Understanding the Decoupled Effects of Cations and Anions Doping for High-Performance Perovskite Solar Cells
Corresponding Author: Yiqiang Zhan
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 145
Abstract
The past decade has witnessed the rapid increasement in power conversion efficiency of perovskite solar cells (PSCs). However, serious ion migration hampers their operational stability. Although dopants composed of varied cations and anions are introduced into perovskite to suppress ion migration, the impact of cations or anions is not individually explored, which hinders the evaluation of different cations and further application of doping strategy. Here we report that a special group of sulfonic anions (like CF3SO3−) successfully introduce alkaline earth ions (like Ca2+) into perovskite lattice compared to its halide counterparts. Furthermore, with effective crystallization regulation and defect passivation of sulfonic anions, perovskite with Ca(CF3SO3)2 shows reduced PbI2 residue and metallic Pb0 defects; thereby, corresponding PSCs show an enhanced PCE of 24.95%. Finally by comparing the properties of perovskite with Ca(CF3SO3)2 and FACF3SO3, we found that doped Ca2+ significantly suppressed halide migration with an activation energy of 1.246 eV which accounts for the improved operational stability of Ca(CF3SO3)2-doped PSCs, while no obvious impact of Ca2+on trap density is observed. Combining the benefits of cations and anions, this study presents an effective method to decouple the effects of cations and anions and fabricate efficient and stable PSCs.
Highlights:
1 Alkaline earth cations are successfully incorporated into perovskite lattice with the aid of sulfonic acid anions, while alkaline earth metal halides are lack of doping capacity.
2 The sulfonic acid anions effectively regulate the crystallization of perovskite and passivate the metallic Pb0 defect states, thereby improving the power conversion efficiency of perovskite solar cells.
3 By comparing the property of FACF3SO3 and Ca(CF3SO3)2-doped perovskite films, the impact of suppressing halide migration with an activation energy of 1.246 eV is attributed to Ca2+ cations, thus providing methodology for decoupling the effects of cations and anions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (version 63). Prog. Photovolt. Res. Appl. 32, 3–13 (2024). https://doi.org/10.1002/pip.3750
- L. Yang, H. Zhou, Y. Duan, M. Wu, K. He et al., 25.24%-efficiency FACsPbI3 perovskite solar cells enabled by intermolecular esterification reaction of DL-carnitine hydrochloride. Adv. Mater. 35, e2211545 (2023). https://doi.org/10.1002/adma.202211545
- E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin et al., Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019). https://doi.org/10.1038/s41586-019-1036-3
- Y.-H. Lin, N. Sakai, P. Da, J. Wu, H.C. Sansom et al., A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96–102 (2020). https://doi.org/10.1126/science.aba1628
- Z. Liu, L. Qiu, L.K. Ono, S. He, Z. Hu et al., A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020). https://doi.org/10.1038/s41560-020-0653-2
- H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer et al., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017). https://doi.org/10.1126/science.aai9081
- L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun et al., A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363, 265–270 (2019). https://doi.org/10.1126/science.aau5701
- C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
- P. Calado, A.M. Telford, D. Bryant, X. Li, J. Nelson et al., Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831 (2016). https://doi.org/10.1038/ncomms13831
- J.-W. Lee, S.-G. Kim, J.-M. Yang, Y. Yang, N.-G. Park, Verification and mitigation of ion migration in perovskite solar cells. APL Mater. 7, 041111 (2019). https://doi.org/10.1063/1.5085643
- K. Liu, S. Rafique, S.F. Musolino, Z. Cai, F. Liu et al., Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells. Joule 7, 1033–1050 (2023). https://doi.org/10.1016/j.joule.2023.03.019
- S. Tan, I. Yavuz, N. De Marco, T. Huang, S.J. Lee et al., Steric impediment of ion migration contributes to improved operational stability of perovskite solar cells. Adv. Mater. 32, e1906995 (2020). https://doi.org/10.1002/adma.201906995
- Y. Yuan, J. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016). https://doi.org/10.1021/acs.accounts.5b00420
- H. Zhang, X. Fu, Y. Tang, H. Wang, C. Zhang et al., Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun. 10, 1088 (2019). https://doi.org/10.1038/s41467-019-09047-7
- J. Wang, Y. Che, Y. Duan, Z. Liu, S. Yang et al., 21.15%-efficiency and stable γ-CsPbI3 perovskite solar cells enabled by an acyloin ligand. Adv. Mater. 35, e2210223 (2023). https://doi.org/10.1002/adma.202210223
- M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018). https://doi.org/10.1038/nature25989
- J. Cao, S.X. Tao, P.A. Bobbert, C.P. Wong, N. Zhao, Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv. Mater. 30, e1707350 (2018). https://doi.org/10.1002/adma.201707350
- D.Y. Son, S.G. Kim, J.Y. Seo, S.H. Lee, H. Shin et al., Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140, 1358–1364 (2018). https://doi.org/10.1021/jacs.7b10430
- Y. Zhao, I. Yavuz, M. Wang, M.H. Weber, M. Xu et al., Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21, 1396–1402 (2022). https://doi.org/10.1038/s41563-022-01390-3
- M. Lyu, N.-G. Park, Effect of additives AX (A = FA, MA, Cs, Rb, NH4, X = Cl, Br, I) in FAPbI3 on photovoltaic parameters of perovskite solar cells. Sol. RRL 4, 2000331 (2020). https://doi.org/10.1002/solr.202000331
- S. You, X. Xi, X. Zhang, H. Wang, P. Gao et al., Long-term stable and highly efficient perovskite solar cells with a formamidinium chloride (FACl) additive. J. Mater. Chem. A 8, 17756–17764 (2020). https://doi.org/10.1039/d0ta05676f
- L. Chao, Y. Xia, B. Li, G. Xing, Y. Chen et al., Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air. Chem 5, 995–1006 (2019). https://doi.org/10.1016/j.chempr.2019.02.025
- X. Zheng, Y. Deng, B. Chen, H. Wei, X. Xiao et al., Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells. Adv. Mater. 30, e1803428 (2018). https://doi.org/10.1002/adma.201803428
- X. Ren, J. Wang, Y. Lin, Y. Wang, H. Xie et al., Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat. Mater. 23, 810–817 (2024). https://doi.org/10.1038/s41563-024-01876-2
- J. Zhang, X. Niu, C. Peng, H. Jiang, L. Yu et al., Inhibiting ion migration through chemical polymerization and chemical chelation toward stable perovskite solar cells. Angew. Chem. Int. Ed. 62, e202314106 (2023). https://doi.org/10.1002/anie.202314106
- Z. Zhang, M. Li, R. Li, X. Zhuang, C. Wang et al., Suppressing ion migration by synergistic engineering of anion and cation toward high-performance inverted perovskite solar cells and modules. Adv. Mater. 36, e2313860 (2024). https://doi.org/10.1002/adma.202313860
- Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao et al., Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 5, 1500615 (2015). https://doi.org/10.1002/aenm.201500615
- R. Chen, Y. Wang, S. Nie, H. Shen, Y. Hui et al., Sulfonate-assisted surface iodide management for high-performance perovskite solar cells and modules. J. Am. Chem. Soc. 143, 10624–10632 (2021). https://doi.org/10.1021/jacs.1c03419
- Z. Liu, C. Duan, F. Liu, C.C.S. Chan, H. Zhu et al., Perovskite bifunctional diode with high photovoltaic and electroluminescent performance by holistic defect passivation. Small 18, e2105196 (2022). https://doi.org/10.1002/smll.202105196
- Q. Tai, X. Guo, G. Tang, P. You, T.W. Ng et al., Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed. 58, 806–810 (2019). https://doi.org/10.1002/anie.201811539
- N.M. Shishlov, S.L. Khursan, Effect of ion interactions on the IR spectrum of benzenesulfonate ion. Restoration of sulfonate ion symmetry in sodium benzenesulfonate dimer. J. Mol. Struct. 1123, 360–366 (2016). https://doi.org/10.1016/j.molstruc.2016.06.030
- W. Shao, H. Wang, F. Ye, C. Wang, C. Wang et al., Modulation of nucleation and crystallization in PbI2 films promoting preferential perovskite orientation growth for efficient solar cells. Energy Environ. Sci. 16, 252–264 (2023). https://doi.org/10.1039/d2ee03342a
- J. Cao, F. Wang, H. Yu, Y. Zhou, H. Lu et al., Porous PbI2 films for the fabrication of efficient, stable perovskite solar cells via sequential deposition. J. Mater. Chem. A 4, 10223–10230 (2016). https://doi.org/10.1039/c6ta03121h
- X. Jiao, W.-M. Gu, Y. Xu, K.-J. Jiang, G. Yu et al., Anion-exchange assisted sequential deposition for stable and efficient FAPbI3- based perovskite solar cells. Chem. Eng. J. 452, 139326 (2023). https://doi.org/10.1016/j.cej.2022.139326
- P.M. Moreno-Romero, A.N. Corpus-Mendoza, M.A. Millán-Franco, C.A. Rodríguez-Castañeda, D.M. Torres-Herrera et al., Roughness and structural modification of PbI2 thin films by isopropanol treatment to improve methylammonium lead halide formation and solar cell efficiency. J. Mater. Sci. Mater. Electron. 30, 17491–17503 (2019). https://doi.org/10.1007/s10854-019-02100-7
- T. Zhou, Z. Xu, R. Wang, X. Dong, Q. Fu et al., Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 34, 2200705 (2022). https://doi.org/10.1002/adma.202200705
- P. Ahlawat, A. Hinderhofer, E.A. Alharbi, H. Lu, A. Ummadisingu et al., A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3. Sci. Adv. 7, eabe3326 (2021). https://doi.org/10.1126/sciadv.abe3326
- A. Ummadisingu, L. Steier, J.-Y. Seo, T. Matsui, A. Abate et al., The effect of illumination on the formation of metal halide perovskite films. Nature 545, 208–212 (2017). https://doi.org/10.1038/nature22072
- J. Liang, X. Hu, C. Wang, C. Liang, C. Chen et al., Origins and influences of metallic lead in perovskite solar cells. Joule 6, 816–833 (2022). https://doi.org/10.1016/j.joule.2022.03.005
- Q. Sun, X. Meng, G. Liu, S. Duan, D. Hu et al., SnO2 surface modification and perovskite buried interface passivation by 2, 5-furandicarboxylic acid for flexible perovskite solar cells. Adv. Funct. Mater. 34, 2404686 (2024). https://doi.org/10.1002/adfm.202404686
- W. Shao, H. Wang, F. Ye, C. Wang, C. Liu et al., A multi-functional halogen-free cesium salt bulk-doping treatment toward performance-enhancement of perovskite solar cells. J. Power. Sources 520, 230900 (2022). https://doi.org/10.1016/j.jpowsour.2021.230900
- Z. Wu, H. Yu, S. Shi, Y. Li, Bismuth oxysulfide modified ZnO nanorod arrays as an efficient electron transport layer for inverted polymer solar cells. J. Mater. Chem. A 7, 14776–14789 (2019). https://doi.org/10.1039/c9ta02447f
- Y. Kang, R. Li, A. Wang, J. Kang, Z. Wang et al., Ionogel-perovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energy Environ. Sci. 15, 3439–3448 (2022). https://doi.org/10.1039/d2ee01326f
- H. Yu, H. Lu, F. Xie, S. Zhou, N. Zhao, Native defect-induced hysteresis behavior in organolead iodide perovskite solar cells. Adv. Funct. Mater. 26, 1411–1419 (2016). https://doi.org/10.1002/adfm.201504997
References
M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (version 63). Prog. Photovolt. Res. Appl. 32, 3–13 (2024). https://doi.org/10.1002/pip.3750
L. Yang, H. Zhou, Y. Duan, M. Wu, K. He et al., 25.24%-efficiency FACsPbI3 perovskite solar cells enabled by intermolecular esterification reaction of DL-carnitine hydrochloride. Adv. Mater. 35, e2211545 (2023). https://doi.org/10.1002/adma.202211545
E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin et al., Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019). https://doi.org/10.1038/s41586-019-1036-3
Y.-H. Lin, N. Sakai, P. Da, J. Wu, H.C. Sansom et al., A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96–102 (2020). https://doi.org/10.1126/science.aba1628
Z. Liu, L. Qiu, L.K. Ono, S. He, Z. Hu et al., A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020). https://doi.org/10.1038/s41560-020-0653-2
H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer et al., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017). https://doi.org/10.1126/science.aai9081
L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun et al., A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363, 265–270 (2019). https://doi.org/10.1126/science.aau5701
C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
P. Calado, A.M. Telford, D. Bryant, X. Li, J. Nelson et al., Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831 (2016). https://doi.org/10.1038/ncomms13831
J.-W. Lee, S.-G. Kim, J.-M. Yang, Y. Yang, N.-G. Park, Verification and mitigation of ion migration in perovskite solar cells. APL Mater. 7, 041111 (2019). https://doi.org/10.1063/1.5085643
K. Liu, S. Rafique, S.F. Musolino, Z. Cai, F. Liu et al., Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells. Joule 7, 1033–1050 (2023). https://doi.org/10.1016/j.joule.2023.03.019
S. Tan, I. Yavuz, N. De Marco, T. Huang, S.J. Lee et al., Steric impediment of ion migration contributes to improved operational stability of perovskite solar cells. Adv. Mater. 32, e1906995 (2020). https://doi.org/10.1002/adma.201906995
Y. Yuan, J. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016). https://doi.org/10.1021/acs.accounts.5b00420
H. Zhang, X. Fu, Y. Tang, H. Wang, C. Zhang et al., Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun. 10, 1088 (2019). https://doi.org/10.1038/s41467-019-09047-7
J. Wang, Y. Che, Y. Duan, Z. Liu, S. Yang et al., 21.15%-efficiency and stable γ-CsPbI3 perovskite solar cells enabled by an acyloin ligand. Adv. Mater. 35, e2210223 (2023). https://doi.org/10.1002/adma.202210223
M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018). https://doi.org/10.1038/nature25989
J. Cao, S.X. Tao, P.A. Bobbert, C.P. Wong, N. Zhao, Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv. Mater. 30, e1707350 (2018). https://doi.org/10.1002/adma.201707350
D.Y. Son, S.G. Kim, J.Y. Seo, S.H. Lee, H. Shin et al., Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140, 1358–1364 (2018). https://doi.org/10.1021/jacs.7b10430
Y. Zhao, I. Yavuz, M. Wang, M.H. Weber, M. Xu et al., Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21, 1396–1402 (2022). https://doi.org/10.1038/s41563-022-01390-3
M. Lyu, N.-G. Park, Effect of additives AX (A = FA, MA, Cs, Rb, NH4, X = Cl, Br, I) in FAPbI3 on photovoltaic parameters of perovskite solar cells. Sol. RRL 4, 2000331 (2020). https://doi.org/10.1002/solr.202000331
S. You, X. Xi, X. Zhang, H. Wang, P. Gao et al., Long-term stable and highly efficient perovskite solar cells with a formamidinium chloride (FACl) additive. J. Mater. Chem. A 8, 17756–17764 (2020). https://doi.org/10.1039/d0ta05676f
L. Chao, Y. Xia, B. Li, G. Xing, Y. Chen et al., Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air. Chem 5, 995–1006 (2019). https://doi.org/10.1016/j.chempr.2019.02.025
X. Zheng, Y. Deng, B. Chen, H. Wei, X. Xiao et al., Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells. Adv. Mater. 30, e1803428 (2018). https://doi.org/10.1002/adma.201803428
X. Ren, J. Wang, Y. Lin, Y. Wang, H. Xie et al., Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat. Mater. 23, 810–817 (2024). https://doi.org/10.1038/s41563-024-01876-2
J. Zhang, X. Niu, C. Peng, H. Jiang, L. Yu et al., Inhibiting ion migration through chemical polymerization and chemical chelation toward stable perovskite solar cells. Angew. Chem. Int. Ed. 62, e202314106 (2023). https://doi.org/10.1002/anie.202314106
Z. Zhang, M. Li, R. Li, X. Zhuang, C. Wang et al., Suppressing ion migration by synergistic engineering of anion and cation toward high-performance inverted perovskite solar cells and modules. Adv. Mater. 36, e2313860 (2024). https://doi.org/10.1002/adma.202313860
Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao et al., Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 5, 1500615 (2015). https://doi.org/10.1002/aenm.201500615
R. Chen, Y. Wang, S. Nie, H. Shen, Y. Hui et al., Sulfonate-assisted surface iodide management for high-performance perovskite solar cells and modules. J. Am. Chem. Soc. 143, 10624–10632 (2021). https://doi.org/10.1021/jacs.1c03419
Z. Liu, C. Duan, F. Liu, C.C.S. Chan, H. Zhu et al., Perovskite bifunctional diode with high photovoltaic and electroluminescent performance by holistic defect passivation. Small 18, e2105196 (2022). https://doi.org/10.1002/smll.202105196
Q. Tai, X. Guo, G. Tang, P. You, T.W. Ng et al., Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed. 58, 806–810 (2019). https://doi.org/10.1002/anie.201811539
N.M. Shishlov, S.L. Khursan, Effect of ion interactions on the IR spectrum of benzenesulfonate ion. Restoration of sulfonate ion symmetry in sodium benzenesulfonate dimer. J. Mol. Struct. 1123, 360–366 (2016). https://doi.org/10.1016/j.molstruc.2016.06.030
W. Shao, H. Wang, F. Ye, C. Wang, C. Wang et al., Modulation of nucleation and crystallization in PbI2 films promoting preferential perovskite orientation growth for efficient solar cells. Energy Environ. Sci. 16, 252–264 (2023). https://doi.org/10.1039/d2ee03342a
J. Cao, F. Wang, H. Yu, Y. Zhou, H. Lu et al., Porous PbI2 films for the fabrication of efficient, stable perovskite solar cells via sequential deposition. J. Mater. Chem. A 4, 10223–10230 (2016). https://doi.org/10.1039/c6ta03121h
X. Jiao, W.-M. Gu, Y. Xu, K.-J. Jiang, G. Yu et al., Anion-exchange assisted sequential deposition for stable and efficient FAPbI3- based perovskite solar cells. Chem. Eng. J. 452, 139326 (2023). https://doi.org/10.1016/j.cej.2022.139326
P.M. Moreno-Romero, A.N. Corpus-Mendoza, M.A. Millán-Franco, C.A. Rodríguez-Castañeda, D.M. Torres-Herrera et al., Roughness and structural modification of PbI2 thin films by isopropanol treatment to improve methylammonium lead halide formation and solar cell efficiency. J. Mater. Sci. Mater. Electron. 30, 17491–17503 (2019). https://doi.org/10.1007/s10854-019-02100-7
T. Zhou, Z. Xu, R. Wang, X. Dong, Q. Fu et al., Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 34, 2200705 (2022). https://doi.org/10.1002/adma.202200705
P. Ahlawat, A. Hinderhofer, E.A. Alharbi, H. Lu, A. Ummadisingu et al., A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3. Sci. Adv. 7, eabe3326 (2021). https://doi.org/10.1126/sciadv.abe3326
A. Ummadisingu, L. Steier, J.-Y. Seo, T. Matsui, A. Abate et al., The effect of illumination on the formation of metal halide perovskite films. Nature 545, 208–212 (2017). https://doi.org/10.1038/nature22072
J. Liang, X. Hu, C. Wang, C. Liang, C. Chen et al., Origins and influences of metallic lead in perovskite solar cells. Joule 6, 816–833 (2022). https://doi.org/10.1016/j.joule.2022.03.005
Q. Sun, X. Meng, G. Liu, S. Duan, D. Hu et al., SnO2 surface modification and perovskite buried interface passivation by 2, 5-furandicarboxylic acid for flexible perovskite solar cells. Adv. Funct. Mater. 34, 2404686 (2024). https://doi.org/10.1002/adfm.202404686
W. Shao, H. Wang, F. Ye, C. Wang, C. Liu et al., A multi-functional halogen-free cesium salt bulk-doping treatment toward performance-enhancement of perovskite solar cells. J. Power. Sources 520, 230900 (2022). https://doi.org/10.1016/j.jpowsour.2021.230900
Z. Wu, H. Yu, S. Shi, Y. Li, Bismuth oxysulfide modified ZnO nanorod arrays as an efficient electron transport layer for inverted polymer solar cells. J. Mater. Chem. A 7, 14776–14789 (2019). https://doi.org/10.1039/c9ta02447f
Y. Kang, R. Li, A. Wang, J. Kang, Z. Wang et al., Ionogel-perovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energy Environ. Sci. 15, 3439–3448 (2022). https://doi.org/10.1039/d2ee01326f
H. Yu, H. Lu, F. Xie, S. Zhou, N. Zhao, Native defect-induced hysteresis behavior in organolead iodide perovskite solar cells. Adv. Funct. Mater. 26, 1411–1419 (2016). https://doi.org/10.1002/adfm.201504997