Essman, C. Quarti, I. Metcalf et al., Ultrafast relaxation of lattice distortion in two-dimensional perovskites. Nat. Phys. 19(4), 545–550 (2023). https://doi.org/10.1038/s41567-022-01903-6
S. He, H. Dai, L. Bi, A highly efficient Sb-doped La0.5Sr0.5FeO3-δ cathode for protonic ceramic fuel cells. Ceram. Int. 50(1), 1284–1292 (2024). https://doi.org/10.1016/j.ceramint.2023.10.090
P. Yao, J. Zhang, Q. Qiu, G. Li, Y. Zhao et al., Design of a perovskite oxide cathode for a protonic ceramic fuel cell. Ceram. Int. 50(1), 2373–2382 (2024). https://doi.org/10.1016/j.ceramint.2023.11.015
K.D. Kreuer, Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ion. 125(1–4), 285–302 (1999). https://doi.org/10.1016/S0167-2738(99)00188-5
M. Liang, Y. Wang, Y. Song, D. Guan, J. Wu et al., High-temperature water oxidation activity of a perovskite-based nanocomposite towards application as air electrode in reversible protonic ceramic cells. Appl. Catal. B Environ. 331, 122682 (2023). https://doi.org/10.1016/j.apcatb.2023.122682
H. Ding, W. Wu, C. Jiang, Y. Ding, W. Bian et al., Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nat. Commun. 11(1), 1907 (2020). https://doi.org/10.1038/s41467-020-15677-z
Y. Zhou, E. Liu, Y. Chen, Y. Liu, L. Zhang et al., An active and robust air electrode for reversible protonic ceramic electrochemical cells. ACS Energy Lett. 6(4), 1511–1520 (2021). https://doi.org/10.1021/acsenergylett.1c00432
Y. Song, Y. Chen, W. Wang, C. Zhou, Y. Zhong et al., Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode. Joule 3(11), 2842–2853 (2019). https://doi.org/10.1016/j.joule.2019.07.004
K. Watanabe, Y. Yamaguchi, K. Nomura, H. Sumi, M. Mori et al., Effect of cobalt content on electrochemical performance for La0.6Sr0.4CoxFe1-xO3-δ and BaZr0.8Yb0.2O3-δ composite cathodes in protonic ceramic fuel cells. Ceram. Int. 49(12), 21085–21090 (2023). https://doi.org/10.1016/j.ceramint.2023.03.105
H. Shimada, Y. Yamaguchi, H. Sumi, Y. Mizutani, Performance comparison of perovskite composite cathodes with BaZr0.1Ce0.7Y0.1Yb0.1O3–δ in anode-supported protonic ceramic fuel cells. J. Electrochem. Soc. 167(12), 124506 (2020). https://doi.org/10.1149/1945-7111/abab26
W. Tang, H. Ding, W. Bian, W. Wu, W. Li et al., Understanding of A-site deficiency in layered perovskites: promotion of dual reaction kinetics for water oxidation and oxygen reduction in protonic ceramic electrochemical cells. J. Mater. Chem. A 8(29), 14600–14608 (2020). https://doi.org/10.1039/D0TA05137C
Y. Song, J. Liu, Y. Wang, D. Guan, A. Seong et al., Nanocomposites: a new opportunity for developing highly active and durable bifunctional air electrodes for reversible protonic ceramic cells. Adv. Energy Mater. 11(36), 2101899 (2021). https://doi.org/10.1002/aenm.202101899
M. Liang, Y. Song, D. Liu, L. Xu, M. Xu et al., Magnesium tuned triple conductivity and bifunctionality of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite towards reversible protonic ceramic electrochemical cells. Appl. Catal. B Environ. 318, 121868 (2022). https://doi.org/10.1016/j.apcatb.2022.121868
Z. Liu, D. Cheng, Y. Zhu, M. Liang, M. Yang et al., Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells. Chem. Eng. J. 450, 137787 (2022). https://doi.org/10.1016/j.cej.2022.137787
K. Xu, H. Zhang, Y. Xu, F. He, Y. Zhou et al., An efficient steam-induced heterostructured air electrode for protonic ceramic electrochemical cells. Adv. Funct. Mater. 32(23), 2110998 (2022). https://doi.org/10.1002/adfm.202110998
C. Lu, R. Ren, Z. Zhu, G. Pan, G. Wang et al., BaCo0.4Fe0.4Nb0.1Sc0.1O3-δ perovskite oxide with super hydration capacity for a high-activity proton ceramic electrolytic cell oxygen electrode. Chem. Eng. J. 472, 144878 (2023). https://doi.org/10.1016/j.cej.2023.144878
Z. Liu, Y. Lin, H. Nie, D. Liu, Y. Li et al., Highly active nanocomposite air electrode with fast proton diffusion channels via Er doping-induced phase separation for reversible proton ceramic electrochemical cells. Adv. Funct. Mater. 34(7), 2311140 (2024). https://doi.org/10.1002/adfm.202311140
N. Yu, I.T. Bello, X. Chen, T. Liu, Z. Li et al., Rational design of ruddlesden-popper perovskite ferrites as air electrode for highly active and durable reversible protonic ceramic cells. Nano-Micro Lett. 16(1), 177 (2024). https://doi.org/10.1007/s40820-024-01397-2
K. Zhu, L. Zhang, N. Shi, B. Qiu, X. Hu et al., A superior catalytic air electrode with temperature-induced exsolution toward protonic ceramic cells. ACS Nano 18(6), 5141–5151 (2024). https://doi.org/10.1021/acsnano.3c12609
X. Chen, N. Yu, Y. Song, T. Liu, H. Xu et al., Synergistic bulk and surface engineering for expeditious and durable reversible protonic ceramic electrochemical cells air electrode. Adv. Mater. 36(32), 2403998 (2024). https://doi.org/10.1002/adma.202403998
Y. Zhang, Y. Wang, Z. Liu, Z. Wang, Y. Wang et al., Constructing robust and efficient ceramic cells air electrodes through collaborative optimization bulk and surface phases. Adv. Funct. Mater. 1, 2422531 (2025). https://doi.org/10.1002/adfm.202422531
X. Yu, L. Ge, Y. Mi, B. Wu, Z. Yu et al., Superior active and durable air electrode for protonic ceramic cells by metal-oxide bond engineering. Small 21(8), 2408607 (2025). https://doi.org/10.1002/smll.202408607
W. Wu, H. Ding, Y. Zhang, Y. Ding, P. Katiyar et al., 3D self-architectured steam electrode enabled efficient and durable hydrogen production in a proton-conducting solid oxide electrolysis cell at temperatures lower than 600 °C. Adv. Sci. 5(11), 1800360 (2018). https://doi.org/10.1002/advs.201800360
S. Choi, T.C. Davenport, S.M. Haile, Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency. Energy Environ. Sci. 12(1), 206–215 (2019). https://doi.org/10.1039/C8EE02865F
J.-S. Shin, H. Park, K. Park, M. Saqib, M. Jo et al., Activity of layered swedenborgite structured Y0.8Er0.2BaCo3.2Ga0.8O7+δ for oxygen electrode reactions in at intermediate temperature reversible ceramic cells. J. Mater. Chem. A 9(1), 607–621 (2021). https://doi.org/10.1039/D0TA11000K
F. He, S. Liu, T. Wu, M. Yang, W. Li et al., Catalytic self-assembled air electrode for highly active and durable reversible protonic ceramic electrochemical cells. Adv. Funct. Mater. 32(48), 2206756 (2022). https://doi.org/10.1002/adfm.202206756
C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu et al., Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4(3), 230–240 (2019). https://doi.org/10.1038/s41560-019-0333-2
Y. Cai, Y. Chen, M. Akbar, B. Jin, Z. Tu et al., A bulk-heterostructure nanocomposite electrolyte of Ce0.8Sm0.2O2-δ-SrTiO3 for low-temperature solid oxide fuel cells. Nano-Micro Lett. 13(1), 46 (2021). https://doi.org/10.1007/s40820-020-00574-3
Z. Li, X. Mao, D. Feng, M. Li, X. Xu et al., Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures. Nat. Commun. 15(1), 9318 (2024). https://doi.org/10.1038/s41467-024-53578-7
Y. Cai, C. Wang, H. Yuan, Y. Guo, J.-H. Cho et al., Exploring negative thermal expansion materials with bulk framework structures and their relevant scaling relationships through multi-step machine learning. Mater. Horiz. 11(12), 2914–2925 (2024). https://doi.org/10.1039/D3MH01509B
S. Han, B.G. Lee, D.-W. Lim, J. Kim, Machine learning-based prediction of proton conductivity in metal–organic frameworks. Chem. Mater. 36(22), 11280–11287 (2024). https://doi.org/10.1021/acs.chemmater.4c02368