Status and Opportunities of Zinc Ion Hybrid Capacitors: Focus on Carbon Materials, Current Collectors, and Separators
Corresponding Author: Wenli Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 78
Abstract
Zinc ion hybrid capacitors (ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applications. Carbon-based materials are deemed the competitive candidates for cathodes of ZIHC due to their cost-effectiveness, high electronic conductivity, chemical inertness, controllable surface states, and tunable pore architectures. In recent years, great research efforts have been devoted to further improving the energy density and cycling stability of ZIHCs. Reasonable modification and optimization of carbon-based materials offer a remedy for these challenges. In this review, the structural design, and electrochemical properties of carbon-based cathode materials with different dimensions, as well as the selection of compatible, robust current collectors and separators for ZIHCs are discussed. The challenges and prospects of ZIHCs are showcased to guide the innovative development of carbon-based cathode materials and the development of novel ZIHCs.
Highlights:
1 History and benefits of zinc ion hybrid capacitors are introduced.
2 Carbon materials with different dimensions are developed for the cathodes.
3 Relationship between carbon structures and capacitive performances are discussed.
4 Current collectors and separators are firstly showcased and summarized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Yin, S. Zhang, Q. Ren, C. Liu, K. Ke et al., Elastic soft hydrogel supercapacitor for energy storage. J. Mater. Chem. A 5(47), 24942–24950 (2017). https://doi.org/10.1039/c7ta08152a
- P. Roja, D. Venkatramanan, V. John, Design considerations of ultracapacitor stack for optimal sizing of energy storage systems in contingency applications. IEEE Trans. Ind. Appl. 56(6), 6803–6814 (2020). https://doi.org/10.1109/tia.2020.3017468
- J.L. Shi, D.D. Xiao, M. Ge, X. Yu, Y. Chu et al., High-capacity cathode material with high voltage for Li-ion batteries. Adv. Mater. 30(9), 1705575 (2018). https://doi.org/10.1002/adma.201705575
- R. Shapira, G.D. Nessim, T. Zimrin, D. Aurbach, Towards promising electrochemical technology for load leveling applications: extending cycle life of lead acid batteries by the use of carbon nano-tubes (CNTs). Energy Environ. Sci. 6(2), 587–594 (2013). https://doi.org/10.1039/c2ee22970f
- S.T. Senthilkumar, J. Han, J. Park, S. Min Hwang, D. Jeon et al., Energy efficient Na-aqueous-catholyte redox flow battery. Energy Storage Mater. 12, 324–330 (2018). https://doi.org/10.1016/j.ensm.2017.10.006
- S. Wang, Y. Jiang, X. Hu, Ionogel-based membranes for safe lithium/sodium batteries. Adv. Mater. 34(52), 2200945 (2022). https://doi.org/10.1002/adma.202200945
- Y. Gu, Y. Liu, X. Cao, Evolving strategies for tumor immunotherapy: enhancing the enhancer and suppressing the suppressor. Natl. Sci. Rev. 4(2), 161–163 (2017). https://doi.org/10.1093/nsr/nwx032
- M. Zhong, M. Zhang, X. Li, Carbon nanomaterials and their composites for supercapacitors. Carbon Energy 4(5), 950–985 (2022). https://doi.org/10.1002/cey2.219
- K. Deng, Q. Zeng, D. Wang, Z. Liu, G. Wang et al., Nonflammable organic electrolytes for high-safety lithium-ion batteries. Energy Storage Mater. 32, 425–447 (2020). https://doi.org/10.1016/j.ensm.2020.07.018
- G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng, An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 148(8), A930–A939 (2001). https://doi.org/10.1149/1.1383553
- J. Yin, L. Qi, H. Wang, Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors. ACS Appl. Mater. Interfaces 4(5), 2762–2768 (2012). https://doi.org/10.1021/am300385r
- J. Yin, W.L. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Electrochemical Zinc ion capacitors: fundamentals, materials, and systems. Adv. Energy Mater. 11(21), 2100201 (2021). https://doi.org/10.1002/aenm.202100201
- L. Miao, Y. Lv, D. Zhu, L. Li, L. Gan et al., Recent advances in zinc-ion hybrid energy storage: coloring high-power capacitors with battery-level energy. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.107784
- Y.H. Tian, R. Amal, D.W. Wang, An aqueous metali-ion capacitor with oxidized carbon nanotubes and metalicn zinc electrodes. Front. Energy Res. 4, 34 (2016). https://doi.org/10.3389/fenrg.2016.00034
- P. Zhang, Y. Li, G. Wang, F. Wang, S. Yang et al., Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv. Mater. 31(3), e1806005 (2019). https://doi.org/10.1002/adma.201806005
- L. Han, H. Huang, J. Li, Z. Yang, X. Zhang et al., Novel zinc–iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. J. Mater. Chem. A 7(42), 24400–24407 (2019). https://doi.org/10.1039/c9ta07196b
- Q. Wang, S.L. Wang, J.Y. Li, L.M. Ruan, N. Wei et al., A novel aqueous zinc-ion hybrid supercapacitor based on TiS2(De)intercalation battery-type anode. Adv. Electron. Mater. 6(10), 2000388 (2020). https://doi.org/10.1002/aelm.202000388
- Q. Guo, Y.Y. Han, N. Chen, L.T. Qu, Few-layer siloxene as an electrode for superior high-rate zinc ion hybrid capacitors. ACS Energy Lett. 6(5), 1786–1794 (2021). https://doi.org/10.1021/acsenergylett.1c00285
- Z.D. Huang, A. Chen, F.N. Mo, G.J. Liang, X.L. Li et al., Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors. Adv. Energy Mater. 10(24), 2001024 (2020). https://doi.org/10.1002/aenm.202001024
- Y. Tong, Y. Wu, Z. Liu, Y. Yin, Y. Sun et al., Fabricating multi-porous carbon anode with remarkable initial coulombic efficiency and enhanced rate capability for sodium-ion batteries. Chin. Chem. Lett. 34(1), 107443 (2023). https://doi.org/10.1016/j.cclet.2022.04.041
- X. Liu, X. Yu, Y. Tong, Y. Sun, W. Mai et al., Potassium storage in bismuth nanops embedded in N-doped porous carbon facilitated by ether-based electrolyte. Chem. Eng. J. 446, 137329 (2022). https://doi.org/10.1016/j.cej.2022.137329
- X. Liu, Y. Tong, Y. Wu, J. Zheng, Y. Sun et al., Synergistically enhanced electrochemical performance using nitrogen, phosphorus and sulfur tri-doped hollow carbon for advanced potassium ion storage device. Chem. Eng. J. 431, 133986 (2022). https://doi.org/10.1016/j.cej.2021.133986
- Y. Wu, Y. Sun, Y. Tong, H. Li, FeSb2 nanops embedded in 3D porous carbon framework: an robust anode material for potassium storage with long activation process. Small 18(24), e2201934 (2022). https://doi.org/10.1002/smll.202201934
- X. Liu, Y. Sun, Y. Tong, H. Li, Unique spindle-like bismuth-based composite toward ultrafast potassium storage. Small 18(44), e2204045 (2022). https://doi.org/10.1002/smll.202204045
- Y. Wu, J. Zheng, Y. Tong, X. Liu, Y. Sun et al., Carbon hollow tube-confined Sb/Sb2S3 nanorod fragments as highly stable anodes for potassium-ion batteries. ACS Appl. Mater. Interfaces 13(43), 51066–51077 (2021). https://doi.org/10.1021/acsami.1c16267
- L. Dong, W. Yang, W. Yang, Y. Li, W. Wu et al., Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A 7(23), 13810–13832 (2019). https://doi.org/10.1039/c9ta02678a
- H. Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
- Z. Song, L. Miao, L. Ruhlmann, Y. Lv, L. Li et al., Proton-conductive supramolecular hydrogen-bonded organic superstructures for high-performance zinc-organic batteries. Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202219136
- L.B. Dong, W. Yang, W. Yang, H. Tian, Y.F. Huang et al., Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chem. Eng. J. 384, 123355 (2020). https://doi.org/10.1016/j.cej.2019.123355
- X.P. Ma, J.Y. Cheng, L.B. Dong, W.B. Liu, J. Mou et al., Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater. 20, 335–342 (2019). https://doi.org/10.1016/j.ensm.2018.10.020
- Y.L. Sun, H.Y. Ma, X.Q. Zhang, B. Liu, L.Y. Liu et al., Salty ice electrolyte with superior ionic conductivity towards low-temperature aqueous zinc ion hybrid capacitors. Adv. Funct. Mater. 31(28), 2101277 (2021). https://doi.org/10.1002/adfm.202101277
- L.B. Dong, X.P. Ma, Y. Li, L. Zhao, W.B. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
- S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi et al., A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J. Mater. Chem. Chem. A 7(13), 7784–7790 (2019). https://doi.org/10.1039/c9ta00733d
- Z. Song, L. Miao, L. Ruhlmann, Y. Lv, D. Zhu et al., Lewis pair interaction self-assembly of carbon superstructures harvesting high-energy and ultralong-life zinc-ion storage. Adv. Funct. Mater. 32(48), 2208049 (2022). https://doi.org/10.1002/adfm.202208049
- Y. Jiang, Z. Jiang, M. Shi, Z. Liu, S. Liang et al., Enabling high surface and space utilization of activated carbon for supercapacitors by homogeneous activation. Carbon 182, 559–563 (2021). https://doi.org/10.1016/j.carbon.2021.06.039
- W. Zhang, X. Qiu, C. Wang, L. Zhong, F. Fu et al., Lignin derived carbon materials: current status and future trends. Carbon Res. Res. 1(1), 14 (2022). https://doi.org/10.1007/s44246-022-00009-1
- L. Zhao, S. Sun, J. Lin, L. Zhong, L. Chen et al., Defect engineering of disordered carbon anodes with ultra-high heteroatom doping through a supermolecule-mediated strategy for potassium-ion hybrid capacitors. Nano Micro Lett. 15(1), 41 (2023). https://doi.org/10.1007/s40820-022-01006-0
- J. Yin, W. Zhang, W. Wang, N.A. Alhebshi, N. Salah et al., Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 10(37), 2001705 (2020). https://doi.org/10.1002/aenm.202001705
- L. Lu, J.T.M. De Hosson, Y. Pei, Three-dimensional micron-porous graphene foams for lightweight current collectors of lithium-sulfur batteries. Carbon 144, 713–723 (2019). https://doi.org/10.1016/j.carbon.2018.12.103
- C. Chen, Y. Zhang, Y. Li, Y. Kuang, J. Song et al., Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy Mater. 7(17), 1700595 (2017). https://doi.org/10.1002/aenm.201700595
- X. Fei, Z. Dong, B. Gong, X. Zhao, Lightweight through-hole copper foil as a current collector for lithium-ion batteries. ACS Appl. Mater. Interfaces 13(35), 42266–42275 (2021). https://doi.org/10.1021/acsami.1c13233
- C. Wang, Z.X. Pei, Q.Q. Meng, C.M. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60(2), 990–997 (2021). https://doi.org/10.1002/anie.202012030
- J. Li, J.H. Zhang, L. Yu, J.Y. Gao, X.Y. He et al., Dual-doped carbon hollow nanospheres achieve boosted pseudocapacitive energy storage for aqueous zinc ion hybrid capacitors. Energy Storage Mater. 42, 705–714 (2021). https://doi.org/10.1016/j.ensm.2021.08.018
- F. Li, Y.L. Liu, G.G. Wang, S.Y. Zhang, D.Q. Zhao et al., 3D porous H-Ti3C2T films as free-standing electrodes for zinc ion hybrid capacitors. Chem. Eng. J. 435, 135052 (2022). https://doi.org/10.1016/j.cej.2022.135052
- H. Yang, J. Zhang, J. Yao, D. Zuo, J. Xu et al., A supramolecular gel polymer electrolyte for ultralong-life zinc-ion hybrid supercapacitors. J. Energy Storage 53, 105089 (2022). https://doi.org/10.1016/j.est.2022.105089
- Y. Wu, Y. Deng, K. Zhang, J. Qiu, J. Wu et al., Ultrahigh conductive and stretchable eutectogel electrolyte for high-voltage flexible antifreeze quasi-solid-state zinc-ion hybrid supercapacitor. ACS Appl. Energy Mater. 5(3), 3013–3021 (2022). https://doi.org/10.1021/acsaem.1c03654
- X. Qiu, N. Wang, Z. Wang, F. Wang, Y. Wang, Towards high-performance zinc-based hybrid supercapacitors via macropores-based charge storage in organic electrolytes. Angew. Chem. Int. Ed. 60(17), 9610–9617 (2021). https://doi.org/10.1002/anie.202014766
- K. Leng, G. Li, J. Guo, X. Zhang, A. Wang et al., A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries. Adv. Funct. Mater. 30(23), 2001317 (2020). https://doi.org/10.1002/adfm.202001317
- L. Miao, J. Zhang, Y. Lv, L. Gan, M. Liu, Dendrite-Free engineering toward efficient zinc storage: recent progress and future perspectives. Chem. Eur. J. (2023). https://doi.org/10.1002/chem.202203973
- L. Wang, M. Peng, J. Chen, X. Tang, L. Li et al., High energy and power zinc ion capacitors: a dual-ion adsorption and reversible chemical adsorption coupling mechanism. ACS Nano 16(2), 2877–2888 (2022). https://doi.org/10.1021/acsnano.1c09936
- F. Wei, Y. Wei, J. Wang, M. Han, Y. Lv, N, P dual doped foamy-like carbons with abundant defect sites for zinc ion hybrid capacitors. Chem. Eng. J. 450, 137919 (2022). https://doi.org/10.1016/j.cej.2022.137919
- Z.W. Li, D.H. Chen, Y.F. An, C.L. Chen, L.Y. Wu et al., Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 28, 307–314 (2020). https://doi.org/10.1016/j.ensm.2020.01.028
- Y. Li, P.F. Lu, P. Shang, L.S. Wu, X. Wang et al., Pyridinic nitrogen enriched porous carbon derived from bimetal organic frameworks for high capacity zinc ion hybrid capacitors with remarkable rate capability. J. Energy Chem. 56, 404–411 (2021). https://doi.org/10.1016/j.jechem.2020.08.005
- X. Zhang, Y. Zhang, J. Qian, Y. Zhang, L. Sun et al., Synergistic effects of B/S co-doped spongy-like hierarchically porous carbon for a high performance zinc-ion hybrid capacitor. Nanoscale 14(5), 2004–2012 (2022). https://doi.org/10.1039/d1nr07818f
- K. Shang, Y. Liu, P. Cai, K. Li, Z. Wen, N, P, and S co-doped 3D porous carbon-architectured cathode for high-performance Zn-ion hybrid capacitors. J. Mater. Chem. A 10(12), 6489–6498 (2022). https://doi.org/10.1039/d2ta00202g
- Z. Xu, R. Ma, X. Wang, Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors. Energy Storage Mater. 46, 233–242 (2022). https://doi.org/10.1016/j.ensm.2022.01.011
- J. Wang, Y. Huang, X. Han, Z. Li, S. Zhang et al., A flexible Zinc-ion hybrid supercapacitor constructed by porous carbon with controllable structure. Appl. Surf. Sci. 579, 152247 (2022). https://doi.org/10.1016/j.apsusc.2021.152247
- W.J. Fan, J. Ding, J.N. Ding, Y.L. Zheng, W.Q. Song et al., Identifying heteroatomic and defective sites in carbon with dual-ion adsorption capability for high energy and power zinc ion capacitor. Nano Micro Lett. 13(1), 59 (2021). https://doi.org/10.1007/s40820-021-00588-5
- H. Wang, Q. Chen, P. Xiao, L. Cao, Unlocking zinc-ion energy storage performance of onion-like carbon by promoting heteroatom doping strategy. ACS Appl. Mater. Interfaces 14(7), 9013–9023 (2022). https://doi.org/10.1021/acsami.1c22016
- Y. Yang, D. Chen, H. Wang, P. Ye, Z. Ping et al., Two-step nitrogen and sulfur doping in porous carbon dodecahedra for Zn-ion hybrid supercapacitors with long term stability. Chem. Eng. J. 431, 133250 (2022). https://doi.org/10.1016/j.cej.2021.133250
- C. Ji, D. Wu, Z. Liu, H. Mi, Y. Liao et al., Natural polysaccharide strengthened hydrogel electrolyte and biopolymer derived carbon for durable aqueous zinc ion storage. ACS Appl. Mater. Interfaces 14(20), 23452–23464 (2022). https://doi.org/10.1021/acsami.2c03323
- C. Leng, Y.V. Fedoseeva, Z. Zhao, B. Yan, A.V. Okotrub et al., Rational-design heteroatom-doped cathode and ion modulation layer modified Zn anode for ultrafast zinc-ion hybrid capacitors with simultaneous high power and energy densities. J. Power Sources 536, 231484 (2022). https://doi.org/10.1016/j.jpowsour.2022.231484
- G. Ji, R. Hu, Y. Wang, J. Zheng, High energy density, flexible, low temperature resistant and self-healing Zn-ion hybrid capacitors based on hydrogel electrolyte. J. Energy Storage 46, 103858 (2022). https://doi.org/10.1016/j.est.2021.103858
- X. Shi, H. Zhang, S. Zeng, J. Wang, X. Cao et al., Pyrrolic-dominated nitrogen redox enhances reaction kinetics of pitch-derived carbon materials in aqueous zinc ion hybrid supercapacitors. ACS Mater. Lett. 3(9), 1291–1299 (2021). https://doi.org/10.1021/acsmaterialslett.1c00325
- L. Zhang, Z.Q. Liu, G.W. Wang, J.Z. Feng, Q.H. Ma, Developing high voltage Zn(TFSI)2/Pyr14TFSI/AN hybrid electrolyte for a carbon-based Zn-ion hybrid capacitor. Nanoscale 13(40), 17068–17076 (2021). https://doi.org/10.1039/d1nr03879f
- H. Fan, X. Hu, S. Zhang, Z. Xu, G. Gao et al., Flower-like carbon cathode prepared via in situ assembly for Zn-ion hybrid supercapacitors. Carbon 180, 254–264 (2021). https://doi.org/10.1016/j.carbon.2021.04.093
- L. Zhao, W. Jian, X. Zhang, F. Wen, J. Zhu et al., Multi-scale self-templating synthesis strategy of lignin-derived hierarchical porous carbons toward high-performance zinc ion hybrid supercapacitors. J. Energy Storage 53, 105095 (2022). https://doi.org/10.1016/j.est.2022.105095
- W.J. Lei Zhao, J. Zhu, X. Zhang, F. Wen, X. Fei et al., Molten salt self-template synthesis strategy of oxygen-rich porous carbon cathodes for zinc ion hybrid capacitors. ACS Appl. Mater. Interfaces 14(38), 43431–43441 (2022). https://doi.org/10.1021/acsami.2c13886
- D. Wang, Z. Li, D. Guo, M. Sun, Metal-organic framework derived zinc and nitrogen co-doped porous carbon materials for high performance zinc-ion hybrid supercapacitors. Electrochim. Acta 427, 140854 (2022). https://doi.org/10.1016/j.electacta.2022.140854
- L. Yang, X. He, Y. Wei, H. Li, Y. Yu et al., Synthesis of N/P co-doped monolithic hierarchical porous carbon for zinc-ion hybrid capacitors with boosted energy density in ZnSO4/ZnI2 redox electrolyte. J. Power Sources 542, 231743 (2022). https://doi.org/10.1016/j.jpowsour.2022.231743
- H. Wang, J. Huang, X. Wang, Z. Guo, W. Liu, Fabrication of TiN/CNTs on carbon cloth substrates via a CVD–ALD method as free-standing electrodes for zinc ion hybrid capacitors. New J. Chem. 46(31), 15175–15184 (2022). https://doi.org/10.1039/d2nj02334b
- X. Zhang, X. Tian, Y. Song, J. Wu, T. Yang et al., High-performance activated carbon cathodes from green cokes for Zn-ion hybrid supercapacitors. Fuel 310, 122485 (2022). https://doi.org/10.1016/j.fuel.2021.122485
- X. Zhang, X. Tian, Y. Song, J. Wu, T. Yang et al., Boosting Zn-ion storage capacity of pitch coke-based activated carbon via pre-oxidation assisted KOH activation strategy. Microporous Mesoporous Mater. 333, 111721 (2022). https://doi.org/10.1016/j.micromeso.2022.111721
- X. Zheng, L. Miao, Z. Song, W. Du, D. Zhu et al., In situ nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors. J. Mater. Chem. A 10(2), 611–621 (2022). https://doi.org/10.1039/d1ta07350h
- F. Wei, H. Tian, P. Chen, Y. Lv, J. Huang, Construction of porous carbon nanosheets by dual-template strategy for zinc ion hybrid capacitor. Appl. Surf. Sci. 613, 156021 (2023). https://doi.org/10.1016/j.apsusc.2022.156021
- F. Wei, H. Zhang, X. Hui, Y. Lv, S. Ran et al., N doped porous carbon nanosheets with enhanced zinc ion storage capability. J. Power Sources 554, 232348 (2023). https://doi.org/10.1016/j.jpowsour.2022.232348
- Y. Liu, H. Tan, Z. Tan, X. Cheng, Rice husk-derived carbon materials for aqueous Zn-ion hybrid supercapacitors. Appl. Surface Sci. 608, 155215 (2023). https://doi.org/10.1016/j.apsusc.2022.155215
- B. Xue, J. Xu, R. Xiao, Ice template-assisting activation strategy to prepare biomass-derived porous carbon cages for high-performance Zn-ion hybrid supercapacitors. Chem. Eng. J. 454, 140192 (2023). https://doi.org/10.1016/j.cej.2022.140192
- Y. Wang, J. Yang, S. Liu, X. Che, S. He et al., 3D graphene-like oxygen and sulfur-doped porous carbon nanosheets with multilevel ion channels for high-performance aqueous Zn-ion storage. Carbon 201, 624–632 (2023). https://doi.org/10.1016/j.carbon.2022.09.056
- J. Zhao, Z. Tang, Z. Wang, M. Xi, X. Xie et al., Flexible zinc ion hybrid supercapacitors enabled by N/S co-doped porous carbon and bacterial cellulose/ZnSO4 electrolyte. Colloids Surf. A Physicochem. Eng. Asp. 656, 130424 (2023). https://doi.org/10.1016/j.colsurfa.2022.130424
- G. Chen, Z. Hu, H. Su, J. Zhang, D. Wang, Ultrahigh level heteroatoms doped carbon nanosheets as cathode materials for Zn-ion hybrid capacitor: the indispensable roles of B containing functional groups. Colloids Surf. A Physicochem. Eng. Asp. 656, 130528 (2023). https://doi.org/10.1016/j.colsurfa.2022.130528
- Y. Zhang, P. Xie, C. Jiang, Z. Zou, Nitrogen and oxygen co-doped carbon micro-foams derived from gelatin as high-performance cathode materials of Zn-ion capacitors. J. Energy Storage 57, 106169 (2023). https://doi.org/10.1016/j.est.2022.106169
- Z. Li, Y. Xu, J. Cui, H. Dou, X. Zhang, High-efficiency zinc thermal charging supercapacitors enabled by hierarchical porous carbon electrodes. J. Power Sources 555, 232386 (2023). https://doi.org/10.1016/j.jpowsour.2022.232386
- L. Wang, M. Peng, J. Chen, T. Hu, K. Yuan et al., Eliminating the micropore confinement effect of carbonaceous electrodes for promoting Zn-ion storage capability. Adv. Mater. 34(39), 2203744 (2022). https://doi.org/10.1002/adma.202203744
- B. Lee, H.R. Seo, H.R. Lee, C.S. Yoon, J.H. Kim et al., Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. Chemsuschem 9(20), 2948–2956 (2016). https://doi.org/10.1002/cssc.201600702
- Y. Li, W. Yang, W. Yang, Z. Wang, J. Rong et al., Towards high-energy and anti-self-discharge zn-ion hybrid supercapacitors with new understanding of the electrochemistry. Nano Micro Lett. 13(1), 95 (2021). https://doi.org/10.1007/s40820-021-00625-3
- H. Teng, Y.J. Chang, C.T. Hsieh, Performance of electric double-layer capacitors using carbons prepared from phenol–formaldehyde resins by KOH etching. Carbon 39(13), 1981–1987 (2001). https://doi.org/10.1016/S0008-6223(01)00027-6
- Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin et al., Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 60(43), 23357–23364 (2021). https://doi.org/10.1002/anie.202109682
- W. Zhang, J. Yin, W. Jian, Y. Wu, L. Chen et al., Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors. Nano Energy 103, 107827 (2022). https://doi.org/10.1016/j.nanoen.2022.107827
- W. Jian, W. Zhang, X. Wei, B. Wu, W. Liang et al., Engineering pore nanostructure of carbon cathodes for zinc ion hybrid supercapacitors. Adv. Funct. Mater. 32(49), 2209914 (2022). https://doi.org/10.1002/adfm.202209914
- J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano Micro Lett. 13(1), 12 (2020). https://doi.org/10.1007/s40820-020-00541-y
- T. Liu, C. Jiang, B. Cheng, W. You, J. Yu, Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. J. Mater. Chem. A 5(40), 21257–21265 (2017). https://doi.org/10.1039/c7ta06149h
- J.G. Wang, H. Liu, H. Sun, W. Hua, H. Wang et al., One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127, 85–92 (2018). https://doi.org/10.1016/j.carbon.2017.10.084
- Z. Liu, A. Qin, K. Zhang, P. Lian, X. Yin et al., Design and structure of nitrogen and oxygen co-doped carbon spheres with wrinkled nanocages as active material for supercapacitor application. Nano Energy 90, 106540 (2021). https://doi.org/10.1016/j.nanoen.2021.106540
- J. Liu, N.P. Wickramaratne, S.Z. Qiao, M. Jaroniec, Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 14(8), 763–774 (2015). https://doi.org/10.1038/nmat4317
- X.F. Yu, W.C. Li, Y.R. Hu, C.Y. Ye, A.H. Lu, Sculpturing solid polymer spheres into internal gridded hollow carbon spheres under controlled pyrolysis micro-environment. Nano Res. 14(5), 1565–1573 (2021). https://doi.org/10.1007/s12274-021-3290-6
- J. Ding, H. Zhang, H. Zhou, J. Feng, X. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31(30), e1900429 (2019). https://doi.org/10.1002/adma.201900429
- Y. Zhang, K. Sun, Z. Liang, Y. Wang, L. Ling, N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries. Appl. Surf. Sci. 427, 823–829 (2018). https://doi.org/10.1016/j.apsusc.2017.06.288
- J. Du, L. Liu, Y. Yu, H. Lv, Y. Zhang et al., Confined pyrolysis for direct conversion of solid resin spheres into yolk–shell carbon spheres for supercapacitor. J. Mater. Chem. A 7(3), 1038–1044 (2019). https://doi.org/10.1039/c8ta10266j
- J. Gong, J. Liu, X. Chen, Z. Jiang, X. Wen et al., One-pot synthesis of core/shell Co@C spheres by catalytic carbonization of mixed plastics and their application in the photo-degradation of Congo red. J. Mater. Chem. A 2(20), 7461–7470 (2014). https://doi.org/10.1039/c4ta00173g
- B. Chen, L. Yang, X. Bai, Q. Wu, M. Liang et al., Heterostructure engineering of core-shelled Sb@Sb2O3 encapsulated in 3D N-doped carbon hollow-spheres for superior sodium/potassium storage. Small 17(6), 2006824 (2021). https://doi.org/10.1002/smll.202006824
- J. Zheng, Y. Wu, Y. Tong, X. Liu, Y. Sun et al., High capacity and fast kinetics of potassium-ion batteries boosted by nitrogen-doped mesoporous carbon spheres. Nano Micro Lett. 13(1), 174 (2021). https://doi.org/10.1007/s40820-021-00706-3
- S.H. Chen, G.Q. Yang, X.J. Zhao, N.Z. Wang, T.T. Luo et al., Hollow mesoporous carbon spheres for high performance symmetrical and aqueous zinc-ion hybrid supercapacitor. Front. Chem. 8, 663 (2020). https://doi.org/10.3389/fchem.2020.00663
- R.X. Fei, H.W. Wang, Q. Wang, R.Y. Qiu, S.S. Tang et al., In situ hard-template synthesis of hollow bowl-like carbon: a potential versatile platform for sodium and zinc ion capacitors. Adv. Energy Mater. 10, 2002741 (2020). https://doi.org/10.1002/aenm.202002741
- P.G. Liu, W.F. Liu, Y.P. Huang, P.L. Li, J. Yan et al., Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage. Energy Storage Mater. 25, 858–865 (2020). https://doi.org/10.1016/j.ensm.2019.09.004
- C.D. Tschannen, M. Frimmer, T.L. Vasconcelos, L. Shi, T. Pichler et al., Tip-enhanced stokes-anti-stokes scattering from carbyne. Nano Lett. 22(8), 3260–3265 (2022). https://doi.org/10.1021/acs.nanolett.2c00154
- T. Gao, G. Yan, X. Yang, Q. Yan, Y. Tian et al., Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage. J. Energy Chem. 71, 192–200 (2022). https://doi.org/10.1016/j.jechem.2022.02.040
- N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang et al., High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv. Energy Mater. 6(2), 1501458 (2016). https://doi.org/10.1002/aenm.201501458
- K. Yang, M. Luo, D. Zhang, C. Liu, Z. Li et al., Ti3C2T/carbon nanotube/porous carbon film for flexible supercapacitor. Chem. Eng. J. 427, 132002 (2022). https://doi.org/10.1016/j.cej.2021.132002
- S. Ligima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0
- Q. Sun, L. Zhou, L. Lu, G. Zhou, J. Chen, Reconfigurable high-resolution microwave photonic filter based on dual-ring-assisted MZIs on the Si3N4 platform. IEEE Photonics J. 10(6), 1–12 (2018). https://doi.org/10.1109/jphot.2018.2881166
- X. Zhang, Z. Pei, C. Wang, Z. Yuan, L. Wei et al., Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small 15(47), 1903817 (2019). https://doi.org/10.1002/smll.201903817
- W.-H. Lin, S.-F. Liu, S. Gull, T.-C. Su, K.-J. Tsai et al., Nanoporous core–shell–structured multi-wall carbon nanotube/graphene oxide nanoribbons as cathodes and protection layer for aqueous zinc-ion capacitors: mechanism study of zinc dendrite suppression by in-situ transmission X-ray microscopy. J. Power Sources 541, 231627 (2022). https://doi.org/10.1016/j.jpowsour.2022.231627
- F. Wei, H. Zhang, J. Wang, J. Zhuang, Y. Lv, N, S co-doped porous carbons with well-developed pores for supercapacitor and zinc ion hybrid capacitor. J. Alloys Compounds 907, 164536 (2022). https://doi.org/10.1016/j.jallcom.2022.164536
- J.Z. Ying, J. Sun, Y. Tong, Y. Wu, X. Liu et al., Construction of three-dimensional nitrogen doped porous carbon flake electrodes for advanced potassium-ion hybrid capacitors. J. Colloid Interface Sci. 606, 1940–1949 (2022). https://doi.org/10.1016/j.jcis.2021.09.143
- J. Li, L. Yu, W. Wang, X. He, G. Wang et al., Sulfur incorporation modulated absorption kinetics and electron transfer behavior for nitrogen rich porous carbon nanotubes endow superior aqueous zinc ion storage capability. J. Mater. Chem. A 10(17), 9355–9362 (2022). https://doi.org/10.1039/d1ta10677e
- Q. Chen, L. Cao, H. Wang, Z. Zhou, P. Xiao, Oxygen/fluorine-functionalized flexible carbon electrodes for high-performance and anti-self-discharge Zn-ion hybrid capacitors. J. Power Sources 538, 231586 (2022). https://doi.org/10.1016/j.jpowsour.2022.231586
- X. Li, Y. Li, S. Xie, Y. Zhou, J. Rong et al., Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes. Chem. Eng. J. 427, 131799 (2022). https://doi.org/10.1016/j.cej.2021.131799
- S. Devaraj, N. Munichandraiah, High capacitance of electrodeposited MnO2 by the effect of a surface-active agent. Electrochem. Solid State Lett. 8(7), A373 (2005). https://doi.org/10.1149/1.1922869
- S.L. Wang, Q. Wang, W. Zeng, M. Wang, L.M. Ruan et al., A new free-standing aqueous zinc-ion capacitor based on MnO2-CNTs cathode and MXene anode. Nano Micro Lett. 11(1), 70 (2019). https://doi.org/10.1007/s40820-019-0301-1
- Z. Jian, N.J. Yang, M. Vogel, S. Leith, A. Schulte et al., Flexible diamond fibers for high-energy-density zinc-ion supercapacitors. Adv. Energy Mater. 10(44), 2002202 (2020). https://doi.org/10.1002/aenm.202002202
- N. Xu, C. Yan, W. He, L. Xu, Z. Jiang et al., Flexible electrode material of V2O5 carbon fiber cloth for enhanced zinc ion storage performance in flexible zinc-ion battery. J. Power Sources 533, 231358 (2022). https://doi.org/10.1016/j.jpowsour.2022.231358
- H. He, J. Lian, C. Chen, Q. Xiong, M. Zhang, Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chem. Eng. J. 421, 129786 (2021). https://doi.org/10.1016/j.cej.2021.129786
- H. He, J. Lian, C. Chen, Q. Xiong, C.C. Li et al., Enabling multi-chemisorption sites on carbon nanofibers cathodes by an in-situ exfoliation strategy for high-performance Zn-ion hybrid capacitors. Nano Micro Lett. 14(1), 106 (2022). https://doi.org/10.1007/s40820-022-00839-z
- N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
- W. Li, C. Han, Q. Gu, S.L. Chou, J.Z. Wang et al., Electron delocalization and dissolution-restraint in vanadium oxide superlattices to boost electrochemical performance of aqueous zinc-ion batteries. Adv. Energy Mater. 10(48), 2001852 (2020). https://doi.org/10.1002/aenm.202001852
- X. Wang, Y. Wang, J. Hao, Y. Liu, H. Xiao et al., Pseudocapacitive zinc cation intercalation with superior kinetics enabled by atomically thin V2O5 nanobelts for quasi-solid-state microbatteries. Energy Storage Mater. 50, 454–463 (2022). https://doi.org/10.1016/j.ensm.2022.05.049
- G. Yoo, B.R. Koo, G.H. An, Nano-sized split V2O5 with H2O-intercalated interfaces as a stable cathode for zinc ion batteries without an aging process. Chem. Eng. J. 434, 134738 (2022). https://doi.org/10.1016/j.cej.2022.134738
- R. Li, F. Xing, T. Li, H. Zhang, J. Yan et al., Intercalated polyaniline in V2O5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery. Energy Storage Mater. 38, 590–598 (2021). https://doi.org/10.1016/j.ensm.2021.04.004
- L. Xiong, Z. Qu, Z. Shen, G. Yuan, G. Wang et al., In situ construction of ball-in-ball structured porous vanadium pentoxide intertwined with carbon fibers induces superior electronic/ionic transport dynamics for aqueous zinc-ion batteries. J. Colloid Interface Sci. 615, 184–195 (2022). https://doi.org/10.1016/j.jcis.2022.01.155
- R. Zou, Q. Liu, G. He, M.F. Yuen, K. Xu et al., Nanops encapsulated in porous carbon matrix coated on carbon fibers: an ultrastable cathode for Li-ion batteries. Adv. Energy Mater. 7(2), 1601363 (2017). https://doi.org/10.1002/aenm.201601363
- L. Yao, Q. Wu, P. Zhang, J. Zhang, D. Wang et al., Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 30(11), 2200945 (2018). https://doi.org/10.1002/adma.201706054
- L. Hou, X. Cui, B. Guan, S. Wang, R. Li et al., Synthesis of a monolayer fullerene network. Nature 606(7914), 507–510 (2022). https://doi.org/10.1038/s41586-022-04771-5
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
- J. Bai, Y. Huang, Fabrication and electrical properties of graphene nanoribbons. Mater. Sci. Eng. R Rep. 70(3–6), 341–353 (2010). https://doi.org/10.1016/j.mser.2010.06.019
- T. Cui, S. Mukherjee, P.M. Sudeep, G. Colas, F. Najafi et al., Fatigue of graphene. Nat. Mater. 19(4), 405–411 (2020). https://doi.org/10.1038/s41563-019-0586-y
- V. Palermo, I.A. Kinloch, S. Ligi, N.M. Pugno, Nanoscale mechanics of graphene and graphene oxide in composites: a scientific and technological perspective. Adv. Mater. 28(29), 6232–6238 (2016). https://doi.org/10.1002/adma.201505469
- T.T. Heikkilä, Surprising superconductivity of graphene. Science 375(6582), 719–720 (2022). https://doi.org/10.1126/science.abn9631
- F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). https://doi.org/10.1038/nmat1967
- J. Liu, Z. Khanam, S. Ahmed, T. Wang, H. Wang et al., Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes. ACS Appl. Mater. Interfaces 13(14), 16454–16468 (2021). https://doi.org/10.1021/acsami.1c02242
- Y. Liu, X. Miao, X. Zhang, S. Chen, Y. Chen et al., High performance flexible quasi-solid-state zinc-ion hybrid supercapacitors enable by electrode potential adjustment. J. Power Sources 495, 229789 (2021). https://doi.org/10.1016/j.jpowsour.2021.229789
- Y. Shao, Z. Sun, Z. Tian, S. Li, G. Wu et al., Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn-ion hybrid capacitor. Adv. Funct. Mater. 31(6), 2007843 (2020). https://doi.org/10.1002/adfm.202007843
- H. Xu, W. He, Z. Li, J. Chi, J. Jiang et al., Revisiting charge storage mechanism of reduced graphene oxide in zinc ion hybrid capacitor beyond the contribution of oxygen-containing groups. Adv. Funct. Mater. 32(16), 2111131 (2022). https://doi.org/10.1002/adfm.202111131
- S.J. Patil, N.R. Chodankar, S.-K. Hwang, G.S.R. Raju, K.S. Ranjith et al., Ultra-stable flexible Zn-ion capacitor with pseudocapacitive 2D layered niobium oxyphosphides. Energy Storage Mater. 45, 1040–1051 (2022). https://doi.org/10.1016/j.ensm.2021.10.040
- Y. Wang, J. Cao, J. Guo, J. Zhang, G. Liu et al., Flexible reduced graphene oxide/V2O5 composite battery-type cathode and MXene capacitor-type anode for aqueous zinc ion hybrid supercapacitors with high energy density. J. Alloys Compd. 915, 165418 (2022). https://doi.org/10.1016/j.jallcom.2022.165418
- X. Zhang, C. Chen, S. Gao, X. Luo, Y. Mo et al., Graphene as regulating zinc deposition layer for long-life zinc ion hybrid supercapacitors. J. Energy Storage 42, 103037 (2021). https://doi.org/10.1016/j.est.2021.103037
- W. Tian, Q. Gao, Y. Tan, Z. Li, Unusual interconnected graphitized carbon nanosheets as the electrode of high-rate ionic liquid-based supercapacitor. Carbon 119, 287–295 (2017). https://doi.org/10.1016/j.carbon.2017.04.050
- S. Liu, J. Zhou, H. Song, 2D Zn-hexamine coordination frameworks and their derived n-rich porous carbon nanosheets for ultrafast sodium storage. Adv. Energy Mater. 8(22), 1800569 (2018). https://doi.org/10.1002/aenm.201800569
- J. Yu, C. Yu, W. Guo, Z. Wang, S. Li et al., Decoupling and correlating the ion transport by engineering 2D carbon nanosheets for enhanced charge storage. Nano Energy 64, 103921 (2019). https://doi.org/10.1016/j.nanoen.2019.103921
- Y. Cao, X. Tang, M. Liu, Y. Zhang, T. Yang et al., Thin-walled porous carbon tile-packed paper for high-rate Zn-ion capacitor cathode. Chem. Eng. J. 431, 133241 (2022). https://doi.org/10.1016/j.cej.2021.133241
- H.F. Zhang, Z.S. Chen, Y.H. Zhang, Z.Q. Ma, Y.G. Zhang et al., Boosting Zn-ion adsorption in cross-linked N/P co-incorporated porous carbon nanosheets for the zinc-ion hybrid capacitor. J. Mater. Chem. A 9(30), 16565–16574 (2021). https://doi.org/10.1039/d1ta03501k
- H. Wang, X. Chen, J. Zhang, Z. Yuan, P. Ye et al., Unveiling the cooperative roles of pyrrolic-N and carboxyl groups in biomass-derived hierarchical porous carbon nanosheets for high energy-power Zn-ion hybrid supercapacitors. Appl. Surf. Sci. 598, 153819 (2022). https://doi.org/10.1016/j.apsusc.2022.153819
- G. Lou, G. Pei, Y. Wu, Y. Lu, Y. Wu et al., Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors. Chem. Eng. J. 413, 127502 (2021). https://doi.org/10.1016/j.cej.2020.127502
- Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji et al., High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 66, 104132 (2019). https://doi.org/10.1016/j.nanoen.2019.104132
- B.D. Boruah, A. Mathieson, B. Wen, C. Jo, F. Deschler et al., Photo-rechargeable zinc-ion capacitor using 2D graphitic carbon nitride. Nano Lett. 20(8), 5967–5974 (2020). https://doi.org/10.1021/acs.nanolett.0c01958
- G. Zhang, Y. Song, H. Zhang, J. Xu, H. Duan et al., Radially aligned porous carbon nanotube arrays on carbon fibers: a hierarchical 3D carbon nanostructure for high-performance capacitive energy storage. Adv. Funct. Mater. 26(18), 3012–3020 (2016). https://doi.org/10.1002/adfm.201505226
- L. Pan, Y. Wang, H. Hu, X. Li, J. Liu et al., 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors. Carbon 134, 345–353 (2018). https://doi.org/10.1016/j.carbon.2018.04.008
- Y. Chen, I. Kone, Y. Gong, A. Xie, H. Hu et al., Ultra-thin carbon nanosheets-assembled 3D hierarchically porous carbon for high performance zinc-air batteries. Carbon 152, 325–334 (2019). https://doi.org/10.1016/j.carbon.2019.06.026
- B. Yang, J. Chen, L. Liu, P. Ma, B. Liu et al., 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Mater. 23, 522–529 (2019). https://doi.org/10.1016/j.ensm.2019.04.008
- F. Wei, X. He, L. Ma, H. Zhang, N. Xiao et al., 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors. Nano Micro Lett. 12(1), 82 (2020). https://doi.org/10.1007/s40820-020-00416-2
- Y. Zhang, Y. Shi, X.C. Hu, W.P. Wang, R. Wen et al., A 3D lithium/carbon fiber anode with sustained electrolyte contact for solid-state batteries. Adv. Energy Mater. 10(3), 1903325 (2019). https://doi.org/10.1002/aenm.201903325
- N.R. Chodankar, S.J. Patil, S. Lee, J. Lee, S.K. Hwang et al., High energy superstable hybrid capacitor with a self-regulated Zn/electrolyte interface and 3D graphene-like carbon cathode. InfoMat 4(10), e12344 (2022). https://doi.org/10.1002/inf2.12344
- Y.W. Zheng, W. Zhao, D.D. Jia, Y. Liu, L. Cui et al., Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chem. Eng. J. 387, 124161 (2020). https://doi.org/10.1016/j.cej.2020.124161
- W. Zhang, B. Liu, M. Yang, Y. Liu, H. Li et al., Biowaste derived porous carbon sponge for high performance supercapacitors. J. Mater. Sci. Technol. 95, 105–113 (2021). https://doi.org/10.1016/j.jmst.2021.03.066
- M. Kim, J.F.S. Fernando, Z. Li, A. Alowasheeir, A. Ashok et al., Ultra-stable sodium ion storage of biomass porous carbon derived from sugarcane. Chem. Eng. J. 445, 136344 (2022). https://doi.org/10.1016/j.cej.2022.136344
- S. Yang, S. Wang, X. Liu, L. Li, Biomass derived interconnected hierarchical micro-meso-macro- porous carbon with ultrahigh capacitance for supercapacitors. Carbon 147, 540–549 (2019). https://doi.org/10.1016/j.carbon.2019.03.023
- L. Chen, T. Ji, L. Mu, J. Zhu, Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111, 839–848 (2017). https://doi.org/10.1016/j.carbon.2016.10.054
- Y. Wang, R. Liu, Y. Tian, Z. Sun, Z. Huang et al., Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors. Chem. Eng. J. 384, 123263 (2020). https://doi.org/10.1016/j.cej.2019.123263
- W. Jian, W. Zhang, B. Wu, X. Wei, W. Liang et al., Enzymatic hydrolysis lignin-derived porous carbons through ammonia activationactivation mechanism and charge storage mechanism. ACS Appl. Mater. Interfaces 14(4), 5425–5438 (2022). https://doi.org/10.1021/acsami.1c22576
- D.W. Wang, S.Y. Wang, Z.M. Lu, S-doped 3D porous carbons derived from potassium thioacetate activation strategy for zinc-ion hybrid supercapacitor applications. Int. J. Energy Res. 45(2), 2498–2510 (2021). https://doi.org/10.1002/er.5944
- Y. Lu, L. Liu, R. Zhang, Z. Jiang, Y. Li et al., Sodium alginate-derived micropore dominated carbon 3D architectures through dual template engineering for high-performance Zn-ion hybrid capacitors. Appl. Surf. Sci. 604, 154631 (2022). https://doi.org/10.1016/j.apsusc.2022.154631
- L. Zhang, D. DeArmond, N.T. Alvarez, R. Malik, N. Oslin et al., Flexible micro-supercapacitor based on graphene with 3D structure. Small 13(10), 1603114 (2017). https://doi.org/10.1002/smll.201603114
- Q. Wang, S.L. Wang, X.H. Guo, L.M. Ruan, N. Wei et al., MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv. Electr. Mater. 5(12), 1900537 (2019). https://doi.org/10.1002/aelm.201900537
- L. Zhang, D.D. Wu, G.W. Wang, Y.T. Xu, H.X. Li et al., An aqueous zinc-ion hybrid super-capacitor for achieving ultrahigh-volumetric energy density. Chin. Chem. Lett. 32(2), 926–931 (2021). https://doi.org/10.1016/j.cclet.2020.06.037
- Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang et al., Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7, 4042–4049 (2013). https://doi.org/10.1021/nn4000836
- X. Xu, X. Zhao, Z. Yang, Q. Lin, B. Jian et al., High-density three-dimensional graphene cathode with a tailored pore structure for high volumetric capacity zinc-ion storage. Carbon 186, 624–631 (2022). https://doi.org/10.1016/j.carbon.2021.10.060
- J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai et al., Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11(4), 772–799 (2018). https://doi.org/10.1039/c7ee03031b
- P. Yu, Y. Zeng, Y. Zeng, H. Dong, H. Hu et al., Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture. Electrochim. Acta 327, 134999 (2019). https://doi.org/10.1016/j.electacta.2019.134999
- G. Chen, Z. Hu, Z. Pan, D. Wang, Design of honeycomb-like hierarchically porous carbons with engineered mesoporosity for aqueous zinc-ion hybrid supercapacitors applications. J. Energy Storage 38, 102534 (2021). https://doi.org/10.1016/j.est.2021.102534
- A. Huang, J. Yan, H. Zhang, X. Li, H. Zhang, Effect of the pore length and orientation upon the electrochemical capacitive performance of ordered mesoporous carbons. J. Energy Chem. 26(1), 121–128 (2017). https://doi.org/10.1016/j.jechem.2016.08.005
- L. Wan, J. Wang, L. Xie, Y. Sun, K. Li, Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors. ACS Appl. Mater. Interfaces 6(17), 15583–15596 (2014). https://doi.org/10.1021/am504564q
- J. Yu, L.J. Wang, J.X. Peng, X.F. Jia, L.J. Zhou et al., O-doped porous carbon derived from biomass waste for high-performance zinc-ion hybrid supercapacitors. Ionics 27(10), 4495–4505 (2021). https://doi.org/10.1007/s11581-021-04179-7
- H.X. Li, J. Wu, L.T. Wang, Q.X. Liao, X.H. Niu et al., A zinc ion hybrid capacitor based on sharpened pencil-like hierarchically porous carbon derived from metal-organic framework. Chem. Eng. J. 428, 131071 (2022). https://doi.org/10.1016/j.cej.2021.131071
- S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles. Adv. Energy Mater. 9(47), 1902915 (2019). https://doi.org/10.1002/aenm.201902915
- J.J. Shi, S.L. Wang, Q. Wang, X. Chen, X.Y. Du et al., A new flexible zinc-ion capacitor based on delta-MnO2@Carbon cloth battery-type cathode and MXene@Cotton cloth capacitor-type anode. J. Power Sources 446, 227345 (2020). https://doi.org/10.1016/j.jpowsour.2019.227345
- D. Wang, Z. Pan, Z. Lu, From starch to porous carbon nanosheets: Promising cathodes for high-performance aqueous Zn-ion hybrid supercapacitors. Microporous Mesoporous Mater. 306, 110445 (2020). https://doi.org/10.1016/j.micromeso.2020.110445
- H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu et al., Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 31(44), e1904948 (2019). https://doi.org/10.1002/adma.201904948
- L. Wang, M. Huang, J. Huang, X. Tang, L. Li et al., Coupling of EDLC and the reversible redox reaction: oxygen functionalized porous carbon nanosheets for zinc-ion hybrid supercapacitors. J. Mater. Chem. A 9(27), 15404–15414 (2021). https://doi.org/10.1039/d1ta03568a
- P. Luo, L. Huang, Carbon paper as current collectors in graphene hydrogel electrodes for high-performance supercapacitors. Nanomaterials 10(4), 746 (2020). https://doi.org/10.3390/nano10040746
- J. Wojciechowski, Ł Kolanowski, A. Bund, G. Lota, The influence of current collector corrosion on the performance of electrochemical capacitors. J. Power Sources 368, 18–29 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.069
- J. Yu, C. Yu, W. Guo, Z. Wang, Y. Ding et al., Insight into the effects of current collectors and in situ Ni leaching in high-voltage aqueous supercapacitors. Adv. Funct. Mater. 32, 2204609 (2022). https://doi.org/10.1002/adfm.202204609
- C. Huang, X. Zhao, Y. Xu, Y. Zhang, Y. Yang et al., Sewable and cuttable flexible zinc-ion hybrid supercapacitor using a polydopamine/carbon cloth-based cathode. ACS Sustain. Chem. Eng. 8(42), 16028–16036 (2020). https://doi.org/10.1021/acssuschemeng.0c06525
- V. Yufit, F. Tariq, D.S. Eastwood, M. Biton, B. Wu et al., Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 3(2), 485–502 (2019). https://doi.org/10.1016/j.joule.2018.11.002
- S. Higashi, S.W. Lee, J.S. Lee, K. Takechi, Y. Cui, Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801 (2016). https://doi.org/10.1038/ncomms11801
- Y. Qin, P. Liu, Q. Zhang, Q. Wang, D. Sun et al., Advanced filter membrane separator for aqueous zinc-ion batteries. Small 16(39), 2003106 (2020). https://doi.org/10.1002/smll.202003106
- C. Li, Z.T. Sun, T. Yang, L.H. Yu, N. Wei et al., Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes. Adv. Mater. 32(33), 2003425 (2020). https://doi.org/10.1002/adma.202003425
- W. Zhou, M. Chen, Q. Tian, J. Chen, X. Xu et al., Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater. 44, 57–65 (2022). https://doi.org/10.1016/j.ensm.2021.10.002
- Y. Zhang, G. Yang, M.L. Lehmann, C. Wu, L. Zhao et al., Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime. Nano Lett. 21(24), 10446–10452 (2021). https://doi.org/10.1021/acs.nanolett.1c03792
- X. Zhu, X. Li, M.L.K. Essandoh, J. Tan, Z. Cao et al., Interface Eng. with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Storage Mater. 50, 243–251 (2022). https://doi.org/10.1016/j.ensm.2022.05.022
- Y. Tian, Y. An, C. Liu, S. Xiong, J. Feng et al., Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Mater. 41, 343–353 (2021). https://doi.org/10.1016/j.ensm.2021.06.019
- Y. Tian, Y. An, Y. Yang, B. Xu, Robust nitrogen/selenium engineered MXene/ZnSe hierarchical multifunctional interfaces for dendrite-free zinc-metal batteries. Energy Storage Mater. 49, 122–134 (2022). https://doi.org/10.1016/j.ensm.2022.03.045
- Y. Su, B. Liu, Q. Zhang, J. Peng, C. Wei et al., Printing-scalable Ti3C2Tx MXene-decorated janus separator with expedited Zn2+ flux toward stabilized anodes. Adv. Funct. Mater. 32, 2204306 (2022). https://doi.org/10.1002/adfm.202204306
- Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano Micro Lett. 13(1), 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
- Y. An, Y. Tian, Q. Man, H. Shen, C. Liu et al., Highly reversible Zn metal anodes enabled by freestanding, lightweight, and zincophilic mxene/nanoporous oxide heterostructure engineered separator for flexible Zn-MnO2 batteries. ACS Nano 16(4), 6755–6770 (2022). https://doi.org/10.1021/acsnano.2c01571
- Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022). https://doi.org/10.1002/adfm.202112936
- Z. Hou, Y. Gao, H. Tan, B. Zhang, Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation. Nat. Commun. 12(1), 3083 (2021). https://doi.org/10.1038/s41467-021-23352-0
- T. Liu, J. Hong, J. Wang, Y. Xu, Y. Wang, Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan. Energy Storage Mater. 45, 1074–1083 (2022). https://doi.org/10.1016/j.ensm.2021.11.002
- B. Wu, Y. Wu, Z. Lu, J. Zhang, N. Han et al., A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. J. Mater. Chem. A 9(8), 4734–4743 (2021). https://doi.org/10.1039/d0ta11841a
- J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang et al., Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 11(29), 2101299 (2021). https://doi.org/10.1002/aenm.202101299
- Y. Fang, X. Xie, B. Zhang, Y. Chai, B. Lu et al., Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv. Funct. Mater. 32(14), 2109671 (2021). https://doi.org/10.1002/adfm.202109671
- N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861–2865 (2021). https://doi.org/10.1002/anie.202012322
- J.Y. Kim, G. Liu, G.Y. Shim, H. Kim, J.K. Lee, Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv. Funct. Mater. 30(36), 2004210 (2020). https://doi.org/10.1002/adfm.202004210
- J. Cao, D. Zhang, Y. Yue, R. Chanajaree, S. Wang et al., Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy 93, 106839 (2022). https://doi.org/10.1016/j.nanoen.2021.106839
- C. Fu, Y. Wang, C. Lu, S. Zhou, Q. He et al., Modulation of hydrogel electrolyte enabling stable zinc metal anode. Energy Storage Mater. 51, 588–598 (2022). https://doi.org/10.1016/j.ensm.2022.06.034
- J. Zeng, L.B. Dong, L.L. Sun, W. Wang, Y.H. Zhou et al., Printable zinc-ion hybrid micro-capacitors for flexible self-powered integrated units. Nano Micro Lett. 13(1), 19 (2021). https://doi.org/10.1007/s40820-020-00546-7
- Y. Jiang, K. Ma, M. Sun, Y. Li, J. Liu, All-climate stretchable dendrite-free Zn-ion hybrid supercapacitors enabled by hydrogel electrolyte engineering. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12357
- K. Chen, L. Yan, Y. Sheng, Y. Ma, L. Qu et al., An edible and nutritive zinc-ion micro-supercapacitor in the stomach with ultrahigh energy density. ACS Nano 16(9), 15261–15272 (2022). https://doi.org/10.1021/acsnano.2c06656
References
B. Yin, S. Zhang, Q. Ren, C. Liu, K. Ke et al., Elastic soft hydrogel supercapacitor for energy storage. J. Mater. Chem. A 5(47), 24942–24950 (2017). https://doi.org/10.1039/c7ta08152a
P. Roja, D. Venkatramanan, V. John, Design considerations of ultracapacitor stack for optimal sizing of energy storage systems in contingency applications. IEEE Trans. Ind. Appl. 56(6), 6803–6814 (2020). https://doi.org/10.1109/tia.2020.3017468
J.L. Shi, D.D. Xiao, M. Ge, X. Yu, Y. Chu et al., High-capacity cathode material with high voltage for Li-ion batteries. Adv. Mater. 30(9), 1705575 (2018). https://doi.org/10.1002/adma.201705575
R. Shapira, G.D. Nessim, T. Zimrin, D. Aurbach, Towards promising electrochemical technology for load leveling applications: extending cycle life of lead acid batteries by the use of carbon nano-tubes (CNTs). Energy Environ. Sci. 6(2), 587–594 (2013). https://doi.org/10.1039/c2ee22970f
S.T. Senthilkumar, J. Han, J. Park, S. Min Hwang, D. Jeon et al., Energy efficient Na-aqueous-catholyte redox flow battery. Energy Storage Mater. 12, 324–330 (2018). https://doi.org/10.1016/j.ensm.2017.10.006
S. Wang, Y. Jiang, X. Hu, Ionogel-based membranes for safe lithium/sodium batteries. Adv. Mater. 34(52), 2200945 (2022). https://doi.org/10.1002/adma.202200945
Y. Gu, Y. Liu, X. Cao, Evolving strategies for tumor immunotherapy: enhancing the enhancer and suppressing the suppressor. Natl. Sci. Rev. 4(2), 161–163 (2017). https://doi.org/10.1093/nsr/nwx032
M. Zhong, M. Zhang, X. Li, Carbon nanomaterials and their composites for supercapacitors. Carbon Energy 4(5), 950–985 (2022). https://doi.org/10.1002/cey2.219
K. Deng, Q. Zeng, D. Wang, Z. Liu, G. Wang et al., Nonflammable organic electrolytes for high-safety lithium-ion batteries. Energy Storage Mater. 32, 425–447 (2020). https://doi.org/10.1016/j.ensm.2020.07.018
G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng, An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 148(8), A930–A939 (2001). https://doi.org/10.1149/1.1383553
J. Yin, L. Qi, H. Wang, Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors. ACS Appl. Mater. Interfaces 4(5), 2762–2768 (2012). https://doi.org/10.1021/am300385r
J. Yin, W.L. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Electrochemical Zinc ion capacitors: fundamentals, materials, and systems. Adv. Energy Mater. 11(21), 2100201 (2021). https://doi.org/10.1002/aenm.202100201
L. Miao, Y. Lv, D. Zhu, L. Li, L. Gan et al., Recent advances in zinc-ion hybrid energy storage: coloring high-power capacitors with battery-level energy. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.107784
Y.H. Tian, R. Amal, D.W. Wang, An aqueous metali-ion capacitor with oxidized carbon nanotubes and metalicn zinc electrodes. Front. Energy Res. 4, 34 (2016). https://doi.org/10.3389/fenrg.2016.00034
P. Zhang, Y. Li, G. Wang, F. Wang, S. Yang et al., Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv. Mater. 31(3), e1806005 (2019). https://doi.org/10.1002/adma.201806005
L. Han, H. Huang, J. Li, Z. Yang, X. Zhang et al., Novel zinc–iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. J. Mater. Chem. A 7(42), 24400–24407 (2019). https://doi.org/10.1039/c9ta07196b
Q. Wang, S.L. Wang, J.Y. Li, L.M. Ruan, N. Wei et al., A novel aqueous zinc-ion hybrid supercapacitor based on TiS2(De)intercalation battery-type anode. Adv. Electron. Mater. 6(10), 2000388 (2020). https://doi.org/10.1002/aelm.202000388
Q. Guo, Y.Y. Han, N. Chen, L.T. Qu, Few-layer siloxene as an electrode for superior high-rate zinc ion hybrid capacitors. ACS Energy Lett. 6(5), 1786–1794 (2021). https://doi.org/10.1021/acsenergylett.1c00285
Z.D. Huang, A. Chen, F.N. Mo, G.J. Liang, X.L. Li et al., Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors. Adv. Energy Mater. 10(24), 2001024 (2020). https://doi.org/10.1002/aenm.202001024
Y. Tong, Y. Wu, Z. Liu, Y. Yin, Y. Sun et al., Fabricating multi-porous carbon anode with remarkable initial coulombic efficiency and enhanced rate capability for sodium-ion batteries. Chin. Chem. Lett. 34(1), 107443 (2023). https://doi.org/10.1016/j.cclet.2022.04.041
X. Liu, X. Yu, Y. Tong, Y. Sun, W. Mai et al., Potassium storage in bismuth nanops embedded in N-doped porous carbon facilitated by ether-based electrolyte. Chem. Eng. J. 446, 137329 (2022). https://doi.org/10.1016/j.cej.2022.137329
X. Liu, Y. Tong, Y. Wu, J. Zheng, Y. Sun et al., Synergistically enhanced electrochemical performance using nitrogen, phosphorus and sulfur tri-doped hollow carbon for advanced potassium ion storage device. Chem. Eng. J. 431, 133986 (2022). https://doi.org/10.1016/j.cej.2021.133986
Y. Wu, Y. Sun, Y. Tong, H. Li, FeSb2 nanops embedded in 3D porous carbon framework: an robust anode material for potassium storage with long activation process. Small 18(24), e2201934 (2022). https://doi.org/10.1002/smll.202201934
X. Liu, Y. Sun, Y. Tong, H. Li, Unique spindle-like bismuth-based composite toward ultrafast potassium storage. Small 18(44), e2204045 (2022). https://doi.org/10.1002/smll.202204045
Y. Wu, J. Zheng, Y. Tong, X. Liu, Y. Sun et al., Carbon hollow tube-confined Sb/Sb2S3 nanorod fragments as highly stable anodes for potassium-ion batteries. ACS Appl. Mater. Interfaces 13(43), 51066–51077 (2021). https://doi.org/10.1021/acsami.1c16267
L. Dong, W. Yang, W. Yang, Y. Li, W. Wu et al., Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A 7(23), 13810–13832 (2019). https://doi.org/10.1039/c9ta02678a
H. Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
Z. Song, L. Miao, L. Ruhlmann, Y. Lv, L. Li et al., Proton-conductive supramolecular hydrogen-bonded organic superstructures for high-performance zinc-organic batteries. Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202219136
L.B. Dong, W. Yang, W. Yang, H. Tian, Y.F. Huang et al., Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chem. Eng. J. 384, 123355 (2020). https://doi.org/10.1016/j.cej.2019.123355
X.P. Ma, J.Y. Cheng, L.B. Dong, W.B. Liu, J. Mou et al., Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater. 20, 335–342 (2019). https://doi.org/10.1016/j.ensm.2018.10.020
Y.L. Sun, H.Y. Ma, X.Q. Zhang, B. Liu, L.Y. Liu et al., Salty ice electrolyte with superior ionic conductivity towards low-temperature aqueous zinc ion hybrid capacitors. Adv. Funct. Mater. 31(28), 2101277 (2021). https://doi.org/10.1002/adfm.202101277
L.B. Dong, X.P. Ma, Y. Li, L. Zhao, W.B. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi et al., A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J. Mater. Chem. Chem. A 7(13), 7784–7790 (2019). https://doi.org/10.1039/c9ta00733d
Z. Song, L. Miao, L. Ruhlmann, Y. Lv, D. Zhu et al., Lewis pair interaction self-assembly of carbon superstructures harvesting high-energy and ultralong-life zinc-ion storage. Adv. Funct. Mater. 32(48), 2208049 (2022). https://doi.org/10.1002/adfm.202208049
Y. Jiang, Z. Jiang, M. Shi, Z. Liu, S. Liang et al., Enabling high surface and space utilization of activated carbon for supercapacitors by homogeneous activation. Carbon 182, 559–563 (2021). https://doi.org/10.1016/j.carbon.2021.06.039
W. Zhang, X. Qiu, C. Wang, L. Zhong, F. Fu et al., Lignin derived carbon materials: current status and future trends. Carbon Res. Res. 1(1), 14 (2022). https://doi.org/10.1007/s44246-022-00009-1
L. Zhao, S. Sun, J. Lin, L. Zhong, L. Chen et al., Defect engineering of disordered carbon anodes with ultra-high heteroatom doping through a supermolecule-mediated strategy for potassium-ion hybrid capacitors. Nano Micro Lett. 15(1), 41 (2023). https://doi.org/10.1007/s40820-022-01006-0
J. Yin, W. Zhang, W. Wang, N.A. Alhebshi, N. Salah et al., Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 10(37), 2001705 (2020). https://doi.org/10.1002/aenm.202001705
L. Lu, J.T.M. De Hosson, Y. Pei, Three-dimensional micron-porous graphene foams for lightweight current collectors of lithium-sulfur batteries. Carbon 144, 713–723 (2019). https://doi.org/10.1016/j.carbon.2018.12.103
C. Chen, Y. Zhang, Y. Li, Y. Kuang, J. Song et al., Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy Mater. 7(17), 1700595 (2017). https://doi.org/10.1002/aenm.201700595
X. Fei, Z. Dong, B. Gong, X. Zhao, Lightweight through-hole copper foil as a current collector for lithium-ion batteries. ACS Appl. Mater. Interfaces 13(35), 42266–42275 (2021). https://doi.org/10.1021/acsami.1c13233
C. Wang, Z.X. Pei, Q.Q. Meng, C.M. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60(2), 990–997 (2021). https://doi.org/10.1002/anie.202012030
J. Li, J.H. Zhang, L. Yu, J.Y. Gao, X.Y. He et al., Dual-doped carbon hollow nanospheres achieve boosted pseudocapacitive energy storage for aqueous zinc ion hybrid capacitors. Energy Storage Mater. 42, 705–714 (2021). https://doi.org/10.1016/j.ensm.2021.08.018
F. Li, Y.L. Liu, G.G. Wang, S.Y. Zhang, D.Q. Zhao et al., 3D porous H-Ti3C2T films as free-standing electrodes for zinc ion hybrid capacitors. Chem. Eng. J. 435, 135052 (2022). https://doi.org/10.1016/j.cej.2022.135052
H. Yang, J. Zhang, J. Yao, D. Zuo, J. Xu et al., A supramolecular gel polymer electrolyte for ultralong-life zinc-ion hybrid supercapacitors. J. Energy Storage 53, 105089 (2022). https://doi.org/10.1016/j.est.2022.105089
Y. Wu, Y. Deng, K. Zhang, J. Qiu, J. Wu et al., Ultrahigh conductive and stretchable eutectogel electrolyte for high-voltage flexible antifreeze quasi-solid-state zinc-ion hybrid supercapacitor. ACS Appl. Energy Mater. 5(3), 3013–3021 (2022). https://doi.org/10.1021/acsaem.1c03654
X. Qiu, N. Wang, Z. Wang, F. Wang, Y. Wang, Towards high-performance zinc-based hybrid supercapacitors via macropores-based charge storage in organic electrolytes. Angew. Chem. Int. Ed. 60(17), 9610–9617 (2021). https://doi.org/10.1002/anie.202014766
K. Leng, G. Li, J. Guo, X. Zhang, A. Wang et al., A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries. Adv. Funct. Mater. 30(23), 2001317 (2020). https://doi.org/10.1002/adfm.202001317
L. Miao, J. Zhang, Y. Lv, L. Gan, M. Liu, Dendrite-Free engineering toward efficient zinc storage: recent progress and future perspectives. Chem. Eur. J. (2023). https://doi.org/10.1002/chem.202203973
L. Wang, M. Peng, J. Chen, X. Tang, L. Li et al., High energy and power zinc ion capacitors: a dual-ion adsorption and reversible chemical adsorption coupling mechanism. ACS Nano 16(2), 2877–2888 (2022). https://doi.org/10.1021/acsnano.1c09936
F. Wei, Y. Wei, J. Wang, M. Han, Y. Lv, N, P dual doped foamy-like carbons with abundant defect sites for zinc ion hybrid capacitors. Chem. Eng. J. 450, 137919 (2022). https://doi.org/10.1016/j.cej.2022.137919
Z.W. Li, D.H. Chen, Y.F. An, C.L. Chen, L.Y. Wu et al., Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 28, 307–314 (2020). https://doi.org/10.1016/j.ensm.2020.01.028
Y. Li, P.F. Lu, P. Shang, L.S. Wu, X. Wang et al., Pyridinic nitrogen enriched porous carbon derived from bimetal organic frameworks for high capacity zinc ion hybrid capacitors with remarkable rate capability. J. Energy Chem. 56, 404–411 (2021). https://doi.org/10.1016/j.jechem.2020.08.005
X. Zhang, Y. Zhang, J. Qian, Y. Zhang, L. Sun et al., Synergistic effects of B/S co-doped spongy-like hierarchically porous carbon for a high performance zinc-ion hybrid capacitor. Nanoscale 14(5), 2004–2012 (2022). https://doi.org/10.1039/d1nr07818f
K. Shang, Y. Liu, P. Cai, K. Li, Z. Wen, N, P, and S co-doped 3D porous carbon-architectured cathode for high-performance Zn-ion hybrid capacitors. J. Mater. Chem. A 10(12), 6489–6498 (2022). https://doi.org/10.1039/d2ta00202g
Z. Xu, R. Ma, X. Wang, Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors. Energy Storage Mater. 46, 233–242 (2022). https://doi.org/10.1016/j.ensm.2022.01.011
J. Wang, Y. Huang, X. Han, Z. Li, S. Zhang et al., A flexible Zinc-ion hybrid supercapacitor constructed by porous carbon with controllable structure. Appl. Surf. Sci. 579, 152247 (2022). https://doi.org/10.1016/j.apsusc.2021.152247
W.J. Fan, J. Ding, J.N. Ding, Y.L. Zheng, W.Q. Song et al., Identifying heteroatomic and defective sites in carbon with dual-ion adsorption capability for high energy and power zinc ion capacitor. Nano Micro Lett. 13(1), 59 (2021). https://doi.org/10.1007/s40820-021-00588-5
H. Wang, Q. Chen, P. Xiao, L. Cao, Unlocking zinc-ion energy storage performance of onion-like carbon by promoting heteroatom doping strategy. ACS Appl. Mater. Interfaces 14(7), 9013–9023 (2022). https://doi.org/10.1021/acsami.1c22016
Y. Yang, D. Chen, H. Wang, P. Ye, Z. Ping et al., Two-step nitrogen and sulfur doping in porous carbon dodecahedra for Zn-ion hybrid supercapacitors with long term stability. Chem. Eng. J. 431, 133250 (2022). https://doi.org/10.1016/j.cej.2021.133250
C. Ji, D. Wu, Z. Liu, H. Mi, Y. Liao et al., Natural polysaccharide strengthened hydrogel electrolyte and biopolymer derived carbon for durable aqueous zinc ion storage. ACS Appl. Mater. Interfaces 14(20), 23452–23464 (2022). https://doi.org/10.1021/acsami.2c03323
C. Leng, Y.V. Fedoseeva, Z. Zhao, B. Yan, A.V. Okotrub et al., Rational-design heteroatom-doped cathode and ion modulation layer modified Zn anode for ultrafast zinc-ion hybrid capacitors with simultaneous high power and energy densities. J. Power Sources 536, 231484 (2022). https://doi.org/10.1016/j.jpowsour.2022.231484
G. Ji, R. Hu, Y. Wang, J. Zheng, High energy density, flexible, low temperature resistant and self-healing Zn-ion hybrid capacitors based on hydrogel electrolyte. J. Energy Storage 46, 103858 (2022). https://doi.org/10.1016/j.est.2021.103858
X. Shi, H. Zhang, S. Zeng, J. Wang, X. Cao et al., Pyrrolic-dominated nitrogen redox enhances reaction kinetics of pitch-derived carbon materials in aqueous zinc ion hybrid supercapacitors. ACS Mater. Lett. 3(9), 1291–1299 (2021). https://doi.org/10.1021/acsmaterialslett.1c00325
L. Zhang, Z.Q. Liu, G.W. Wang, J.Z. Feng, Q.H. Ma, Developing high voltage Zn(TFSI)2/Pyr14TFSI/AN hybrid electrolyte for a carbon-based Zn-ion hybrid capacitor. Nanoscale 13(40), 17068–17076 (2021). https://doi.org/10.1039/d1nr03879f
H. Fan, X. Hu, S. Zhang, Z. Xu, G. Gao et al., Flower-like carbon cathode prepared via in situ assembly for Zn-ion hybrid supercapacitors. Carbon 180, 254–264 (2021). https://doi.org/10.1016/j.carbon.2021.04.093
L. Zhao, W. Jian, X. Zhang, F. Wen, J. Zhu et al., Multi-scale self-templating synthesis strategy of lignin-derived hierarchical porous carbons toward high-performance zinc ion hybrid supercapacitors. J. Energy Storage 53, 105095 (2022). https://doi.org/10.1016/j.est.2022.105095
W.J. Lei Zhao, J. Zhu, X. Zhang, F. Wen, X. Fei et al., Molten salt self-template synthesis strategy of oxygen-rich porous carbon cathodes for zinc ion hybrid capacitors. ACS Appl. Mater. Interfaces 14(38), 43431–43441 (2022). https://doi.org/10.1021/acsami.2c13886
D. Wang, Z. Li, D. Guo, M. Sun, Metal-organic framework derived zinc and nitrogen co-doped porous carbon materials for high performance zinc-ion hybrid supercapacitors. Electrochim. Acta 427, 140854 (2022). https://doi.org/10.1016/j.electacta.2022.140854
L. Yang, X. He, Y. Wei, H. Li, Y. Yu et al., Synthesis of N/P co-doped monolithic hierarchical porous carbon for zinc-ion hybrid capacitors with boosted energy density in ZnSO4/ZnI2 redox electrolyte. J. Power Sources 542, 231743 (2022). https://doi.org/10.1016/j.jpowsour.2022.231743
H. Wang, J. Huang, X. Wang, Z. Guo, W. Liu, Fabrication of TiN/CNTs on carbon cloth substrates via a CVD–ALD method as free-standing electrodes for zinc ion hybrid capacitors. New J. Chem. 46(31), 15175–15184 (2022). https://doi.org/10.1039/d2nj02334b
X. Zhang, X. Tian, Y. Song, J. Wu, T. Yang et al., High-performance activated carbon cathodes from green cokes for Zn-ion hybrid supercapacitors. Fuel 310, 122485 (2022). https://doi.org/10.1016/j.fuel.2021.122485
X. Zhang, X. Tian, Y. Song, J. Wu, T. Yang et al., Boosting Zn-ion storage capacity of pitch coke-based activated carbon via pre-oxidation assisted KOH activation strategy. Microporous Mesoporous Mater. 333, 111721 (2022). https://doi.org/10.1016/j.micromeso.2022.111721
X. Zheng, L. Miao, Z. Song, W. Du, D. Zhu et al., In situ nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors. J. Mater. Chem. A 10(2), 611–621 (2022). https://doi.org/10.1039/d1ta07350h
F. Wei, H. Tian, P. Chen, Y. Lv, J. Huang, Construction of porous carbon nanosheets by dual-template strategy for zinc ion hybrid capacitor. Appl. Surf. Sci. 613, 156021 (2023). https://doi.org/10.1016/j.apsusc.2022.156021
F. Wei, H. Zhang, X. Hui, Y. Lv, S. Ran et al., N doped porous carbon nanosheets with enhanced zinc ion storage capability. J. Power Sources 554, 232348 (2023). https://doi.org/10.1016/j.jpowsour.2022.232348
Y. Liu, H. Tan, Z. Tan, X. Cheng, Rice husk-derived carbon materials for aqueous Zn-ion hybrid supercapacitors. Appl. Surface Sci. 608, 155215 (2023). https://doi.org/10.1016/j.apsusc.2022.155215
B. Xue, J. Xu, R. Xiao, Ice template-assisting activation strategy to prepare biomass-derived porous carbon cages for high-performance Zn-ion hybrid supercapacitors. Chem. Eng. J. 454, 140192 (2023). https://doi.org/10.1016/j.cej.2022.140192
Y. Wang, J. Yang, S. Liu, X. Che, S. He et al., 3D graphene-like oxygen and sulfur-doped porous carbon nanosheets with multilevel ion channels for high-performance aqueous Zn-ion storage. Carbon 201, 624–632 (2023). https://doi.org/10.1016/j.carbon.2022.09.056
J. Zhao, Z. Tang, Z. Wang, M. Xi, X. Xie et al., Flexible zinc ion hybrid supercapacitors enabled by N/S co-doped porous carbon and bacterial cellulose/ZnSO4 electrolyte. Colloids Surf. A Physicochem. Eng. Asp. 656, 130424 (2023). https://doi.org/10.1016/j.colsurfa.2022.130424
G. Chen, Z. Hu, H. Su, J. Zhang, D. Wang, Ultrahigh level heteroatoms doped carbon nanosheets as cathode materials for Zn-ion hybrid capacitor: the indispensable roles of B containing functional groups. Colloids Surf. A Physicochem. Eng. Asp. 656, 130528 (2023). https://doi.org/10.1016/j.colsurfa.2022.130528
Y. Zhang, P. Xie, C. Jiang, Z. Zou, Nitrogen and oxygen co-doped carbon micro-foams derived from gelatin as high-performance cathode materials of Zn-ion capacitors. J. Energy Storage 57, 106169 (2023). https://doi.org/10.1016/j.est.2022.106169
Z. Li, Y. Xu, J. Cui, H. Dou, X. Zhang, High-efficiency zinc thermal charging supercapacitors enabled by hierarchical porous carbon electrodes. J. Power Sources 555, 232386 (2023). https://doi.org/10.1016/j.jpowsour.2022.232386
L. Wang, M. Peng, J. Chen, T. Hu, K. Yuan et al., Eliminating the micropore confinement effect of carbonaceous electrodes for promoting Zn-ion storage capability. Adv. Mater. 34(39), 2203744 (2022). https://doi.org/10.1002/adma.202203744
B. Lee, H.R. Seo, H.R. Lee, C.S. Yoon, J.H. Kim et al., Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. Chemsuschem 9(20), 2948–2956 (2016). https://doi.org/10.1002/cssc.201600702
Y. Li, W. Yang, W. Yang, Z. Wang, J. Rong et al., Towards high-energy and anti-self-discharge zn-ion hybrid supercapacitors with new understanding of the electrochemistry. Nano Micro Lett. 13(1), 95 (2021). https://doi.org/10.1007/s40820-021-00625-3
H. Teng, Y.J. Chang, C.T. Hsieh, Performance of electric double-layer capacitors using carbons prepared from phenol–formaldehyde resins by KOH etching. Carbon 39(13), 1981–1987 (2001). https://doi.org/10.1016/S0008-6223(01)00027-6
Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin et al., Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 60(43), 23357–23364 (2021). https://doi.org/10.1002/anie.202109682
W. Zhang, J. Yin, W. Jian, Y. Wu, L. Chen et al., Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors. Nano Energy 103, 107827 (2022). https://doi.org/10.1016/j.nanoen.2022.107827
W. Jian, W. Zhang, X. Wei, B. Wu, W. Liang et al., Engineering pore nanostructure of carbon cathodes for zinc ion hybrid supercapacitors. Adv. Funct. Mater. 32(49), 2209914 (2022). https://doi.org/10.1002/adfm.202209914
J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano Micro Lett. 13(1), 12 (2020). https://doi.org/10.1007/s40820-020-00541-y
T. Liu, C. Jiang, B. Cheng, W. You, J. Yu, Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. J. Mater. Chem. A 5(40), 21257–21265 (2017). https://doi.org/10.1039/c7ta06149h
J.G. Wang, H. Liu, H. Sun, W. Hua, H. Wang et al., One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127, 85–92 (2018). https://doi.org/10.1016/j.carbon.2017.10.084
Z. Liu, A. Qin, K. Zhang, P. Lian, X. Yin et al., Design and structure of nitrogen and oxygen co-doped carbon spheres with wrinkled nanocages as active material for supercapacitor application. Nano Energy 90, 106540 (2021). https://doi.org/10.1016/j.nanoen.2021.106540
J. Liu, N.P. Wickramaratne, S.Z. Qiao, M. Jaroniec, Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 14(8), 763–774 (2015). https://doi.org/10.1038/nmat4317
X.F. Yu, W.C. Li, Y.R. Hu, C.Y. Ye, A.H. Lu, Sculpturing solid polymer spheres into internal gridded hollow carbon spheres under controlled pyrolysis micro-environment. Nano Res. 14(5), 1565–1573 (2021). https://doi.org/10.1007/s12274-021-3290-6
J. Ding, H. Zhang, H. Zhou, J. Feng, X. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31(30), e1900429 (2019). https://doi.org/10.1002/adma.201900429
Y. Zhang, K. Sun, Z. Liang, Y. Wang, L. Ling, N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries. Appl. Surf. Sci. 427, 823–829 (2018). https://doi.org/10.1016/j.apsusc.2017.06.288
J. Du, L. Liu, Y. Yu, H. Lv, Y. Zhang et al., Confined pyrolysis for direct conversion of solid resin spheres into yolk–shell carbon spheres for supercapacitor. J. Mater. Chem. A 7(3), 1038–1044 (2019). https://doi.org/10.1039/c8ta10266j
J. Gong, J. Liu, X. Chen, Z. Jiang, X. Wen et al., One-pot synthesis of core/shell Co@C spheres by catalytic carbonization of mixed plastics and their application in the photo-degradation of Congo red. J. Mater. Chem. A 2(20), 7461–7470 (2014). https://doi.org/10.1039/c4ta00173g
B. Chen, L. Yang, X. Bai, Q. Wu, M. Liang et al., Heterostructure engineering of core-shelled Sb@Sb2O3 encapsulated in 3D N-doped carbon hollow-spheres for superior sodium/potassium storage. Small 17(6), 2006824 (2021). https://doi.org/10.1002/smll.202006824
J. Zheng, Y. Wu, Y. Tong, X. Liu, Y. Sun et al., High capacity and fast kinetics of potassium-ion batteries boosted by nitrogen-doped mesoporous carbon spheres. Nano Micro Lett. 13(1), 174 (2021). https://doi.org/10.1007/s40820-021-00706-3
S.H. Chen, G.Q. Yang, X.J. Zhao, N.Z. Wang, T.T. Luo et al., Hollow mesoporous carbon spheres for high performance symmetrical and aqueous zinc-ion hybrid supercapacitor. Front. Chem. 8, 663 (2020). https://doi.org/10.3389/fchem.2020.00663
R.X. Fei, H.W. Wang, Q. Wang, R.Y. Qiu, S.S. Tang et al., In situ hard-template synthesis of hollow bowl-like carbon: a potential versatile platform for sodium and zinc ion capacitors. Adv. Energy Mater. 10, 2002741 (2020). https://doi.org/10.1002/aenm.202002741
P.G. Liu, W.F. Liu, Y.P. Huang, P.L. Li, J. Yan et al., Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage. Energy Storage Mater. 25, 858–865 (2020). https://doi.org/10.1016/j.ensm.2019.09.004
C.D. Tschannen, M. Frimmer, T.L. Vasconcelos, L. Shi, T. Pichler et al., Tip-enhanced stokes-anti-stokes scattering from carbyne. Nano Lett. 22(8), 3260–3265 (2022). https://doi.org/10.1021/acs.nanolett.2c00154
T. Gao, G. Yan, X. Yang, Q. Yan, Y. Tian et al., Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage. J. Energy Chem. 71, 192–200 (2022). https://doi.org/10.1016/j.jechem.2022.02.040
N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang et al., High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv. Energy Mater. 6(2), 1501458 (2016). https://doi.org/10.1002/aenm.201501458
K. Yang, M. Luo, D. Zhang, C. Liu, Z. Li et al., Ti3C2T/carbon nanotube/porous carbon film for flexible supercapacitor. Chem. Eng. J. 427, 132002 (2022). https://doi.org/10.1016/j.cej.2021.132002
S. Ligima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0
Q. Sun, L. Zhou, L. Lu, G. Zhou, J. Chen, Reconfigurable high-resolution microwave photonic filter based on dual-ring-assisted MZIs on the Si3N4 platform. IEEE Photonics J. 10(6), 1–12 (2018). https://doi.org/10.1109/jphot.2018.2881166
X. Zhang, Z. Pei, C. Wang, Z. Yuan, L. Wei et al., Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small 15(47), 1903817 (2019). https://doi.org/10.1002/smll.201903817
W.-H. Lin, S.-F. Liu, S. Gull, T.-C. Su, K.-J. Tsai et al., Nanoporous core–shell–structured multi-wall carbon nanotube/graphene oxide nanoribbons as cathodes and protection layer for aqueous zinc-ion capacitors: mechanism study of zinc dendrite suppression by in-situ transmission X-ray microscopy. J. Power Sources 541, 231627 (2022). https://doi.org/10.1016/j.jpowsour.2022.231627
F. Wei, H. Zhang, J. Wang, J. Zhuang, Y. Lv, N, S co-doped porous carbons with well-developed pores for supercapacitor and zinc ion hybrid capacitor. J. Alloys Compounds 907, 164536 (2022). https://doi.org/10.1016/j.jallcom.2022.164536
J.Z. Ying, J. Sun, Y. Tong, Y. Wu, X. Liu et al., Construction of three-dimensional nitrogen doped porous carbon flake electrodes for advanced potassium-ion hybrid capacitors. J. Colloid Interface Sci. 606, 1940–1949 (2022). https://doi.org/10.1016/j.jcis.2021.09.143
J. Li, L. Yu, W. Wang, X. He, G. Wang et al., Sulfur incorporation modulated absorption kinetics and electron transfer behavior for nitrogen rich porous carbon nanotubes endow superior aqueous zinc ion storage capability. J. Mater. Chem. A 10(17), 9355–9362 (2022). https://doi.org/10.1039/d1ta10677e
Q. Chen, L. Cao, H. Wang, Z. Zhou, P. Xiao, Oxygen/fluorine-functionalized flexible carbon electrodes for high-performance and anti-self-discharge Zn-ion hybrid capacitors. J. Power Sources 538, 231586 (2022). https://doi.org/10.1016/j.jpowsour.2022.231586
X. Li, Y. Li, S. Xie, Y. Zhou, J. Rong et al., Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes. Chem. Eng. J. 427, 131799 (2022). https://doi.org/10.1016/j.cej.2021.131799
S. Devaraj, N. Munichandraiah, High capacitance of electrodeposited MnO2 by the effect of a surface-active agent. Electrochem. Solid State Lett. 8(7), A373 (2005). https://doi.org/10.1149/1.1922869
S.L. Wang, Q. Wang, W. Zeng, M. Wang, L.M. Ruan et al., A new free-standing aqueous zinc-ion capacitor based on MnO2-CNTs cathode and MXene anode. Nano Micro Lett. 11(1), 70 (2019). https://doi.org/10.1007/s40820-019-0301-1
Z. Jian, N.J. Yang, M. Vogel, S. Leith, A. Schulte et al., Flexible diamond fibers for high-energy-density zinc-ion supercapacitors. Adv. Energy Mater. 10(44), 2002202 (2020). https://doi.org/10.1002/aenm.202002202
N. Xu, C. Yan, W. He, L. Xu, Z. Jiang et al., Flexible electrode material of V2O5 carbon fiber cloth for enhanced zinc ion storage performance in flexible zinc-ion battery. J. Power Sources 533, 231358 (2022). https://doi.org/10.1016/j.jpowsour.2022.231358
H. He, J. Lian, C. Chen, Q. Xiong, M. Zhang, Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chem. Eng. J. 421, 129786 (2021). https://doi.org/10.1016/j.cej.2021.129786
H. He, J. Lian, C. Chen, Q. Xiong, C.C. Li et al., Enabling multi-chemisorption sites on carbon nanofibers cathodes by an in-situ exfoliation strategy for high-performance Zn-ion hybrid capacitors. Nano Micro Lett. 14(1), 106 (2022). https://doi.org/10.1007/s40820-022-00839-z
N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
W. Li, C. Han, Q. Gu, S.L. Chou, J.Z. Wang et al., Electron delocalization and dissolution-restraint in vanadium oxide superlattices to boost electrochemical performance of aqueous zinc-ion batteries. Adv. Energy Mater. 10(48), 2001852 (2020). https://doi.org/10.1002/aenm.202001852
X. Wang, Y. Wang, J. Hao, Y. Liu, H. Xiao et al., Pseudocapacitive zinc cation intercalation with superior kinetics enabled by atomically thin V2O5 nanobelts for quasi-solid-state microbatteries. Energy Storage Mater. 50, 454–463 (2022). https://doi.org/10.1016/j.ensm.2022.05.049
G. Yoo, B.R. Koo, G.H. An, Nano-sized split V2O5 with H2O-intercalated interfaces as a stable cathode for zinc ion batteries without an aging process. Chem. Eng. J. 434, 134738 (2022). https://doi.org/10.1016/j.cej.2022.134738
R. Li, F. Xing, T. Li, H. Zhang, J. Yan et al., Intercalated polyaniline in V2O5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery. Energy Storage Mater. 38, 590–598 (2021). https://doi.org/10.1016/j.ensm.2021.04.004
L. Xiong, Z. Qu, Z. Shen, G. Yuan, G. Wang et al., In situ construction of ball-in-ball structured porous vanadium pentoxide intertwined with carbon fibers induces superior electronic/ionic transport dynamics for aqueous zinc-ion batteries. J. Colloid Interface Sci. 615, 184–195 (2022). https://doi.org/10.1016/j.jcis.2022.01.155
R. Zou, Q. Liu, G. He, M.F. Yuen, K. Xu et al., Nanops encapsulated in porous carbon matrix coated on carbon fibers: an ultrastable cathode for Li-ion batteries. Adv. Energy Mater. 7(2), 1601363 (2017). https://doi.org/10.1002/aenm.201601363
L. Yao, Q. Wu, P. Zhang, J. Zhang, D. Wang et al., Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 30(11), 2200945 (2018). https://doi.org/10.1002/adma.201706054
L. Hou, X. Cui, B. Guan, S. Wang, R. Li et al., Synthesis of a monolayer fullerene network. Nature 606(7914), 507–510 (2022). https://doi.org/10.1038/s41586-022-04771-5
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
J. Bai, Y. Huang, Fabrication and electrical properties of graphene nanoribbons. Mater. Sci. Eng. R Rep. 70(3–6), 341–353 (2010). https://doi.org/10.1016/j.mser.2010.06.019
T. Cui, S. Mukherjee, P.M. Sudeep, G. Colas, F. Najafi et al., Fatigue of graphene. Nat. Mater. 19(4), 405–411 (2020). https://doi.org/10.1038/s41563-019-0586-y
V. Palermo, I.A. Kinloch, S. Ligi, N.M. Pugno, Nanoscale mechanics of graphene and graphene oxide in composites: a scientific and technological perspective. Adv. Mater. 28(29), 6232–6238 (2016). https://doi.org/10.1002/adma.201505469
T.T. Heikkilä, Surprising superconductivity of graphene. Science 375(6582), 719–720 (2022). https://doi.org/10.1126/science.abn9631
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). https://doi.org/10.1038/nmat1967
J. Liu, Z. Khanam, S. Ahmed, T. Wang, H. Wang et al., Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes. ACS Appl. Mater. Interfaces 13(14), 16454–16468 (2021). https://doi.org/10.1021/acsami.1c02242
Y. Liu, X. Miao, X. Zhang, S. Chen, Y. Chen et al., High performance flexible quasi-solid-state zinc-ion hybrid supercapacitors enable by electrode potential adjustment. J. Power Sources 495, 229789 (2021). https://doi.org/10.1016/j.jpowsour.2021.229789
Y. Shao, Z. Sun, Z. Tian, S. Li, G. Wu et al., Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn-ion hybrid capacitor. Adv. Funct. Mater. 31(6), 2007843 (2020). https://doi.org/10.1002/adfm.202007843
H. Xu, W. He, Z. Li, J. Chi, J. Jiang et al., Revisiting charge storage mechanism of reduced graphene oxide in zinc ion hybrid capacitor beyond the contribution of oxygen-containing groups. Adv. Funct. Mater. 32(16), 2111131 (2022). https://doi.org/10.1002/adfm.202111131
S.J. Patil, N.R. Chodankar, S.-K. Hwang, G.S.R. Raju, K.S. Ranjith et al., Ultra-stable flexible Zn-ion capacitor with pseudocapacitive 2D layered niobium oxyphosphides. Energy Storage Mater. 45, 1040–1051 (2022). https://doi.org/10.1016/j.ensm.2021.10.040
Y. Wang, J. Cao, J. Guo, J. Zhang, G. Liu et al., Flexible reduced graphene oxide/V2O5 composite battery-type cathode and MXene capacitor-type anode for aqueous zinc ion hybrid supercapacitors with high energy density. J. Alloys Compd. 915, 165418 (2022). https://doi.org/10.1016/j.jallcom.2022.165418
X. Zhang, C. Chen, S. Gao, X. Luo, Y. Mo et al., Graphene as regulating zinc deposition layer for long-life zinc ion hybrid supercapacitors. J. Energy Storage 42, 103037 (2021). https://doi.org/10.1016/j.est.2021.103037
W. Tian, Q. Gao, Y. Tan, Z. Li, Unusual interconnected graphitized carbon nanosheets as the electrode of high-rate ionic liquid-based supercapacitor. Carbon 119, 287–295 (2017). https://doi.org/10.1016/j.carbon.2017.04.050
S. Liu, J. Zhou, H. Song, 2D Zn-hexamine coordination frameworks and their derived n-rich porous carbon nanosheets for ultrafast sodium storage. Adv. Energy Mater. 8(22), 1800569 (2018). https://doi.org/10.1002/aenm.201800569
J. Yu, C. Yu, W. Guo, Z. Wang, S. Li et al., Decoupling and correlating the ion transport by engineering 2D carbon nanosheets for enhanced charge storage. Nano Energy 64, 103921 (2019). https://doi.org/10.1016/j.nanoen.2019.103921
Y. Cao, X. Tang, M. Liu, Y. Zhang, T. Yang et al., Thin-walled porous carbon tile-packed paper for high-rate Zn-ion capacitor cathode. Chem. Eng. J. 431, 133241 (2022). https://doi.org/10.1016/j.cej.2021.133241
H.F. Zhang, Z.S. Chen, Y.H. Zhang, Z.Q. Ma, Y.G. Zhang et al., Boosting Zn-ion adsorption in cross-linked N/P co-incorporated porous carbon nanosheets for the zinc-ion hybrid capacitor. J. Mater. Chem. A 9(30), 16565–16574 (2021). https://doi.org/10.1039/d1ta03501k
H. Wang, X. Chen, J. Zhang, Z. Yuan, P. Ye et al., Unveiling the cooperative roles of pyrrolic-N and carboxyl groups in biomass-derived hierarchical porous carbon nanosheets for high energy-power Zn-ion hybrid supercapacitors. Appl. Surf. Sci. 598, 153819 (2022). https://doi.org/10.1016/j.apsusc.2022.153819
G. Lou, G. Pei, Y. Wu, Y. Lu, Y. Wu et al., Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors. Chem. Eng. J. 413, 127502 (2021). https://doi.org/10.1016/j.cej.2020.127502
Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji et al., High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 66, 104132 (2019). https://doi.org/10.1016/j.nanoen.2019.104132
B.D. Boruah, A. Mathieson, B. Wen, C. Jo, F. Deschler et al., Photo-rechargeable zinc-ion capacitor using 2D graphitic carbon nitride. Nano Lett. 20(8), 5967–5974 (2020). https://doi.org/10.1021/acs.nanolett.0c01958
G. Zhang, Y. Song, H. Zhang, J. Xu, H. Duan et al., Radially aligned porous carbon nanotube arrays on carbon fibers: a hierarchical 3D carbon nanostructure for high-performance capacitive energy storage. Adv. Funct. Mater. 26(18), 3012–3020 (2016). https://doi.org/10.1002/adfm.201505226
L. Pan, Y. Wang, H. Hu, X. Li, J. Liu et al., 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors. Carbon 134, 345–353 (2018). https://doi.org/10.1016/j.carbon.2018.04.008
Y. Chen, I. Kone, Y. Gong, A. Xie, H. Hu et al., Ultra-thin carbon nanosheets-assembled 3D hierarchically porous carbon for high performance zinc-air batteries. Carbon 152, 325–334 (2019). https://doi.org/10.1016/j.carbon.2019.06.026
B. Yang, J. Chen, L. Liu, P. Ma, B. Liu et al., 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Mater. 23, 522–529 (2019). https://doi.org/10.1016/j.ensm.2019.04.008
F. Wei, X. He, L. Ma, H. Zhang, N. Xiao et al., 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors. Nano Micro Lett. 12(1), 82 (2020). https://doi.org/10.1007/s40820-020-00416-2
Y. Zhang, Y. Shi, X.C. Hu, W.P. Wang, R. Wen et al., A 3D lithium/carbon fiber anode with sustained electrolyte contact for solid-state batteries. Adv. Energy Mater. 10(3), 1903325 (2019). https://doi.org/10.1002/aenm.201903325
N.R. Chodankar, S.J. Patil, S. Lee, J. Lee, S.K. Hwang et al., High energy superstable hybrid capacitor with a self-regulated Zn/electrolyte interface and 3D graphene-like carbon cathode. InfoMat 4(10), e12344 (2022). https://doi.org/10.1002/inf2.12344
Y.W. Zheng, W. Zhao, D.D. Jia, Y. Liu, L. Cui et al., Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chem. Eng. J. 387, 124161 (2020). https://doi.org/10.1016/j.cej.2020.124161
W. Zhang, B. Liu, M. Yang, Y. Liu, H. Li et al., Biowaste derived porous carbon sponge for high performance supercapacitors. J. Mater. Sci. Technol. 95, 105–113 (2021). https://doi.org/10.1016/j.jmst.2021.03.066
M. Kim, J.F.S. Fernando, Z. Li, A. Alowasheeir, A. Ashok et al., Ultra-stable sodium ion storage of biomass porous carbon derived from sugarcane. Chem. Eng. J. 445, 136344 (2022). https://doi.org/10.1016/j.cej.2022.136344
S. Yang, S. Wang, X. Liu, L. Li, Biomass derived interconnected hierarchical micro-meso-macro- porous carbon with ultrahigh capacitance for supercapacitors. Carbon 147, 540–549 (2019). https://doi.org/10.1016/j.carbon.2019.03.023
L. Chen, T. Ji, L. Mu, J. Zhu, Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111, 839–848 (2017). https://doi.org/10.1016/j.carbon.2016.10.054
Y. Wang, R. Liu, Y. Tian, Z. Sun, Z. Huang et al., Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors. Chem. Eng. J. 384, 123263 (2020). https://doi.org/10.1016/j.cej.2019.123263
W. Jian, W. Zhang, B. Wu, X. Wei, W. Liang et al., Enzymatic hydrolysis lignin-derived porous carbons through ammonia activationactivation mechanism and charge storage mechanism. ACS Appl. Mater. Interfaces 14(4), 5425–5438 (2022). https://doi.org/10.1021/acsami.1c22576
D.W. Wang, S.Y. Wang, Z.M. Lu, S-doped 3D porous carbons derived from potassium thioacetate activation strategy for zinc-ion hybrid supercapacitor applications. Int. J. Energy Res. 45(2), 2498–2510 (2021). https://doi.org/10.1002/er.5944
Y. Lu, L. Liu, R. Zhang, Z. Jiang, Y. Li et al., Sodium alginate-derived micropore dominated carbon 3D architectures through dual template engineering for high-performance Zn-ion hybrid capacitors. Appl. Surf. Sci. 604, 154631 (2022). https://doi.org/10.1016/j.apsusc.2022.154631
L. Zhang, D. DeArmond, N.T. Alvarez, R. Malik, N. Oslin et al., Flexible micro-supercapacitor based on graphene with 3D structure. Small 13(10), 1603114 (2017). https://doi.org/10.1002/smll.201603114
Q. Wang, S.L. Wang, X.H. Guo, L.M. Ruan, N. Wei et al., MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv. Electr. Mater. 5(12), 1900537 (2019). https://doi.org/10.1002/aelm.201900537
L. Zhang, D.D. Wu, G.W. Wang, Y.T. Xu, H.X. Li et al., An aqueous zinc-ion hybrid super-capacitor for achieving ultrahigh-volumetric energy density. Chin. Chem. Lett. 32(2), 926–931 (2021). https://doi.org/10.1016/j.cclet.2020.06.037
Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang et al., Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7, 4042–4049 (2013). https://doi.org/10.1021/nn4000836
X. Xu, X. Zhao, Z. Yang, Q. Lin, B. Jian et al., High-density three-dimensional graphene cathode with a tailored pore structure for high volumetric capacity zinc-ion storage. Carbon 186, 624–631 (2022). https://doi.org/10.1016/j.carbon.2021.10.060
J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai et al., Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11(4), 772–799 (2018). https://doi.org/10.1039/c7ee03031b
P. Yu, Y. Zeng, Y. Zeng, H. Dong, H. Hu et al., Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture. Electrochim. Acta 327, 134999 (2019). https://doi.org/10.1016/j.electacta.2019.134999
G. Chen, Z. Hu, Z. Pan, D. Wang, Design of honeycomb-like hierarchically porous carbons with engineered mesoporosity for aqueous zinc-ion hybrid supercapacitors applications. J. Energy Storage 38, 102534 (2021). https://doi.org/10.1016/j.est.2021.102534
A. Huang, J. Yan, H. Zhang, X. Li, H. Zhang, Effect of the pore length and orientation upon the electrochemical capacitive performance of ordered mesoporous carbons. J. Energy Chem. 26(1), 121–128 (2017). https://doi.org/10.1016/j.jechem.2016.08.005
L. Wan, J. Wang, L. Xie, Y. Sun, K. Li, Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors. ACS Appl. Mater. Interfaces 6(17), 15583–15596 (2014). https://doi.org/10.1021/am504564q
J. Yu, L.J. Wang, J.X. Peng, X.F. Jia, L.J. Zhou et al., O-doped porous carbon derived from biomass waste for high-performance zinc-ion hybrid supercapacitors. Ionics 27(10), 4495–4505 (2021). https://doi.org/10.1007/s11581-021-04179-7
H.X. Li, J. Wu, L.T. Wang, Q.X. Liao, X.H. Niu et al., A zinc ion hybrid capacitor based on sharpened pencil-like hierarchically porous carbon derived from metal-organic framework. Chem. Eng. J. 428, 131071 (2022). https://doi.org/10.1016/j.cej.2021.131071
S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles. Adv. Energy Mater. 9(47), 1902915 (2019). https://doi.org/10.1002/aenm.201902915
J.J. Shi, S.L. Wang, Q. Wang, X. Chen, X.Y. Du et al., A new flexible zinc-ion capacitor based on delta-MnO2@Carbon cloth battery-type cathode and MXene@Cotton cloth capacitor-type anode. J. Power Sources 446, 227345 (2020). https://doi.org/10.1016/j.jpowsour.2019.227345
D. Wang, Z. Pan, Z. Lu, From starch to porous carbon nanosheets: Promising cathodes for high-performance aqueous Zn-ion hybrid supercapacitors. Microporous Mesoporous Mater. 306, 110445 (2020). https://doi.org/10.1016/j.micromeso.2020.110445
H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu et al., Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 31(44), e1904948 (2019). https://doi.org/10.1002/adma.201904948
L. Wang, M. Huang, J. Huang, X. Tang, L. Li et al., Coupling of EDLC and the reversible redox reaction: oxygen functionalized porous carbon nanosheets for zinc-ion hybrid supercapacitors. J. Mater. Chem. A 9(27), 15404–15414 (2021). https://doi.org/10.1039/d1ta03568a
P. Luo, L. Huang, Carbon paper as current collectors in graphene hydrogel electrodes for high-performance supercapacitors. Nanomaterials 10(4), 746 (2020). https://doi.org/10.3390/nano10040746
J. Wojciechowski, Ł Kolanowski, A. Bund, G. Lota, The influence of current collector corrosion on the performance of electrochemical capacitors. J. Power Sources 368, 18–29 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.069
J. Yu, C. Yu, W. Guo, Z. Wang, Y. Ding et al., Insight into the effects of current collectors and in situ Ni leaching in high-voltage aqueous supercapacitors. Adv. Funct. Mater. 32, 2204609 (2022). https://doi.org/10.1002/adfm.202204609
C. Huang, X. Zhao, Y. Xu, Y. Zhang, Y. Yang et al., Sewable and cuttable flexible zinc-ion hybrid supercapacitor using a polydopamine/carbon cloth-based cathode. ACS Sustain. Chem. Eng. 8(42), 16028–16036 (2020). https://doi.org/10.1021/acssuschemeng.0c06525
V. Yufit, F. Tariq, D.S. Eastwood, M. Biton, B. Wu et al., Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 3(2), 485–502 (2019). https://doi.org/10.1016/j.joule.2018.11.002
S. Higashi, S.W. Lee, J.S. Lee, K. Takechi, Y. Cui, Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801 (2016). https://doi.org/10.1038/ncomms11801
Y. Qin, P. Liu, Q. Zhang, Q. Wang, D. Sun et al., Advanced filter membrane separator for aqueous zinc-ion batteries. Small 16(39), 2003106 (2020). https://doi.org/10.1002/smll.202003106
C. Li, Z.T. Sun, T. Yang, L.H. Yu, N. Wei et al., Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes. Adv. Mater. 32(33), 2003425 (2020). https://doi.org/10.1002/adma.202003425
W. Zhou, M. Chen, Q. Tian, J. Chen, X. Xu et al., Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater. 44, 57–65 (2022). https://doi.org/10.1016/j.ensm.2021.10.002
Y. Zhang, G. Yang, M.L. Lehmann, C. Wu, L. Zhao et al., Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime. Nano Lett. 21(24), 10446–10452 (2021). https://doi.org/10.1021/acs.nanolett.1c03792
X. Zhu, X. Li, M.L.K. Essandoh, J. Tan, Z. Cao et al., Interface Eng. with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Storage Mater. 50, 243–251 (2022). https://doi.org/10.1016/j.ensm.2022.05.022
Y. Tian, Y. An, C. Liu, S. Xiong, J. Feng et al., Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Mater. 41, 343–353 (2021). https://doi.org/10.1016/j.ensm.2021.06.019
Y. Tian, Y. An, Y. Yang, B. Xu, Robust nitrogen/selenium engineered MXene/ZnSe hierarchical multifunctional interfaces for dendrite-free zinc-metal batteries. Energy Storage Mater. 49, 122–134 (2022). https://doi.org/10.1016/j.ensm.2022.03.045
Y. Su, B. Liu, Q. Zhang, J. Peng, C. Wei et al., Printing-scalable Ti3C2Tx MXene-decorated janus separator with expedited Zn2+ flux toward stabilized anodes. Adv. Funct. Mater. 32, 2204306 (2022). https://doi.org/10.1002/adfm.202204306
Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano Micro Lett. 13(1), 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
Y. An, Y. Tian, Q. Man, H. Shen, C. Liu et al., Highly reversible Zn metal anodes enabled by freestanding, lightweight, and zincophilic mxene/nanoporous oxide heterostructure engineered separator for flexible Zn-MnO2 batteries. ACS Nano 16(4), 6755–6770 (2022). https://doi.org/10.1021/acsnano.2c01571
Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022). https://doi.org/10.1002/adfm.202112936
Z. Hou, Y. Gao, H. Tan, B. Zhang, Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation. Nat. Commun. 12(1), 3083 (2021). https://doi.org/10.1038/s41467-021-23352-0
T. Liu, J. Hong, J. Wang, Y. Xu, Y. Wang, Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan. Energy Storage Mater. 45, 1074–1083 (2022). https://doi.org/10.1016/j.ensm.2021.11.002
B. Wu, Y. Wu, Z. Lu, J. Zhang, N. Han et al., A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. J. Mater. Chem. A 9(8), 4734–4743 (2021). https://doi.org/10.1039/d0ta11841a
J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang et al., Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 11(29), 2101299 (2021). https://doi.org/10.1002/aenm.202101299
Y. Fang, X. Xie, B. Zhang, Y. Chai, B. Lu et al., Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv. Funct. Mater. 32(14), 2109671 (2021). https://doi.org/10.1002/adfm.202109671
N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861–2865 (2021). https://doi.org/10.1002/anie.202012322
J.Y. Kim, G. Liu, G.Y. Shim, H. Kim, J.K. Lee, Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv. Funct. Mater. 30(36), 2004210 (2020). https://doi.org/10.1002/adfm.202004210
J. Cao, D. Zhang, Y. Yue, R. Chanajaree, S. Wang et al., Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy 93, 106839 (2022). https://doi.org/10.1016/j.nanoen.2021.106839
C. Fu, Y. Wang, C. Lu, S. Zhou, Q. He et al., Modulation of hydrogel electrolyte enabling stable zinc metal anode. Energy Storage Mater. 51, 588–598 (2022). https://doi.org/10.1016/j.ensm.2022.06.034
J. Zeng, L.B. Dong, L.L. Sun, W. Wang, Y.H. Zhou et al., Printable zinc-ion hybrid micro-capacitors for flexible self-powered integrated units. Nano Micro Lett. 13(1), 19 (2021). https://doi.org/10.1007/s40820-020-00546-7
Y. Jiang, K. Ma, M. Sun, Y. Li, J. Liu, All-climate stretchable dendrite-free Zn-ion hybrid supercapacitors enabled by hydrogel electrolyte engineering. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12357
K. Chen, L. Yan, Y. Sheng, Y. Ma, L. Qu et al., An edible and nutritive zinc-ion micro-supercapacitor in the stomach with ultrahigh energy density. ACS Nano 16(9), 15261–15272 (2022). https://doi.org/10.1021/acsnano.2c06656