All-Covalent Organic Framework Nanofilms Assembled Lithium-Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics
Corresponding Author: Shanlin Qiao
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 116
Abstract
Free-standing covalent organic framework (COFs) nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li+ in lithium-ion batteries, while simultaneously exposing affluent active sites in supercapacitors. The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors (LICs). Herein, for the first time, custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode, respectively, for an all-COF nanofilm-structured LIC. The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li+ migration to ensure the rapid anode kinetic process. The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity. Due to the aligned 1D channel, 2D aromatic skeleton and accessible active sites of COF nanofilms, the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm−3 at a high-power density of 6 W cm−3, excellent rate capability, good cycle stability with the capacity retention rate of 77% after 5000-cycle. The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors. After being comprehensively explored via ex situ XPS, 7Li solid-state NMR analyses, and DFT calculation, it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage. COFBTMB-TP exhibits a strong interaction with Li+ due to the C–F, C=O, and C–N bonds, facilitating Li+ desolation and absorption from the electrolyte. This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices.
Highlights:
1 An all-covalent organic framework (COF) nanofilm-structured lithium-ion capacitor (LIC) was developed by custom-made COF nanofilms as the anode/cathode.
2 The COF nanofilm-structured LIC exhibits good electrochemical properties via the fast Li+ transport kinetics of the anodic COFBTMB-TP nanofilm and the high specific capacity of the cathodic COFTAPB-BPY nanofilm.
3 This work can realize the charge storage kinetics and capacity balance of anode/cathode in COFTAPB-BPY//COFBTMB-TP LIC.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Jagadale, X. Zhou, R. Xiong, D.P. Dubal, J. Xu et al., Lithium ion capacitors (LICs): development of the materials. Energy Storage Mater. 19, 314–329 (2019). https://doi.org/10.1016/j.ensm.2019.02.031
- H. Gu, Y.-E. Zhu, J. Yang, J. Wei, Z. Zhou, Nanomaterials and technologies for lithium-ion hybrid supercapacitors. ChemNanoMat 2, 578–587 (2016). https://doi.org/10.1002/cnma.201600068
- L. Gao, D. Huang, Y. Shen, M. Wang, Rutile-TiO2 decorated Li4Ti5O12 nanosheet arrays with 3D interconnected architecture as anodes for high performance hybrid supercapacitors. J. Mater. Chem. A 3, 23570–23576 (2015). https://doi.org/10.1039/C5TA07666H
- B. Li, J. Zheng, H. Zhang, L. Jin, D. Yang et al., Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 30, 1705670 (2018). https://doi.org/10.1002/adma.201705670
- H. Xu, X. Hu, Y. Sun, W. Luo, C. Chen et al., Highly porous Li4 Ti5O12/C nanofibers for ultrafast electrochemical energy storage. Nano Energy 10, 163–171 (2014). https://doi.org/10.1016/j.nanoen.2014.09.003
- S. Weng, G. Yang, S. Zhang, X. Liu, X. Zhang et al., Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano-Micro Lett. 15, 215 (2023). https://doi.org/10.1007/s40820-023-01183-6
- H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon et al., A novel high-energy hybrid supercapacitor with an anatase TiO2–reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3, 1500–1506 (2013). https://doi.org/10.1002/aenm.201300467
- W. Zhu, S.A. El-Khodary, S. Li, B. Zou, R. Kang et al., Roselle-like Zn2Ti3O8/rGO nanocomposite as anode for lithium ion capacitor. Chem. Eng. J. 385, 123881 (2020). https://doi.org/10.1016/j.cej.2019.123881
- S. Li, J. Chen, M. Cui, G. Cai, J. Wang et al., A high-performance lithium-ion capacitor based on 2D nanosheet materials. Small 13, 1602893 (2017). https://doi.org/10.1002/smll.201602893
- Z. Xiao, J. Han, H. He, X. Zhang, J. Xiao et al., A template oriented one-dimensional Schiff-base polymer: towards flexible nitrogen-enriched carbonaceous electrodes with ultrahigh electrochemical capacity. Nanoscale 13, 19210–19217 (2021). https://doi.org/10.1039/D1NR05618B
- G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang et al., Metal-free 2D/2D van der Waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis. Nano-Micro Lett. 15, 132 (2023). https://doi.org/10.1007/s40820-023-01100-x
- M.S. Lohse, T. Bein, Covalent organic frameworks: structures, synthesis, and applications. Adv. Funct. Mater. 28, 1705553 (2018). https://doi.org/10.1002/adfm.201705553
- S. Wang, Q. Wang, P. Shao, Y. Han, X. Gao et al., Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 139, 4258–4261 (2017). https://doi.org/10.1021/jacs.7b02648
- S. Jin, O. Allam, S.S. Jang, S.W. Lee, Covalent organic frameworks: design and applications in electrochemical energy storage devices. InfoMat 4, e12277 (2022). https://doi.org/10.1002/inf2.12277
- H. Yang, S. Zhang, L. Han, Z. Zhang, Z. Xue et al., High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 8, 5366–5375 (2016). https://doi.org/10.1021/acsami.5b12370
- W. Yan, F. Yu, Y. Jiang, J. Su, S.-W. Ke et al., Self-assembly construction of carbon nanotube network-threaded tetrathiafulvalene-bridging covalent organic framework composite anodes for high-performance hybrid lithium-ion capacitors. Small Struct. 3, 2200126 (2022). https://doi.org/10.1002/sstr.202200126
- Q. Geng, H. Wang, J. Wang, J. Hong, W. Sun et al., Boosting the capacity of aqueous Li-ion capacitors via pinpoint surgery in nanocoral-like covalent organic frameworks. Small Methods 6, e2200314 (2022). https://doi.org/10.1002/smtd.202200314
- Y. Wang, N. Chen, B. Zhou, X. Zhou, B. Pu et al., NH3-induced in situ etching strategy derived 3D-interconnected porous MXene/carbon dots films for high performance flexible supercapacitors. Nano-Micro Lett. 15, 231 (2023). https://doi.org/10.1007/s40820-023-01204-4
- X. Xu, R. Xiong, Z. Zhang, X. Zhang, C. Gu et al., Space-partitioning and metal coordination in free-standing covalent organic framework nano-films: over 230 mWh/cm3 energy density for flexible in-plane micro-supercapacitors. Chem. Eng. J. 447, 137447 (2022). https://doi.org/10.1016/j.cej.2022.137447
- H. Zong, A. Zhang, J. Dong, Y. He, H. Fu et al., Flexible asymmetric supercapacitor based on open-hollow nickel-MOFs/reduced graphene oxide aerogel electrodes. Chem. Eng. J. 475, 146088 (2023). https://doi.org/10.1016/j.cej.2023.146088
- H. Guo, A. Zhang, H. Fu, H. Zong, F. Jin et al., In situ generation of CeCoSx bimetallic sulfide derived from “egg-box” seaweed biomass on S/N Co-doped graphene aerogels for flexible all solid-state supercapacitors. Chem. Eng. J. 453, 139633 (2023). https://doi.org/10.1016/j.cej.2022.139633
- Q. Zhang, S. Liu, J. Huang, H. Fu, Q. Fan et al., In situ selective selenization of ZIF-derived CoSe2 nanops on NiMn-layered double hydroxide@CuBr2 heterostructures for high performance supercapacitors. J. Colloid Interface Sci. 655, 273–285 (2024). https://doi.org/10.1016/j.jcis.2023.11.008
- A. Zhang, Q. Zhang, H. Fu, H. Zong, H. Guo, Metal-organic frameworks and their derivatives-based nanostructure with different dimensionalities for supercapacitors. Small 19, e2303911 (2023). https://doi.org/10.1002/smll.202303911
- H. Sahabudeen, H. Qi, M. Ballabio, M. Položij, S. Olthof et al., Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis. Angew. Chem. Int. Ed. 59, 6028–6036 (2020). https://doi.org/10.1002/anie.201915217
- K. Liu, H. Qi, R. Dong, R. Shivhare, M. Addicoat et al., On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019). https://doi.org/10.1038/s41557-019-0327-5
- S. Kim, H. Lim, J. Lee, H.C. Choi, Synthesis of a scalable two-dimensional covalent organic framework by the photon-assisted imine condensation reaction on the water surface. Langmuir 34, 8731–8738 (2018). https://doi.org/10.1021/acs.langmuir.8b00951
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
- C. Wang, F. Liu, J. Chen, Z. Yuan, C. Liu et al., A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Mater. 32, 448–457 (2020). https://doi.org/10.1016/j.ensm.2020.07.001
- K. Jiang, I.A. Baburin, P. Han, C. Yang, X. Fu et al., Interfacial approach toward benzene-bridged polypyrrole film–based micro-supercapacitors with ultrahigh volumetric power density. Adv. Funct. Mater. 30, 1908243 (2020). https://doi.org/10.1002/adfm.201908243
- Y. Yang, X. Zhao, H.-E. Wang, M. Li, C. Hao et al., Phosphorized SnO2/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance. J. Mater. Chem. A 6, 3479–3487 (2018). https://doi.org/10.1039/C7TA10435A
- S. Kandambeth, A. Mallick, B. Lukose, M.V. Mane, T. Heine et al., Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012). https://doi.org/10.1021/ja308278w
- Y. Liang, M. Xia, Q. Yu, Y. Li, Z. Sui et al., Guanidinium-based ionic covalent organic frameworks for capture of uranyl tricarbonate. Adv. Compos. Hybrid Mater. 5, 184–194 (2022). https://doi.org/10.1007/s42114-021-00311-3
- M.K. Hota, S. Chandra, Y. Lei, X. Xu, M.N. Hedhili et al., Electrochemical thin-film transistors using covalent organic framework channel. Adv. Funct. Mater. 32, 2201120 (2022). https://doi.org/10.1002/adfm.202201120
- X. Chen, Y. Li, L. Wang, Y. Xu, A. Nie et al., High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv. Mater. 31, e1901640 (2019). https://doi.org/10.1002/adma.201901640
- X. Xu, Z. Zhang, R. Xiong, G. Lu, J. Zhang et al., Bending resistance covalent organic framework superlattice: “nano-hourglass” -induced charge accumulation for flexible in-plane micro-supercapacitors. Nano-Micro Lett. 15, 25 (2022). https://doi.org/10.1007/s40820-022-00997-0
- Y. Yang, C. Zhang, Z. Mei, Y. Sun, Q. An et al., Interfacial engineering of perfluoroalkyl functionalized covalent organic framework achieved ultra-long cycled and dendrite-free lithium anodes. Nano Res. 16, 9289–9298 (2023). https://doi.org/10.1007/s12274-023-5534-0
- J. He, N. Wang, Z. Yang, X. Shen, K. Wang et al., Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance. Energy Environ. Sci. 11, 2893–2903 (2018). https://doi.org/10.1039/C8EE01642A
- X. Wu, S. Xia, Y. Huang, X. Hu, B. Yuan et al., High-performance, low-cost, and dense-structure electrodes with high mass loading for lithium-ion batteries. Adv. Funct. Mater. 29, 1903961 (2019). https://doi.org/10.1002/adfm.201903961
- F. Yuan, W. Song, D. Zhang, Y.-S. Wu, Z. Li et al., Semi-ionic C-F bond inducing fast ion storage and electron transfer in carbon anode for potassium-ion batteries. Sci. China Mater. 66, 2630–2640 (2023). https://doi.org/10.1007/s40843-022-2419-4
- X. Wang, H. Hao, J. Liu, T. Huang, A. Yu, A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim. Acta 56, 4065–4069 (2011). https://doi.org/10.1016/j.electacta.2010.12.108
- X. Xu, C. Qi, Z. Hao, H. Wang, J. Jiu et al., The surface coating of commercial LiFePO4 by utilizing ZIF-8 for high electrochemical performance lithium ion battery. Nano-Micro Lett. 10, 1 (2018). https://doi.org/10.1007/s40820-017-0154-4
- X. Li, M. Sun, C. Xu, X. Zhang, G. Wang et al., Fast kinetic carbon anode inherited and developed from architectural designed porous aromatic framework for flexible lithium ion micro capacitors. Adv. Funct. Mater. 33, 2300460 (2023). https://doi.org/10.1002/adfm.202300460
- S. Zheng, J. Ma, Z.-S. Wu, F. Zhou, Y.-B. He et al., All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ. Sci. 11, 2001–2009 (2018). https://doi.org/10.1039/C8EE00855H
- X. Yan, Y. He, X. Liu, S. Jing, J. Guan et al., Deterministic effect of the solid-state diffusion energy barrier for a charge carrier on the self-discharge of supercapacitors. ACS Energy Lett. 8, 2376–2384 (2023). https://doi.org/10.1021/acsenergylett.3c00453
References
A. Jagadale, X. Zhou, R. Xiong, D.P. Dubal, J. Xu et al., Lithium ion capacitors (LICs): development of the materials. Energy Storage Mater. 19, 314–329 (2019). https://doi.org/10.1016/j.ensm.2019.02.031
H. Gu, Y.-E. Zhu, J. Yang, J. Wei, Z. Zhou, Nanomaterials and technologies for lithium-ion hybrid supercapacitors. ChemNanoMat 2, 578–587 (2016). https://doi.org/10.1002/cnma.201600068
L. Gao, D. Huang, Y. Shen, M. Wang, Rutile-TiO2 decorated Li4Ti5O12 nanosheet arrays with 3D interconnected architecture as anodes for high performance hybrid supercapacitors. J. Mater. Chem. A 3, 23570–23576 (2015). https://doi.org/10.1039/C5TA07666H
B. Li, J. Zheng, H. Zhang, L. Jin, D. Yang et al., Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 30, 1705670 (2018). https://doi.org/10.1002/adma.201705670
H. Xu, X. Hu, Y. Sun, W. Luo, C. Chen et al., Highly porous Li4 Ti5O12/C nanofibers for ultrafast electrochemical energy storage. Nano Energy 10, 163–171 (2014). https://doi.org/10.1016/j.nanoen.2014.09.003
S. Weng, G. Yang, S. Zhang, X. Liu, X. Zhang et al., Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano-Micro Lett. 15, 215 (2023). https://doi.org/10.1007/s40820-023-01183-6
H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon et al., A novel high-energy hybrid supercapacitor with an anatase TiO2–reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3, 1500–1506 (2013). https://doi.org/10.1002/aenm.201300467
W. Zhu, S.A. El-Khodary, S. Li, B. Zou, R. Kang et al., Roselle-like Zn2Ti3O8/rGO nanocomposite as anode for lithium ion capacitor. Chem. Eng. J. 385, 123881 (2020). https://doi.org/10.1016/j.cej.2019.123881
S. Li, J. Chen, M. Cui, G. Cai, J. Wang et al., A high-performance lithium-ion capacitor based on 2D nanosheet materials. Small 13, 1602893 (2017). https://doi.org/10.1002/smll.201602893
Z. Xiao, J. Han, H. He, X. Zhang, J. Xiao et al., A template oriented one-dimensional Schiff-base polymer: towards flexible nitrogen-enriched carbonaceous electrodes with ultrahigh electrochemical capacity. Nanoscale 13, 19210–19217 (2021). https://doi.org/10.1039/D1NR05618B
G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang et al., Metal-free 2D/2D van der Waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis. Nano-Micro Lett. 15, 132 (2023). https://doi.org/10.1007/s40820-023-01100-x
M.S. Lohse, T. Bein, Covalent organic frameworks: structures, synthesis, and applications. Adv. Funct. Mater. 28, 1705553 (2018). https://doi.org/10.1002/adfm.201705553
S. Wang, Q. Wang, P. Shao, Y. Han, X. Gao et al., Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 139, 4258–4261 (2017). https://doi.org/10.1021/jacs.7b02648
S. Jin, O. Allam, S.S. Jang, S.W. Lee, Covalent organic frameworks: design and applications in electrochemical energy storage devices. InfoMat 4, e12277 (2022). https://doi.org/10.1002/inf2.12277
H. Yang, S. Zhang, L. Han, Z. Zhang, Z. Xue et al., High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 8, 5366–5375 (2016). https://doi.org/10.1021/acsami.5b12370
W. Yan, F. Yu, Y. Jiang, J. Su, S.-W. Ke et al., Self-assembly construction of carbon nanotube network-threaded tetrathiafulvalene-bridging covalent organic framework composite anodes for high-performance hybrid lithium-ion capacitors. Small Struct. 3, 2200126 (2022). https://doi.org/10.1002/sstr.202200126
Q. Geng, H. Wang, J. Wang, J. Hong, W. Sun et al., Boosting the capacity of aqueous Li-ion capacitors via pinpoint surgery in nanocoral-like covalent organic frameworks. Small Methods 6, e2200314 (2022). https://doi.org/10.1002/smtd.202200314
Y. Wang, N. Chen, B. Zhou, X. Zhou, B. Pu et al., NH3-induced in situ etching strategy derived 3D-interconnected porous MXene/carbon dots films for high performance flexible supercapacitors. Nano-Micro Lett. 15, 231 (2023). https://doi.org/10.1007/s40820-023-01204-4
X. Xu, R. Xiong, Z. Zhang, X. Zhang, C. Gu et al., Space-partitioning and metal coordination in free-standing covalent organic framework nano-films: over 230 mWh/cm3 energy density for flexible in-plane micro-supercapacitors. Chem. Eng. J. 447, 137447 (2022). https://doi.org/10.1016/j.cej.2022.137447
H. Zong, A. Zhang, J. Dong, Y. He, H. Fu et al., Flexible asymmetric supercapacitor based on open-hollow nickel-MOFs/reduced graphene oxide aerogel electrodes. Chem. Eng. J. 475, 146088 (2023). https://doi.org/10.1016/j.cej.2023.146088
H. Guo, A. Zhang, H. Fu, H. Zong, F. Jin et al., In situ generation of CeCoSx bimetallic sulfide derived from “egg-box” seaweed biomass on S/N Co-doped graphene aerogels for flexible all solid-state supercapacitors. Chem. Eng. J. 453, 139633 (2023). https://doi.org/10.1016/j.cej.2022.139633
Q. Zhang, S. Liu, J. Huang, H. Fu, Q. Fan et al., In situ selective selenization of ZIF-derived CoSe2 nanops on NiMn-layered double hydroxide@CuBr2 heterostructures for high performance supercapacitors. J. Colloid Interface Sci. 655, 273–285 (2024). https://doi.org/10.1016/j.jcis.2023.11.008
A. Zhang, Q. Zhang, H. Fu, H. Zong, H. Guo, Metal-organic frameworks and their derivatives-based nanostructure with different dimensionalities for supercapacitors. Small 19, e2303911 (2023). https://doi.org/10.1002/smll.202303911
H. Sahabudeen, H. Qi, M. Ballabio, M. Položij, S. Olthof et al., Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis. Angew. Chem. Int. Ed. 59, 6028–6036 (2020). https://doi.org/10.1002/anie.201915217
K. Liu, H. Qi, R. Dong, R. Shivhare, M. Addicoat et al., On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019). https://doi.org/10.1038/s41557-019-0327-5
S. Kim, H. Lim, J. Lee, H.C. Choi, Synthesis of a scalable two-dimensional covalent organic framework by the photon-assisted imine condensation reaction on the water surface. Langmuir 34, 8731–8738 (2018). https://doi.org/10.1021/acs.langmuir.8b00951
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
C. Wang, F. Liu, J. Chen, Z. Yuan, C. Liu et al., A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Mater. 32, 448–457 (2020). https://doi.org/10.1016/j.ensm.2020.07.001
K. Jiang, I.A. Baburin, P. Han, C. Yang, X. Fu et al., Interfacial approach toward benzene-bridged polypyrrole film–based micro-supercapacitors with ultrahigh volumetric power density. Adv. Funct. Mater. 30, 1908243 (2020). https://doi.org/10.1002/adfm.201908243
Y. Yang, X. Zhao, H.-E. Wang, M. Li, C. Hao et al., Phosphorized SnO2/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance. J. Mater. Chem. A 6, 3479–3487 (2018). https://doi.org/10.1039/C7TA10435A
S. Kandambeth, A. Mallick, B. Lukose, M.V. Mane, T. Heine et al., Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012). https://doi.org/10.1021/ja308278w
Y. Liang, M. Xia, Q. Yu, Y. Li, Z. Sui et al., Guanidinium-based ionic covalent organic frameworks for capture of uranyl tricarbonate. Adv. Compos. Hybrid Mater. 5, 184–194 (2022). https://doi.org/10.1007/s42114-021-00311-3
M.K. Hota, S. Chandra, Y. Lei, X. Xu, M.N. Hedhili et al., Electrochemical thin-film transistors using covalent organic framework channel. Adv. Funct. Mater. 32, 2201120 (2022). https://doi.org/10.1002/adfm.202201120
X. Chen, Y. Li, L. Wang, Y. Xu, A. Nie et al., High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv. Mater. 31, e1901640 (2019). https://doi.org/10.1002/adma.201901640
X. Xu, Z. Zhang, R. Xiong, G. Lu, J. Zhang et al., Bending resistance covalent organic framework superlattice: “nano-hourglass” -induced charge accumulation for flexible in-plane micro-supercapacitors. Nano-Micro Lett. 15, 25 (2022). https://doi.org/10.1007/s40820-022-00997-0
Y. Yang, C. Zhang, Z. Mei, Y. Sun, Q. An et al., Interfacial engineering of perfluoroalkyl functionalized covalent organic framework achieved ultra-long cycled and dendrite-free lithium anodes. Nano Res. 16, 9289–9298 (2023). https://doi.org/10.1007/s12274-023-5534-0
J. He, N. Wang, Z. Yang, X. Shen, K. Wang et al., Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance. Energy Environ. Sci. 11, 2893–2903 (2018). https://doi.org/10.1039/C8EE01642A
X. Wu, S. Xia, Y. Huang, X. Hu, B. Yuan et al., High-performance, low-cost, and dense-structure electrodes with high mass loading for lithium-ion batteries. Adv. Funct. Mater. 29, 1903961 (2019). https://doi.org/10.1002/adfm.201903961
F. Yuan, W. Song, D. Zhang, Y.-S. Wu, Z. Li et al., Semi-ionic C-F bond inducing fast ion storage and electron transfer in carbon anode for potassium-ion batteries. Sci. China Mater. 66, 2630–2640 (2023). https://doi.org/10.1007/s40843-022-2419-4
X. Wang, H. Hao, J. Liu, T. Huang, A. Yu, A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim. Acta 56, 4065–4069 (2011). https://doi.org/10.1016/j.electacta.2010.12.108
X. Xu, C. Qi, Z. Hao, H. Wang, J. Jiu et al., The surface coating of commercial LiFePO4 by utilizing ZIF-8 for high electrochemical performance lithium ion battery. Nano-Micro Lett. 10, 1 (2018). https://doi.org/10.1007/s40820-017-0154-4
X. Li, M. Sun, C. Xu, X. Zhang, G. Wang et al., Fast kinetic carbon anode inherited and developed from architectural designed porous aromatic framework for flexible lithium ion micro capacitors. Adv. Funct. Mater. 33, 2300460 (2023). https://doi.org/10.1002/adfm.202300460
S. Zheng, J. Ma, Z.-S. Wu, F. Zhou, Y.-B. He et al., All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ. Sci. 11, 2001–2009 (2018). https://doi.org/10.1039/C8EE00855H
X. Yan, Y. He, X. Liu, S. Jing, J. Guan et al., Deterministic effect of the solid-state diffusion energy barrier for a charge carrier on the self-discharge of supercapacitors. ACS Energy Lett. 8, 2376–2384 (2023). https://doi.org/10.1021/acsenergylett.3c00453