Bending Resistance Covalent Organic Framework Superlattice: “Nano-Hourglass”-Induced Charge Accumulation for Flexible In-Plane Micro-Supercapacitors
Corresponding Author: Shanlin Qiao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 25
Abstract
Covalent organic framework (COF) film with highly exposed active sites is considered as the promising flexible self-supported electrode for in-plane micro-supercapacitor (MSC). Superlattice configuration assembled alternately by different nanofilms based on van der Waals force can integrate the advantages of each isolated layer to exhibit unexpected performances as MSC film electrodes, which may be a novel option to ensure energy output. Herein, a mesoporous free-standing A-COF nanofilm (pore size is 3.9 nm, averaged thickness is 4.1 nm) with imine bond linkage and a microporous B-COF nanofilm (pore size is 1.5 nm, averaged thickness is 9.3 nm) with β-keto-enamine-linkages are prepared, and for the first time, we assembly the two lattice matching films into sandwich-type superlattices via layer-by-layer transfer, in which ABA–COF superlattice stacking into a “nano-hourglass” steric configuration that can accelerate the dynamic charge transportation/accumulation and promote the sufficient redox reactions to energy storage. The fabricated flexible MSC–ABA–COF exhibits the highest intrinsic CV of 927.9 F cm−3 at 10 mV s−1 than reported two-dimensional alloy, graphite-like carbon and undoped COF-based MSC devices so far, and shows a bending-resistant energy density of 63.2 mWh cm−3 even after high-angle and repeat arbitrary bending from 0 to 180°. This work provides a feasible way to meet the demand for future miniaturization and wearable electronics.
Highlights:
1 Covalent organic framework (COF) superlattices were assembled by free-standing COF nanofilms based on the van der Waals force for the first time.
2 Geometry-induced “nano-hourglass” steric configuration in COF superlattice can provide rapid charge transfer/accumulation at heterojunction interface for in-Plane Micro-supercapacitors.
3 The prepared MSC exhibited a high energy density of 63.2 mWh cm−3 even after high-angle and repeat arbitrary bending from 0 to 180°.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wang, Y. Zhao, Y. Han, X. Li, C. Dai et al., Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors. Sci. Adv. 8(21), eabn8338 (2022). https://doi.org/10.1126/sciadv.abn8338
- X. Sun, K. Chen, F. Liang, C. Zhi, D. Xue, Perspective on micro-supercapacitors. Front. Chem. 9, 807500 (2021). https://doi.org/10.3389/fchem.2021.807500
- M.A.M. Hasan, Y. Wang, C.R. Bowen, Y. Yang, 2D nanomaterials for effective energy scavenging. Nano-Micro Lett. 13, 82 (2021). https://doi.org/10.1007/s40820-021-00603-9
- K. Jiang, Q. Weng, Miniaturized energy storage devices based on two-dimensional materials. Chemsuschem 13(6), 1420–1446 (2020). https://doi.org/10.1002/cssc.201902520
- H. Zhang, Y. Cao, M.O.L. Chee, P. Dong, M. Ye et al., Recent advances in micro-supercapacitors. Nanoscale 11(13), 5807–5821 (2019). https://doi.org/10.1039/c9nr01090d
- L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
- I. Hussain, C. Lamiel, S. Sahoo, M.S. Javed, M. Ahmad et al., Animal- and human-inspired nanostructures as supercapacitor electrode materials: a review. Nano-Micro Lett. 14, 199 (2022). https://doi.org/10.1007/s40820-022-00944-z
- H. Lv, Q. Pan, Y. Song, X.X. Liu, T. Liu, A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors. Nano-Micro Lett. 12, 118 (2020). https://doi.org/10.1007/s40820-020-00451-z
- Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016). https://doi.org/10.1039/c5cs00580a
- X. Xu, R. Xiong, Z. Zhang, X. Zhang, C. Gu et al., Space-partitioning and metal coordination in free-standing covalent organic framework nano-films: over 230 mWh/cm3 energy density for flexible in-plane micro-supercapacitors. Chem. Eng. J. 447, 137447 (2022). https://doi.org/10.1016/j.cej.2022.137447
- A.H. Biby, B.A. Ali, N.K. Allam, Interplay of quantum capacitance with Van der Waals forces, intercalation, co-intercalation, and the number of MoS2 layers. Mater. Today Energy 20, 100677 (2021). https://doi.org/10.1016/j.mtener.2021.100677
- Y. Cao, M. Wang, H. Wang, C. Han, F. Pan et al., Covalent organic framework for rechargeable batteries: mechanisms and properties of ionic conduction. Adv. Energy Mater. 12(20), 2200057 (2022). https://doi.org/10.1002/aenm.202200057
- N.H. Kwon, X. Jin, S.J. Kim, H. Kim, S.J. Hwang, Multilayer conductive hybrid nanosheets as versatile hybridization matrices for optimizing the defect structure, structural ordering, and energy-functionality of nanostructured materials. Adv. Sci. 9(2), e2103042 (2022). https://doi.org/10.1002/advs.202103042
- D.A. Oliveira, J.L. Lutkenhaus, J.R. Siqueira, Building up nanostructured layer-by-layer films combining reduced graphene oxide-manganese dioxide nanocomposite in supercapacitor electrodes. Thin Solid Films 718, 138483 (2021). https://doi.org/10.1016/j.tsf.2020.138483
- B.W. Zhang, L. Cao, C. Tang, C. Tan, N. Cheng et al., Atomically dispersed dual-site cathode with a record high sulfur mass loading for high-performance room-temperature sodium-sulfur batteries. Adv. Mater. 29, e2206828 (2022). https://doi.org/10.1002/adma.202206828
- S. Zhao, C. Tan, C.-T. He, P. An, F. Xie et al., Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 5, 881–890 (2020). https://doi.org/10.1038/s41560-020-00709-1
- Z. Zhou, Y. Kong, H. Tan, Q. Huang, C. Wang et al., Cation-vacancy-enriched nickel phosphide for efficient electrosynthesis of hydrogen peroxides. Adv. Mater. 34, e2106541 (2022). https://doi.org/10.1002/adma.202106541
- Y. Liu, Y. Wang, S. Zhao, Z. Tang, Metal-organic framework-based nanomaterials for electrocatalytic oxygen evolution. Small Methods 6(10), e2200773 (2022). https://doi.org/10.1002/smtd.202200773
- Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang et al., Van der Waals heterostructures and devices. Nat. Rev. Mater. 1(9), 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42
- E. Pomerantseva, Y. Gogotsi, Two-dimensional heterostructures for energy storage. Nat. Energy 2(7), 17089 (2017). https://doi.org/10.1038/nenergy.2017.89
- S. Saha, P. Samanta, N.C. Murmu, T. Kuila, A review on the heterostructure nanomaterials for supercapacitor application. J. Energy Storage 17, 181–202 (2018). https://doi.org/10.1016/j.est.2018.03.006
- H. Ren, Z. Wan, X. Duan, Van der Waals superlattices. Natl. Sci. Rev. 9, nwab166 (2021). https://doi.org/10.1093/nsr/nwab166
- Y. Huang, J. Liang, C. Wang, S. Yin, W. Fu et al., Hybrid superlattices of two-dimensional materials and organics. Chem. Soc. Rev. 49(19), 6866–6883 (2020). https://doi.org/10.1039/d0cs00148a
- K. Liu, H. Qi, R. Dong, R. Shivhare, M. Addicoat et al., On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11(11), 994–1000 (2019). https://doi.org/10.1038/s41557-019-0327-5
- P. Xiong, X. Zhang, H. Wan, S. Wang, Y. Zhao et al., Interface modulation of two-dimensional superlattices for efficient overall water splitting. Nano Lett. 19(7), 4518–4526 (2019). https://doi.org/10.1021/acs.nanolett.9b01329
- Y. Dong, Y. Wang, X. Zhang, Q. Lai, Y. Yang, Carbon-based elastic foams supported redox-active covalent organic frameworks for flexible supercapacitors. Chem. Eng. J. 449, 137858 (2022). https://doi.org/10.1016/j.cej.2022.137858
- P. Xiong, B. Sun, N. Sakai, R. Ma, T. Sasaki et al., 2D Superlattices for efficient energy storage and conversion. Adv. Mater. 32(18), e1902654 (2020). https://doi.org/10.1002/adma.201902654
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and Van der Waals heterostructures. Science 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439
- Z. Mi, P. Yang, R. Wang, J. Unruangsri, W. Yang et al., Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion. J. Am. Chem. Soc. 141(36), 14433–14442 (2019). https://doi.org/10.1021/jacs.9b07695
- L. Kavan, M. Gratzel, J. Rathousky, A. Zukal, Nanocrystalline TiO2 (anatase) electrodes: surface morphology, adsorption, and electrochemical properties. J. Electrochem. Soc. 143(2), 394–400 (1996). https://doi.org/10.1149/1.1836455
- K. Jiang, I.A. Baburin, P. Han, C. Yang, X. Fu et al., Interfacial approach toward benzene-bridged polypyrrole film-based micro-supercapacitors with ultrahigh volumetric power density. Adv. Funct. Mater. 30(7), 1908243 (2019). https://doi.org/10.1002/adfm.201908243
- H. Zuo, Y. Li, Y. Liao, Europium ionic liquid grafted covalent organic framework with dual luminescence emissions as sensitive and selective acetone sensor. ACS Appl. Mater. Interfaces 11(42), 39201–39208 (2019). https://doi.org/10.1021/acsami.9b14795
- H.-K. Li, Y.-X. An, E.-H. Zhang, S.-N. Zhou, M.-X. Li et al., A covalent organic framework nanosheet-based electrochemical aptasensor with sensitive detection performance. Anal. Chim. Acta 1223, 340204 (2022). https://doi.org/10.1016/j.aca.2022.340204
- S. Jhulki, A.M. Evans, X.L. Hao, M.W. Cooper, C.H. Feriante et al., Humidity sensing through reversible isomerization of a covalent organic framework. J. Am. Chem. Soc. 142(2), 783–791 (2020). https://doi.org/10.1021/jacs.9b08628
- Z.A.G. Abdul Muqsit Khattak, B. Liang, N.A. Khan, A. Iqbal, L. Li, Z. Tang, A redox-active 2D covalent organic framework with pyridine moieties capable of faradaic energy storage. J. Mater. Chem. A 4(42), 16312–16317 (2016). https://doi.org/10.1039/C6TA05784E
- W. Ma, R. Ma, C. Wang, J. Liang, X. Liu et al., A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 9(2), 1977–1984 (2015). https://doi.org/10.1021/nn5069836
- R. Ma, X. Liu, J. Liang, Y. Bando, T. Sasaki, Molecular-scale heteroassembly of redoxable hydroxide nanosheets and conductive graphene into superlattice composites for high-performance supercapacitors. Adv. Mater. 26(24), 4173–4178 (2014). https://doi.org/10.1002/adma.201400054
- S. Chai, N. Hu, Y. Han, X. Zhang, Z. Yang et al., The microwave-assisted solvothermal synthesis of a novel β-ketoenamine-linked conjugated microporous polymer for supercapacitors. RSC Adv. 6(55), 49425–49428 (2016). https://doi.org/10.1039/c6ra08536a
- S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120(14), 6738–6782 (2020). https://doi.org/10.1021/acs.chemrev.0c00170
- S. Haldar, R. Kushwaha, R. Maity, R. Vaidhyanathan, Pyridine-rich covalent organic frameworks as high-performance solid-state supercapacitors. ACS Mater. Lett. 1, 490–497 (2019). https://doi.org/10.1021/acsmaterialslett.9b00222
- Y. Xie, H. Zhang, J. Zhang, T. Zhou, Ultra-foldable integrated high-performance in-plane micro-supercapacitors from laser-induced selective metallization. Energy Storage Mater. 51, 139–148 (2022). https://doi.org/10.1016/j.ensm.2022.06.031
- Y. He, N. An, C. Meng, K. Xie, X. Wang et al., High-density active site COFs with a flower-like morphology for energy storage applications. J. Mater. Chem. A 10(20), 11030–11038 (2022). https://doi.org/10.1039/d2ta01065h
- S.K. Das, K. Bhunia, A. Mallick, A. Pradhan, D. Pradhan et al., A new electrochemically responsive 2D π-conjugated covalent organic framework as a high performance supercapacitor. Microporous Mesoporous Mater. 266, 109–116 (2018). https://doi.org/10.1016/j.micromeso.2018.02.026
- A. Eftekhari, The mechanism of ultrafast supercapacitors. J. Mater. Chem. A 6(7), 2866–2876 (2018). https://doi.org/10.1039/c7ta10013b
- C. Young, J. Lin, J. Wang, B. Ding, X. Zhang et al., Significant effect of pore sizes on energy storage in nanoporous carbon supercapacitors. Chemistry 24(23), 6127–6132 (2018). https://doi.org/10.1002/chem.201705465
- Z.D. Zhao, W.J. Chen, S. Impeng, M.X. Li, R. Wang et al., Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. J. Mater. Chem. A 8(6), 3459–3467 (2020). https://doi.org/10.1039/c9ta13384d
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanops. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
- N. Li, K. Jiang, F. Rodriguez-Hernandez, H. Mao, S. Han et al., Polyarylether-based 2D covalent-organic frameworks with in-plane D-A structures and tunable energy levels for energy storage. Adv. Sci. 9(6), e2104898 (2022). https://doi.org/10.1002/advs.202104898
- C. Wang, F. Liu, J. Chen, Z. Yuan, C. Liu et al., A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Mater. 32, 448–457 (2020). https://doi.org/10.1016/j.ensm.2020.07.001
- J. Xu, Y. He, S. Bi, M. Wang, P. Yang et al., An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance micro-supercapacitor. Angew. Chem. Int. Ed. 58(35), 12065–12069 (2019). https://doi.org/10.1002/anie.201905713
- Y. He, P. Zhang, M. Wang, F. Wang, D. Tan et al., Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. Mater. Horiz. 6(5), 1041–1049 (2019). https://doi.org/10.1039/c9mh00063a
- P. Giannakou, M.G. Masteghin, R.C.T. Slade, S.J. Hinder, M. Shkunov, Energy storage on demand: ultra-high-rate and high-energy-density inkjet-printed NiO micro-supercapacitors. J. Mater. Chem. A 7(37), 21496–21506 (2019). https://doi.org/10.1039/c9ta07878a
- F. Zhang, S. Wei, W. Wei, J. Zou, G. Gu et al., Trimethyltriazine-derived olefin-linked covalent organic framework with ultralong nanofibers. Sci. Bull. 65(19), 1659–1666 (2020). https://doi.org/10.1016/j.scib.2020.05.033
- Z.S. Wu, K. Parvez, X. Feng, K. Mullen, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487 (2013). https://doi.org/10.1038/ncomms3487
- J. Ye, H. Tan, S. Wu, K. Ni, F. Pan et al., Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adv. Mater. 30(27), e1801384 (2018). https://doi.org/10.1002/adma.201801384
- J. Wu, J. Peng, Z. Yu, Y. Zhou, Y. Guo et al., Acid-assisted exfoliation toward metallic sub-nanopore TaS2 monolayer with high volumetric capacitance. J. Am. Chem. Soc. 140(1), 493–498 (2018). https://doi.org/10.1021/jacs.7b11915
- M. Tahir, L. He, W.A. Haider, W. Yang, X. Hong et al., Co-electrodeposited porous PEDOT-CNT microelectrodes for integrated micro-supercapacitors with high energy density, high rate capability, and long cycling life. Nanoscale 11(16), 7761–7770 (2019). https://doi.org/10.1039/c9nr00765b
- Z. Liu, Y. Hu, W. Zheng, C. Wang, W. Baaziz et al., Untying the bundles of solution-synthesized graphene nanoribbons for highly capacitive micro-supercapacitors. Adv. Funct. Mater. 32(16), 2109543 (2022). https://doi.org/10.1002/adfm.202109543
- P. Xiong, R. Ma, N. Sakai, T. Sasaki, Genuine unilamellar metal oxide nanosheets confined in a superlattice-like structure for superior energy storage. ACS Nano 12(2), 1768–1777 (2018). https://doi.org/10.1021/acsnano.7b08522
- Z.S. Wu, K. Parvez, S. Li, S. Yang, Z. Liu et al., Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv. Mater. 27(27), 4054–4061 (2015). https://doi.org/10.1002/adma.201501643
- M.F. Pantano, E. Missale, L. Gazzato, R. Pilot, F. Sedona et al., Large freestanding 2D covalent organic framework nanofilms exhibiting high strength and stiffness. Mater. Today Chem. 26, 101007 (2022). https://doi.org/10.1016/j.mtchem.2022.101007
- L. Zhang, K. Huang, P. Wen, J. Wang, G. Yang et al., Tailoring the defects of two-dimensional borocarbonitride nanomesh for high energy density micro-supercapacitor. Energy Storage Mater. 42, 430–437 (2021). https://doi.org/10.1016/j.ensm.2021.07.041
- C. Yang, K.S. Schellhammer, F. Ortmann, S. Sun, R. Dong et al., Coordination polymer framework based on-chip micro-supercapacitors with AC line-filtering performance. Angew. Chem. Int. Ed. 56(14), 3920–3924 (2017). https://doi.org/10.1002/anie.201700679
References
Y. Wang, Y. Zhao, Y. Han, X. Li, C. Dai et al., Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors. Sci. Adv. 8(21), eabn8338 (2022). https://doi.org/10.1126/sciadv.abn8338
X. Sun, K. Chen, F. Liang, C. Zhi, D. Xue, Perspective on micro-supercapacitors. Front. Chem. 9, 807500 (2021). https://doi.org/10.3389/fchem.2021.807500
M.A.M. Hasan, Y. Wang, C.R. Bowen, Y. Yang, 2D nanomaterials for effective energy scavenging. Nano-Micro Lett. 13, 82 (2021). https://doi.org/10.1007/s40820-021-00603-9
K. Jiang, Q. Weng, Miniaturized energy storage devices based on two-dimensional materials. Chemsuschem 13(6), 1420–1446 (2020). https://doi.org/10.1002/cssc.201902520
H. Zhang, Y. Cao, M.O.L. Chee, P. Dong, M. Ye et al., Recent advances in micro-supercapacitors. Nanoscale 11(13), 5807–5821 (2019). https://doi.org/10.1039/c9nr01090d
L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
I. Hussain, C. Lamiel, S. Sahoo, M.S. Javed, M. Ahmad et al., Animal- and human-inspired nanostructures as supercapacitor electrode materials: a review. Nano-Micro Lett. 14, 199 (2022). https://doi.org/10.1007/s40820-022-00944-z
H. Lv, Q. Pan, Y. Song, X.X. Liu, T. Liu, A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors. Nano-Micro Lett. 12, 118 (2020). https://doi.org/10.1007/s40820-020-00451-z
Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016). https://doi.org/10.1039/c5cs00580a
X. Xu, R. Xiong, Z. Zhang, X. Zhang, C. Gu et al., Space-partitioning and metal coordination in free-standing covalent organic framework nano-films: over 230 mWh/cm3 energy density for flexible in-plane micro-supercapacitors. Chem. Eng. J. 447, 137447 (2022). https://doi.org/10.1016/j.cej.2022.137447
A.H. Biby, B.A. Ali, N.K. Allam, Interplay of quantum capacitance with Van der Waals forces, intercalation, co-intercalation, and the number of MoS2 layers. Mater. Today Energy 20, 100677 (2021). https://doi.org/10.1016/j.mtener.2021.100677
Y. Cao, M. Wang, H. Wang, C. Han, F. Pan et al., Covalent organic framework for rechargeable batteries: mechanisms and properties of ionic conduction. Adv. Energy Mater. 12(20), 2200057 (2022). https://doi.org/10.1002/aenm.202200057
N.H. Kwon, X. Jin, S.J. Kim, H. Kim, S.J. Hwang, Multilayer conductive hybrid nanosheets as versatile hybridization matrices for optimizing the defect structure, structural ordering, and energy-functionality of nanostructured materials. Adv. Sci. 9(2), e2103042 (2022). https://doi.org/10.1002/advs.202103042
D.A. Oliveira, J.L. Lutkenhaus, J.R. Siqueira, Building up nanostructured layer-by-layer films combining reduced graphene oxide-manganese dioxide nanocomposite in supercapacitor electrodes. Thin Solid Films 718, 138483 (2021). https://doi.org/10.1016/j.tsf.2020.138483
B.W. Zhang, L. Cao, C. Tang, C. Tan, N. Cheng et al., Atomically dispersed dual-site cathode with a record high sulfur mass loading for high-performance room-temperature sodium-sulfur batteries. Adv. Mater. 29, e2206828 (2022). https://doi.org/10.1002/adma.202206828
S. Zhao, C. Tan, C.-T. He, P. An, F. Xie et al., Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 5, 881–890 (2020). https://doi.org/10.1038/s41560-020-00709-1
Z. Zhou, Y. Kong, H. Tan, Q. Huang, C. Wang et al., Cation-vacancy-enriched nickel phosphide for efficient electrosynthesis of hydrogen peroxides. Adv. Mater. 34, e2106541 (2022). https://doi.org/10.1002/adma.202106541
Y. Liu, Y. Wang, S. Zhao, Z. Tang, Metal-organic framework-based nanomaterials for electrocatalytic oxygen evolution. Small Methods 6(10), e2200773 (2022). https://doi.org/10.1002/smtd.202200773
Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang et al., Van der Waals heterostructures and devices. Nat. Rev. Mater. 1(9), 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42
E. Pomerantseva, Y. Gogotsi, Two-dimensional heterostructures for energy storage. Nat. Energy 2(7), 17089 (2017). https://doi.org/10.1038/nenergy.2017.89
S. Saha, P. Samanta, N.C. Murmu, T. Kuila, A review on the heterostructure nanomaterials for supercapacitor application. J. Energy Storage 17, 181–202 (2018). https://doi.org/10.1016/j.est.2018.03.006
H. Ren, Z. Wan, X. Duan, Van der Waals superlattices. Natl. Sci. Rev. 9, nwab166 (2021). https://doi.org/10.1093/nsr/nwab166
Y. Huang, J. Liang, C. Wang, S. Yin, W. Fu et al., Hybrid superlattices of two-dimensional materials and organics. Chem. Soc. Rev. 49(19), 6866–6883 (2020). https://doi.org/10.1039/d0cs00148a
K. Liu, H. Qi, R. Dong, R. Shivhare, M. Addicoat et al., On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11(11), 994–1000 (2019). https://doi.org/10.1038/s41557-019-0327-5
P. Xiong, X. Zhang, H. Wan, S. Wang, Y. Zhao et al., Interface modulation of two-dimensional superlattices for efficient overall water splitting. Nano Lett. 19(7), 4518–4526 (2019). https://doi.org/10.1021/acs.nanolett.9b01329
Y. Dong, Y. Wang, X. Zhang, Q. Lai, Y. Yang, Carbon-based elastic foams supported redox-active covalent organic frameworks for flexible supercapacitors. Chem. Eng. J. 449, 137858 (2022). https://doi.org/10.1016/j.cej.2022.137858
P. Xiong, B. Sun, N. Sakai, R. Ma, T. Sasaki et al., 2D Superlattices for efficient energy storage and conversion. Adv. Mater. 32(18), e1902654 (2020). https://doi.org/10.1002/adma.201902654
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and Van der Waals heterostructures. Science 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439
Z. Mi, P. Yang, R. Wang, J. Unruangsri, W. Yang et al., Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion. J. Am. Chem. Soc. 141(36), 14433–14442 (2019). https://doi.org/10.1021/jacs.9b07695
L. Kavan, M. Gratzel, J. Rathousky, A. Zukal, Nanocrystalline TiO2 (anatase) electrodes: surface morphology, adsorption, and electrochemical properties. J. Electrochem. Soc. 143(2), 394–400 (1996). https://doi.org/10.1149/1.1836455
K. Jiang, I.A. Baburin, P. Han, C. Yang, X. Fu et al., Interfacial approach toward benzene-bridged polypyrrole film-based micro-supercapacitors with ultrahigh volumetric power density. Adv. Funct. Mater. 30(7), 1908243 (2019). https://doi.org/10.1002/adfm.201908243
H. Zuo, Y. Li, Y. Liao, Europium ionic liquid grafted covalent organic framework with dual luminescence emissions as sensitive and selective acetone sensor. ACS Appl. Mater. Interfaces 11(42), 39201–39208 (2019). https://doi.org/10.1021/acsami.9b14795
H.-K. Li, Y.-X. An, E.-H. Zhang, S.-N. Zhou, M.-X. Li et al., A covalent organic framework nanosheet-based electrochemical aptasensor with sensitive detection performance. Anal. Chim. Acta 1223, 340204 (2022). https://doi.org/10.1016/j.aca.2022.340204
S. Jhulki, A.M. Evans, X.L. Hao, M.W. Cooper, C.H. Feriante et al., Humidity sensing through reversible isomerization of a covalent organic framework. J. Am. Chem. Soc. 142(2), 783–791 (2020). https://doi.org/10.1021/jacs.9b08628
Z.A.G. Abdul Muqsit Khattak, B. Liang, N.A. Khan, A. Iqbal, L. Li, Z. Tang, A redox-active 2D covalent organic framework with pyridine moieties capable of faradaic energy storage. J. Mater. Chem. A 4(42), 16312–16317 (2016). https://doi.org/10.1039/C6TA05784E
W. Ma, R. Ma, C. Wang, J. Liang, X. Liu et al., A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 9(2), 1977–1984 (2015). https://doi.org/10.1021/nn5069836
R. Ma, X. Liu, J. Liang, Y. Bando, T. Sasaki, Molecular-scale heteroassembly of redoxable hydroxide nanosheets and conductive graphene into superlattice composites for high-performance supercapacitors. Adv. Mater. 26(24), 4173–4178 (2014). https://doi.org/10.1002/adma.201400054
S. Chai, N. Hu, Y. Han, X. Zhang, Z. Yang et al., The microwave-assisted solvothermal synthesis of a novel β-ketoenamine-linked conjugated microporous polymer for supercapacitors. RSC Adv. 6(55), 49425–49428 (2016). https://doi.org/10.1039/c6ra08536a
S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120(14), 6738–6782 (2020). https://doi.org/10.1021/acs.chemrev.0c00170
S. Haldar, R. Kushwaha, R. Maity, R. Vaidhyanathan, Pyridine-rich covalent organic frameworks as high-performance solid-state supercapacitors. ACS Mater. Lett. 1, 490–497 (2019). https://doi.org/10.1021/acsmaterialslett.9b00222
Y. Xie, H. Zhang, J. Zhang, T. Zhou, Ultra-foldable integrated high-performance in-plane micro-supercapacitors from laser-induced selective metallization. Energy Storage Mater. 51, 139–148 (2022). https://doi.org/10.1016/j.ensm.2022.06.031
Y. He, N. An, C. Meng, K. Xie, X. Wang et al., High-density active site COFs with a flower-like morphology for energy storage applications. J. Mater. Chem. A 10(20), 11030–11038 (2022). https://doi.org/10.1039/d2ta01065h
S.K. Das, K. Bhunia, A. Mallick, A. Pradhan, D. Pradhan et al., A new electrochemically responsive 2D π-conjugated covalent organic framework as a high performance supercapacitor. Microporous Mesoporous Mater. 266, 109–116 (2018). https://doi.org/10.1016/j.micromeso.2018.02.026
A. Eftekhari, The mechanism of ultrafast supercapacitors. J. Mater. Chem. A 6(7), 2866–2876 (2018). https://doi.org/10.1039/c7ta10013b
C. Young, J. Lin, J. Wang, B. Ding, X. Zhang et al., Significant effect of pore sizes on energy storage in nanoporous carbon supercapacitors. Chemistry 24(23), 6127–6132 (2018). https://doi.org/10.1002/chem.201705465
Z.D. Zhao, W.J. Chen, S. Impeng, M.X. Li, R. Wang et al., Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. J. Mater. Chem. A 8(6), 3459–3467 (2020). https://doi.org/10.1039/c9ta13384d
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanops. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
N. Li, K. Jiang, F. Rodriguez-Hernandez, H. Mao, S. Han et al., Polyarylether-based 2D covalent-organic frameworks with in-plane D-A structures and tunable energy levels for energy storage. Adv. Sci. 9(6), e2104898 (2022). https://doi.org/10.1002/advs.202104898
C. Wang, F. Liu, J. Chen, Z. Yuan, C. Liu et al., A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Mater. 32, 448–457 (2020). https://doi.org/10.1016/j.ensm.2020.07.001
J. Xu, Y. He, S. Bi, M. Wang, P. Yang et al., An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance micro-supercapacitor. Angew. Chem. Int. Ed. 58(35), 12065–12069 (2019). https://doi.org/10.1002/anie.201905713
Y. He, P. Zhang, M. Wang, F. Wang, D. Tan et al., Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. Mater. Horiz. 6(5), 1041–1049 (2019). https://doi.org/10.1039/c9mh00063a
P. Giannakou, M.G. Masteghin, R.C.T. Slade, S.J. Hinder, M. Shkunov, Energy storage on demand: ultra-high-rate and high-energy-density inkjet-printed NiO micro-supercapacitors. J. Mater. Chem. A 7(37), 21496–21506 (2019). https://doi.org/10.1039/c9ta07878a
F. Zhang, S. Wei, W. Wei, J. Zou, G. Gu et al., Trimethyltriazine-derived olefin-linked covalent organic framework with ultralong nanofibers. Sci. Bull. 65(19), 1659–1666 (2020). https://doi.org/10.1016/j.scib.2020.05.033
Z.S. Wu, K. Parvez, X. Feng, K. Mullen, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487 (2013). https://doi.org/10.1038/ncomms3487
J. Ye, H. Tan, S. Wu, K. Ni, F. Pan et al., Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adv. Mater. 30(27), e1801384 (2018). https://doi.org/10.1002/adma.201801384
J. Wu, J. Peng, Z. Yu, Y. Zhou, Y. Guo et al., Acid-assisted exfoliation toward metallic sub-nanopore TaS2 monolayer with high volumetric capacitance. J. Am. Chem. Soc. 140(1), 493–498 (2018). https://doi.org/10.1021/jacs.7b11915
M. Tahir, L. He, W.A. Haider, W. Yang, X. Hong et al., Co-electrodeposited porous PEDOT-CNT microelectrodes for integrated micro-supercapacitors with high energy density, high rate capability, and long cycling life. Nanoscale 11(16), 7761–7770 (2019). https://doi.org/10.1039/c9nr00765b
Z. Liu, Y. Hu, W. Zheng, C. Wang, W. Baaziz et al., Untying the bundles of solution-synthesized graphene nanoribbons for highly capacitive micro-supercapacitors. Adv. Funct. Mater. 32(16), 2109543 (2022). https://doi.org/10.1002/adfm.202109543
P. Xiong, R. Ma, N. Sakai, T. Sasaki, Genuine unilamellar metal oxide nanosheets confined in a superlattice-like structure for superior energy storage. ACS Nano 12(2), 1768–1777 (2018). https://doi.org/10.1021/acsnano.7b08522
Z.S. Wu, K. Parvez, S. Li, S. Yang, Z. Liu et al., Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv. Mater. 27(27), 4054–4061 (2015). https://doi.org/10.1002/adma.201501643
M.F. Pantano, E. Missale, L. Gazzato, R. Pilot, F. Sedona et al., Large freestanding 2D covalent organic framework nanofilms exhibiting high strength and stiffness. Mater. Today Chem. 26, 101007 (2022). https://doi.org/10.1016/j.mtchem.2022.101007
L. Zhang, K. Huang, P. Wen, J. Wang, G. Yang et al., Tailoring the defects of two-dimensional borocarbonitride nanomesh for high energy density micro-supercapacitor. Energy Storage Mater. 42, 430–437 (2021). https://doi.org/10.1016/j.ensm.2021.07.041
C. Yang, K.S. Schellhammer, F. Ortmann, S. Sun, R. Dong et al., Coordination polymer framework based on-chip micro-supercapacitors with AC line-filtering performance. Angew. Chem. Int. Ed. 56(14), 3920–3924 (2017). https://doi.org/10.1002/anie.201700679