Defect Engineering of Disordered Carbon Anodes with Ultra-High Heteroatom Doping Through a Supermolecule-Mediated Strategy for Potassium-Ion Hybrid Capacitors
Corresponding Author: Wenli Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 41
Abstract
Amorphous carbons are promising anodes for high-rate potassium-ion batteries. Most low-temperature annealed amorphous carbons display unsatisfactory capacities. Heteroatom-induced defect engineering of amorphous carbons could enhance their reversible capacities. Nevertheless, most lignocellulose biomasses lack heteroatoms, making it a challenge to design highly heteroatom-doped carbons (> 10 at%). Herein, we report a new preparation strategy for amorphous carbon anodes. Nitrogen/sulfur co-doped lignin-derived porous carbons (NSLPC) with ultra-high nitrogen doping levels (21.6 at% of N and 0.8 at% of S) from renewable lignin biomacromolecule precursors were prepared through a supramolecule-mediated pyrolysis strategy. This supermolecule/lignin composite decomposes forming a covalently bonded graphitic carbon/amorphous carbon intermediate product, which induces the formation of high heteroatom doping in the obtained NSLPC. This unique pyrolysis chemistry and high heteroatom doping of NSLPC enable abundant defective active sites for the adsorption of K+ and improved kinetics. The NSLPC anode delivered a high reversible capacity of 419 mAh g‒1 and superior cycling stability (capacity retention of 96.6% at 1 A g‒1 for 1000 cycles). Potassium-ion hybrid capacitors assembled by NSLPC anode exhibited excellent cycling stability (91% capacity retention for 2000 cycles) and a high energy density of 71 Wh kg–1 at a power density of 92 W kg–1.
Highlights:
1 The N/S co-doped lignin-derived porous carbon (NSLPCs) with ultra-high heteroatom doping was prepared through a novel supramolecule-mediated pyrolysis strategy.
2 Covalently bonded graphitic carbon/amorphous carbon intermediates induce the formation of high heteroatom doping.
3 The high heteroatom doping of NSLPC could provide abundant defective active sites for the adsorption of K+.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Lu, X. Zhang, Y. Zheng, D. Zhang, L. Jiang et al., High-performance K-ion half/full batteries with superb rate capability and cycle stability. Proc. Natl. Acad. Sci. USA 119(23), e2122252119 (2022). https://doi.org/10.1073/pnas.2122252119
- W. Zhang, J. Yin, W. Wang, Z. Bayhan, H.N. Alshareef, Status of rechargeable potassium batteries. Nano Energy 83, 105792 (2021). https://doi.org/10.1016/j.nanoen.2021.105792
- W. Long, B. Fang, A. Ignaszak, Z. Wu, Y.J. Wang et al., Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries. Chem. Soc. Rev. 46(23), 7176–7190 (2017). https://doi.org/10.1039/c6cs00639f
- W. Zhang, Z. Cao, W. Wang, E. Alhajji, A.H. Emwas et al., A site-selective doping strategy of carbon anodes with remarkable K-ion storage capacity. Angew. Chem. Int. Ed. 59(11), 4448–4455 (2020). https://doi.org/10.1002/anie.201913368
- X. Min, J. Xiao, M.H. Fang, W. Wang, Y.J. Zhao et al., Potassium-ion batteries: Outlook on present and future technologies. Energy Environ. Sci. 14(4), 2186–2243 (2021). https://doi.org/10.1039/d0ee02917c
- Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
- X. Hu, Y. Liu, J. Chen, L. Yi, H. Zhan et al., Fast redox kinetics in bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 9(42), 1901533 (2019). https://doi.org/10.1002/aenm.201901533
- L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30(20), 1800804 (2018). https://doi.org/10.1002/adma.201800804
- Y. Feng, S. Chen, D. Shen, J. Zhou, B. Lu, Cross-linked hollow graphitic carbon as low-cost and high-performance anode for potassium ion batteries. Energy Environ. Mater. 4(3), 451–457 (2020). https://doi.org/10.1002/eem2.12126
- Y. Wu, H. Zhao, Z. Wu, L. Yue, J. Liang et al., Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Mater. 34, 483–507 (2021). https://doi.org/10.1016/j.ensm.2020.10.015
- W. Zhang, Y. Liu, Z. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5(5), eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412
- Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- J. Liu, T. Yin, B. Tian, B. Zhang, C. Qian et al., Unraveling the potassium storage mechanism in graphite foam. Adv. Energy Mater. 9(22), 1900579 (2019). https://doi.org/10.1002/aenm.201900579
- Y. Wang, Z. Wang, Y. Chen, H. Zhang, M. Yousaf et al., Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode. Adv. Mater. 30(32), 1802074 (2018). https://doi.org/10.1002/adma.201802074
- W. Zhang, J. Ming, W. Zhao, X. Dong, M.N. Hedhili et al., Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 29(35), 1903641 (2019). https://doi.org/10.1002/adfm.201903641
- W. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen et al., Potassium ion batteries with graphitic materials. Nano Lett. 15(11), 7671–7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667
- J. Zhao, X. Zou, Y. Zhu, Y. Xu, C. Wang, Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 26(44), 8103–8110 (2016). https://doi.org/10.1002/adfm.201602248
- Q. Li, Y. Zhang, Z. Chen, J. Zhang, Y. Tao et al., Discrete graphitic crystallites promise high-rate ion intercalation for KC8 formation in potassium ion batteries. Adv. Energy Mater. 12(35), 2201574 (2022). https://doi.org/10.1002/aenm.202201574
- L. Zhang, W. Wang, S. Lu, Y. Xiang, Carbon anode materials: A detailed comparison between na-ion and K-ion batteries. Adv. Energy Mater. 11(11), 2003640 (2021). https://doi.org/10.1002/aenm.202003640
- L. Zhu, Y. Wang, M. Wang, M. Huang, Y. Huang et al., High edge-nitrogen-doped porous carbon nanosheets with rapid pseudocapacitive mechanism for boosted potassium-ion storage. Carbon 187, 302–309 (2022). https://doi.org/10.1016/j.carbon.2021.11.021
- B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8(25), 1801149 (2018). https://doi.org/10.1002/aenm.201801149
- W. Zhang, J. Yin, W. Jian, Y. Wu, L. Chen et al., Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors. Nano Energy 103, 107827 (2022). https://doi.org/10.1016/j.nanoen.2022.107827
- W. Zhang, M. Sun, J. Yin, W. Wang, G. Huang et al., Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions. Nano Energy 87, 106184 (2021). https://doi.org/10.1016/j.nanoen.2021.106184
- C. Cui, Y. Gao, J. Li, C. Yang, M. Liu et al., Origins of boosted charge storage on heteroatom-doped carbons. Angew. Chem. Int. Ed. 59(20), 7928–7933 (2020). https://doi.org/10.1002/anie.202000319
- C. Gao, Q. Wang, S. Luo, Z. Wang, Y. Zhang et al., High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. J. Power Sources 415, 165–171 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.073
- D. Qu, B. Zhao, Z. Song, D. Wang, H. Kong et al., Two-dimensional N/O co-doped porous turbostratic carbon nanomeshes with expanded interlayer spacing as host material for potassium/lithium half/full batteries. J. Mater. Chem. A 9, 25094–25103 (2021). https://doi.org/10.1039/d1ta07782a
- W. Zhang, X. Qiu, C. Wang, L. Zhong, F. Fu et al., Lignin derived carbon materials: Current status and future trends. Carbon Research 1, 14 (2022). https://doi.org/10.1007/s44246-022-00009-1
- W. Zhang, J. Yin, C. Wang, L. Zhao, W. Jian et al., Lignin derived porous carbons: Synthesis methods and supercapacitor applications. Small Methods 5, 2100896 (2021). https://doi.org/10.1002/smtd.202100896
- X. Zhang, W. Jian, L. Zhao, F. Wen, J. Chen et al., Direct carbonization of sodium lignosulfonate through self-template strategies for the synthesis of porous carbons toward supercapacitor applications. Colloids Surf. Physicochem. Eng. Aspects 636, 128191 (2022). https://doi.org/10.1016/j.colsurfa.2021.128191
- T. Zhang, L. Yang, X. Yan, X. Ding, Recent advances of cellulose-based materials and their promising application in sodium-ion batteries and capacitors. Small 14(47), 1802444 (2018). https://doi.org/10.1002/smll.201802444
- W. Zhang, M. Sun, J. Yin, K. Lu, U. Schwingenschlögl et al., Accordion-like carbon with high nitrogen doping for fast and stable K ion storage. Adv. Energy Mater. 11(41), 2101928 (2021). https://doi.org/10.1002/aenm.202101928
- Y. Liu, C. Yang, Q. Pan, Y. Li, G. Wang et al., Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries. J. Mater. Chem. A 6(31), 15162–15169 (2018). https://doi.org/10.1039/c8ta04694h
- D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 8(34), 1802386 (2018). https://doi.org/10.1002/aenm.201802386
- Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan et al., Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 29(35), 1702268 (2017). https://doi.org/10.1002/adma.201702268
- B.M. Matsagar, R.-X. Yang, S. Dutta, Y.S. Ok, K.C.W. Wu, Recent progress in the development of biomass-derived nitrogen-doped porous carbon. J. Mater. Chem. A 9(7), 3703–3728 (2021). https://doi.org/10.1039/d0ta09706c
- L. Yan, J. Yu, J. Houston, N. Flores, H. Luo, Biomass derived porous nitrogen doped carbon for electrochemical devices. Green Energy Environ. 2(2), 84–99 (2017). https://doi.org/10.1016/j.gee.2017.03.002
- S. Huang, D. Yang, X. Qiu, W. Zhang, Y. Qin et al., Boosting surface-dominated sodium storage of carbon anode enabled by coupling graphene nanodomains, nitrogen-doping, and nanoarchitecture engineering. Adv. Funct. Mater. 32(33), 2203279 (2022). https://doi.org/10.1002/adfm.202203279
- Q. Deng, H. Liu, Y. Zhou, Z. Luo, Y. Wang et al., N-doped three-dimensional porous carbon materials derived from bagasse biomass as an anode material for K-ion batteries. J. Electroanal. Chem. 899, 115668 (2021). https://doi.org/10.1016/j.jelechem.2021.115668
- S.P. Argent, E. Golden, D.J. Ring, A.J. Blake, N.R. Champness, Two-dimensional networks of thiocyanuric acid and imine bases assisted by weak hydrogen bonds. Cryst. Growth Des. 19(10), 5945–5954 (2019). https://doi.org/10.1021/acs.cgd.9b01055
- J.C. Swarbrick, B.L. Rogers, N.R. Champness, P.H. Beton, Hydrogen-bonded PTCDA−melamine networks and mixed phases. J. Phys. Chem. B 110(12), 6110–6114 (2006). https://doi.org/10.1021/jp056517k
- J. Tu, H. Tong, X. Zeng, S. Chen, C. Wang et al., Modification of porous N-doped carbon with sulfonic acid toward high-ICE/capacity anode material for potassium-ion batteries. Adv. Funct. Mater. 32(34), 2204991 (2022). https://doi.org/10.1002/adfm.202204991
- R.J. Sammons, D.P. Harper, N. Labbé, J.J. Bozell, T. Elder et al., Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis. BioResources 8(2), 2752–2767 (2013). https://doi.org/10.15376/biores.8.2.2752-2767
- Y. Chen, B. Xi, M. Huang, L. Shi, S. Huang et al., Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage. Adv. Mater. 34(7), 2108621 (2022). https://doi.org/10.1002/adma.202108621
- L. Zhao, W. Jian, J. Zhu, X. Zhang, F. Wen et al., Molten salt self-template synthesis strategy of oxygen-rich porous carbon cathodes for zinc ion hybrid capacitors. ACS Appl. Mater. Interfaces 14(38), 43431–43441 (2022). https://doi.org/10.1021/acsami.2c13886
- Q. Shen, P. Jiang, H. He, Y. Feng, Y. Cai et al., Designing g-C3N4 /N-rich carbon fiber composites for high-performance potassium-ion hybrid capacitors. Energy Environ. Mater. 4(4), 638–645 (2020). https://doi.org/10.1002/eem2.12148
- Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang et al., High-performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanops for zinc–air battery and self-powered overall water splitting. Adv. Energy Mater. 10(10), 1903854 (2020). https://doi.org/10.1002/aenm.201903854
- W. Feng, N. Feng, W. Liu, Y. Cui, C. Chen et al., Liquid-state templates for constructing B, N, co-doping porous carbons with a boosting of potassium-ion storage performance. Adv. Energy Mater. 11(4), 2003215 (2020). https://doi.org/10.1002/aenm.202003215
- Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji et al., High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 66, 104132–104141 (2019). https://doi.org/10.1016/j.nanoen.2019.104132
- R. Bardestani, G.S. Patience, S. Kaliaguine, Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 97(11), 2781–2791 (2019). https://doi.org/10.1002/cjce.23632
- W. Jian, W. Zhang, B. Wu, X. Wei, W. Liang et al., Enzymatic hydrolysis lignin-derived porous carbons through ammonia activation: Activation mechanism and charge storage mechanism. ACS Appl. Mater. Interfaces 14(4), 5425–5438 (2022). https://doi.org/10.1021/acsami.1c22576
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297
- D. Zhang, Y. Hao, L. Zheng, Y. Ma, H. Feng et al., Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance. J. Mater. Chem. A 1, 7584–7591 (2013). https://doi.org/10.1039/c3ta11208j
- Y. Li, W. Zhong, C. Yang, F. Zheng, Q. Pan et al., N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem. Eng. J. 358, 1147–1154 (2019). https://doi.org/10.1016/j.cej.2018.10.135
- W. Zhang, J. Yin, M. Sun, W. Wang, C. Chen et al., Direct pyrolysis of supermolecules: An ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Adv. Mater. 32(25), 2000732 (2020). https://doi.org/10.1002/adma.202000732
- G. Wang, X. Xiong, D. Xie, Z. Lin, J. Zheng et al., Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. J. Mater. Chem. A 6(47), 24317–24323 (2018). https://doi.org/10.1039/c8ta09751h
- X. Tao, Y. Sun, Y. Liu, B. Chang, C. Liu et al., Facile synthesis of hollow carbon nanospheres and their potential as stable anode materials in potassium-ion batteries. ACS Appl. Mater. Interfaces 12(11), 13182–13188 (2020). https://doi.org/10.1021/acsami.9b22736
- Z. Ju, P. Li, G. Ma, Z. Xing, Q. Zhuang et al., Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 11, 38–46 (2018). https://doi.org/10.1016/j.ensm.2017.09.009
- M. Shao, C. Li, T. Li, H. Zhao, W. Yu et al., Pushing the energy output and cycling lifespan of potassium-ion capacitor to high level through metal–organic framework derived porous carbon microsheets anode. Adv. Funct. Mater. 30(51), 2006561 (2020). https://doi.org/10.1002/adfm.202006561
- W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648 (2018). https://doi.org/10.1002/aenm.201701648
- A. Mahmood, S. Li, Z. Ali, H. Tabassum, B. Zhu et al., Ultrafast sodium/potassium-ion intercalation into hierarchically porous thin carbon shells. Adv. Mater. 31(2), 1805430 (2019). https://doi.org/10.1002/adma.201805430
- Z. Tang, H. Wang, P.F. Wu, S.Y. Zhou, Y.C. Huang et al., Electrode-electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion batteries. Angew. Chem. Int. Ed. 61(18), e202200475 (2022). https://doi.org/10.1002/anie.202200475
- X. Qiao, C. Niu, D. Liao, Z. Chen, L. Sun et al., A self-growth strategy for simultaneous modulation of interlayer distance and lyophilicity of graphene layers toward ultrahigh potassium storage performance. Adv. Funct. Mater. 31(49), 2105145 (2021). https://doi.org/10.1002/adfm.202105145
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- C. Wang, D. Danovich, S. Shaik, Y. Mo, A unified theory for the blue- and red-shifting phenomena in hydrogen and halogen bonds. J. Chem. Theory Comput. 13(4), 1626–1637 (2017). https://doi.org/10.1021/acs.jctc.6b01133
- L. Tao, Y. Yang, H. Wang, Y. Zheng, H. Hao et al., Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy Storage Mater. 27, 212–225 (2020). https://doi.org/10.1016/j.ensm.2020.02.004
- J. Wang, B. Yin, T. Gao, X. Wang, W. Li et al., Reduced graphene oxide modified few-layer exfoliated graphite to enhance the stability of the negative electrode of a graphite-based potassium ion battery. Acta Phys. Chim. Sinica 38(2), 2012088 (2021). https://doi.org/10.3866/pku.Whxb202012088
- H. Tan, X. Du, R. Zhou, Z. Hou, B. Zhang, Rational design of microstructure and interphase enables high-capacity and long-life carbon anodes for potassium ion batteries. Carbon 176, 383–389 (2021). https://doi.org/10.1016/j.carbon.2021.02.003
- S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji et al., Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces 10(18), 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
- H.V. Ramasamy, B. Senthilkumar, P. Barpanda, Y.-S. Lee, Superior potassium-ion hybrid capacitor based on novel P3-type layered K0.45Mn0.5Co0.5O2 as high capacity cathode. Chem. Eng. J. 368, 235–243 (2019). https://doi.org/10.1016/j.cej.2019.02.172
- Y. Wang, Z. Zhang, G. Wang, X. Yang, Y. Sui et al., Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horiz. 4(6), 1394–1401 (2019). https://doi.org/10.1039/c9nh00211a
- Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn et al., High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6(5), 4319–4327 (2012). https://doi.org/10.1021/nn300920e
- H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen et al., Self-assembled Nb2O5 nanosheets for high energy–high power sodium ion capacitors. Chem. Mater. 28(16), 5753–5760 (2016). https://doi.org/10.1021/acs.chemmater.6b01988
- J. Li, Y. Hu, H. Xie, J. Peng, L. Fan et al., Weak cation-solvent interactions in ether-based electrolytes stabilizing potassium-ion batteries. Angew. Chem. Int. Ed. 61(33), 202208291 (2022). https://doi.org/10.1002/anie.202208291
References
X. Lu, X. Zhang, Y. Zheng, D. Zhang, L. Jiang et al., High-performance K-ion half/full batteries with superb rate capability and cycle stability. Proc. Natl. Acad. Sci. USA 119(23), e2122252119 (2022). https://doi.org/10.1073/pnas.2122252119
W. Zhang, J. Yin, W. Wang, Z. Bayhan, H.N. Alshareef, Status of rechargeable potassium batteries. Nano Energy 83, 105792 (2021). https://doi.org/10.1016/j.nanoen.2021.105792
W. Long, B. Fang, A. Ignaszak, Z. Wu, Y.J. Wang et al., Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries. Chem. Soc. Rev. 46(23), 7176–7190 (2017). https://doi.org/10.1039/c6cs00639f
W. Zhang, Z. Cao, W. Wang, E. Alhajji, A.H. Emwas et al., A site-selective doping strategy of carbon anodes with remarkable K-ion storage capacity. Angew. Chem. Int. Ed. 59(11), 4448–4455 (2020). https://doi.org/10.1002/anie.201913368
X. Min, J. Xiao, M.H. Fang, W. Wang, Y.J. Zhao et al., Potassium-ion batteries: Outlook on present and future technologies. Energy Environ. Sci. 14(4), 2186–2243 (2021). https://doi.org/10.1039/d0ee02917c
Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
X. Hu, Y. Liu, J. Chen, L. Yi, H. Zhan et al., Fast redox kinetics in bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 9(42), 1901533 (2019). https://doi.org/10.1002/aenm.201901533
L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30(20), 1800804 (2018). https://doi.org/10.1002/adma.201800804
Y. Feng, S. Chen, D. Shen, J. Zhou, B. Lu, Cross-linked hollow graphitic carbon as low-cost and high-performance anode for potassium ion batteries. Energy Environ. Mater. 4(3), 451–457 (2020). https://doi.org/10.1002/eem2.12126
Y. Wu, H. Zhao, Z. Wu, L. Yue, J. Liang et al., Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Mater. 34, 483–507 (2021). https://doi.org/10.1016/j.ensm.2020.10.015
W. Zhang, Y. Liu, Z. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5(5), eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412
Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
J. Liu, T. Yin, B. Tian, B. Zhang, C. Qian et al., Unraveling the potassium storage mechanism in graphite foam. Adv. Energy Mater. 9(22), 1900579 (2019). https://doi.org/10.1002/aenm.201900579
Y. Wang, Z. Wang, Y. Chen, H. Zhang, M. Yousaf et al., Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode. Adv. Mater. 30(32), 1802074 (2018). https://doi.org/10.1002/adma.201802074
W. Zhang, J. Ming, W. Zhao, X. Dong, M.N. Hedhili et al., Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 29(35), 1903641 (2019). https://doi.org/10.1002/adfm.201903641
W. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen et al., Potassium ion batteries with graphitic materials. Nano Lett. 15(11), 7671–7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667
J. Zhao, X. Zou, Y. Zhu, Y. Xu, C. Wang, Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 26(44), 8103–8110 (2016). https://doi.org/10.1002/adfm.201602248
Q. Li, Y. Zhang, Z. Chen, J. Zhang, Y. Tao et al., Discrete graphitic crystallites promise high-rate ion intercalation for KC8 formation in potassium ion batteries. Adv. Energy Mater. 12(35), 2201574 (2022). https://doi.org/10.1002/aenm.202201574
L. Zhang, W. Wang, S. Lu, Y. Xiang, Carbon anode materials: A detailed comparison between na-ion and K-ion batteries. Adv. Energy Mater. 11(11), 2003640 (2021). https://doi.org/10.1002/aenm.202003640
L. Zhu, Y. Wang, M. Wang, M. Huang, Y. Huang et al., High edge-nitrogen-doped porous carbon nanosheets with rapid pseudocapacitive mechanism for boosted potassium-ion storage. Carbon 187, 302–309 (2022). https://doi.org/10.1016/j.carbon.2021.11.021
B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8(25), 1801149 (2018). https://doi.org/10.1002/aenm.201801149
W. Zhang, J. Yin, W. Jian, Y. Wu, L. Chen et al., Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors. Nano Energy 103, 107827 (2022). https://doi.org/10.1016/j.nanoen.2022.107827
W. Zhang, M. Sun, J. Yin, W. Wang, G. Huang et al., Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions. Nano Energy 87, 106184 (2021). https://doi.org/10.1016/j.nanoen.2021.106184
C. Cui, Y. Gao, J. Li, C. Yang, M. Liu et al., Origins of boosted charge storage on heteroatom-doped carbons. Angew. Chem. Int. Ed. 59(20), 7928–7933 (2020). https://doi.org/10.1002/anie.202000319
C. Gao, Q. Wang, S. Luo, Z. Wang, Y. Zhang et al., High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. J. Power Sources 415, 165–171 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.073
D. Qu, B. Zhao, Z. Song, D. Wang, H. Kong et al., Two-dimensional N/O co-doped porous turbostratic carbon nanomeshes with expanded interlayer spacing as host material for potassium/lithium half/full batteries. J. Mater. Chem. A 9, 25094–25103 (2021). https://doi.org/10.1039/d1ta07782a
W. Zhang, X. Qiu, C. Wang, L. Zhong, F. Fu et al., Lignin derived carbon materials: Current status and future trends. Carbon Research 1, 14 (2022). https://doi.org/10.1007/s44246-022-00009-1
W. Zhang, J. Yin, C. Wang, L. Zhao, W. Jian et al., Lignin derived porous carbons: Synthesis methods and supercapacitor applications. Small Methods 5, 2100896 (2021). https://doi.org/10.1002/smtd.202100896
X. Zhang, W. Jian, L. Zhao, F. Wen, J. Chen et al., Direct carbonization of sodium lignosulfonate through self-template strategies for the synthesis of porous carbons toward supercapacitor applications. Colloids Surf. Physicochem. Eng. Aspects 636, 128191 (2022). https://doi.org/10.1016/j.colsurfa.2021.128191
T. Zhang, L. Yang, X. Yan, X. Ding, Recent advances of cellulose-based materials and their promising application in sodium-ion batteries and capacitors. Small 14(47), 1802444 (2018). https://doi.org/10.1002/smll.201802444
W. Zhang, M. Sun, J. Yin, K. Lu, U. Schwingenschlögl et al., Accordion-like carbon with high nitrogen doping for fast and stable K ion storage. Adv. Energy Mater. 11(41), 2101928 (2021). https://doi.org/10.1002/aenm.202101928
Y. Liu, C. Yang, Q. Pan, Y. Li, G. Wang et al., Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries. J. Mater. Chem. A 6(31), 15162–15169 (2018). https://doi.org/10.1039/c8ta04694h
D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 8(34), 1802386 (2018). https://doi.org/10.1002/aenm.201802386
Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan et al., Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 29(35), 1702268 (2017). https://doi.org/10.1002/adma.201702268
B.M. Matsagar, R.-X. Yang, S. Dutta, Y.S. Ok, K.C.W. Wu, Recent progress in the development of biomass-derived nitrogen-doped porous carbon. J. Mater. Chem. A 9(7), 3703–3728 (2021). https://doi.org/10.1039/d0ta09706c
L. Yan, J. Yu, J. Houston, N. Flores, H. Luo, Biomass derived porous nitrogen doped carbon for electrochemical devices. Green Energy Environ. 2(2), 84–99 (2017). https://doi.org/10.1016/j.gee.2017.03.002
S. Huang, D. Yang, X. Qiu, W. Zhang, Y. Qin et al., Boosting surface-dominated sodium storage of carbon anode enabled by coupling graphene nanodomains, nitrogen-doping, and nanoarchitecture engineering. Adv. Funct. Mater. 32(33), 2203279 (2022). https://doi.org/10.1002/adfm.202203279
Q. Deng, H. Liu, Y. Zhou, Z. Luo, Y. Wang et al., N-doped three-dimensional porous carbon materials derived from bagasse biomass as an anode material for K-ion batteries. J. Electroanal. Chem. 899, 115668 (2021). https://doi.org/10.1016/j.jelechem.2021.115668
S.P. Argent, E. Golden, D.J. Ring, A.J. Blake, N.R. Champness, Two-dimensional networks of thiocyanuric acid and imine bases assisted by weak hydrogen bonds. Cryst. Growth Des. 19(10), 5945–5954 (2019). https://doi.org/10.1021/acs.cgd.9b01055
J.C. Swarbrick, B.L. Rogers, N.R. Champness, P.H. Beton, Hydrogen-bonded PTCDA−melamine networks and mixed phases. J. Phys. Chem. B 110(12), 6110–6114 (2006). https://doi.org/10.1021/jp056517k
J. Tu, H. Tong, X. Zeng, S. Chen, C. Wang et al., Modification of porous N-doped carbon with sulfonic acid toward high-ICE/capacity anode material for potassium-ion batteries. Adv. Funct. Mater. 32(34), 2204991 (2022). https://doi.org/10.1002/adfm.202204991
R.J. Sammons, D.P. Harper, N. Labbé, J.J. Bozell, T. Elder et al., Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis. BioResources 8(2), 2752–2767 (2013). https://doi.org/10.15376/biores.8.2.2752-2767
Y. Chen, B. Xi, M. Huang, L. Shi, S. Huang et al., Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage. Adv. Mater. 34(7), 2108621 (2022). https://doi.org/10.1002/adma.202108621
L. Zhao, W. Jian, J. Zhu, X. Zhang, F. Wen et al., Molten salt self-template synthesis strategy of oxygen-rich porous carbon cathodes for zinc ion hybrid capacitors. ACS Appl. Mater. Interfaces 14(38), 43431–43441 (2022). https://doi.org/10.1021/acsami.2c13886
Q. Shen, P. Jiang, H. He, Y. Feng, Y. Cai et al., Designing g-C3N4 /N-rich carbon fiber composites for high-performance potassium-ion hybrid capacitors. Energy Environ. Mater. 4(4), 638–645 (2020). https://doi.org/10.1002/eem2.12148
Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang et al., High-performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanops for zinc–air battery and self-powered overall water splitting. Adv. Energy Mater. 10(10), 1903854 (2020). https://doi.org/10.1002/aenm.201903854
W. Feng, N. Feng, W. Liu, Y. Cui, C. Chen et al., Liquid-state templates for constructing B, N, co-doping porous carbons with a boosting of potassium-ion storage performance. Adv. Energy Mater. 11(4), 2003215 (2020). https://doi.org/10.1002/aenm.202003215
Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji et al., High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 66, 104132–104141 (2019). https://doi.org/10.1016/j.nanoen.2019.104132
R. Bardestani, G.S. Patience, S. Kaliaguine, Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 97(11), 2781–2791 (2019). https://doi.org/10.1002/cjce.23632
W. Jian, W. Zhang, B. Wu, X. Wei, W. Liang et al., Enzymatic hydrolysis lignin-derived porous carbons through ammonia activation: Activation mechanism and charge storage mechanism. ACS Appl. Mater. Interfaces 14(4), 5425–5438 (2022). https://doi.org/10.1021/acsami.1c22576
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297
D. Zhang, Y. Hao, L. Zheng, Y. Ma, H. Feng et al., Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance. J. Mater. Chem. A 1, 7584–7591 (2013). https://doi.org/10.1039/c3ta11208j
Y. Li, W. Zhong, C. Yang, F. Zheng, Q. Pan et al., N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem. Eng. J. 358, 1147–1154 (2019). https://doi.org/10.1016/j.cej.2018.10.135
W. Zhang, J. Yin, M. Sun, W. Wang, C. Chen et al., Direct pyrolysis of supermolecules: An ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Adv. Mater. 32(25), 2000732 (2020). https://doi.org/10.1002/adma.202000732
G. Wang, X. Xiong, D. Xie, Z. Lin, J. Zheng et al., Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. J. Mater. Chem. A 6(47), 24317–24323 (2018). https://doi.org/10.1039/c8ta09751h
X. Tao, Y. Sun, Y. Liu, B. Chang, C. Liu et al., Facile synthesis of hollow carbon nanospheres and their potential as stable anode materials in potassium-ion batteries. ACS Appl. Mater. Interfaces 12(11), 13182–13188 (2020). https://doi.org/10.1021/acsami.9b22736
Z. Ju, P. Li, G. Ma, Z. Xing, Q. Zhuang et al., Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 11, 38–46 (2018). https://doi.org/10.1016/j.ensm.2017.09.009
M. Shao, C. Li, T. Li, H. Zhao, W. Yu et al., Pushing the energy output and cycling lifespan of potassium-ion capacitor to high level through metal–organic framework derived porous carbon microsheets anode. Adv. Funct. Mater. 30(51), 2006561 (2020). https://doi.org/10.1002/adfm.202006561
W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648 (2018). https://doi.org/10.1002/aenm.201701648
A. Mahmood, S. Li, Z. Ali, H. Tabassum, B. Zhu et al., Ultrafast sodium/potassium-ion intercalation into hierarchically porous thin carbon shells. Adv. Mater. 31(2), 1805430 (2019). https://doi.org/10.1002/adma.201805430
Z. Tang, H. Wang, P.F. Wu, S.Y. Zhou, Y.C. Huang et al., Electrode-electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion batteries. Angew. Chem. Int. Ed. 61(18), e202200475 (2022). https://doi.org/10.1002/anie.202200475
X. Qiao, C. Niu, D. Liao, Z. Chen, L. Sun et al., A self-growth strategy for simultaneous modulation of interlayer distance and lyophilicity of graphene layers toward ultrahigh potassium storage performance. Adv. Funct. Mater. 31(49), 2105145 (2021). https://doi.org/10.1002/adfm.202105145
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
C. Wang, D. Danovich, S. Shaik, Y. Mo, A unified theory for the blue- and red-shifting phenomena in hydrogen and halogen bonds. J. Chem. Theory Comput. 13(4), 1626–1637 (2017). https://doi.org/10.1021/acs.jctc.6b01133
L. Tao, Y. Yang, H. Wang, Y. Zheng, H. Hao et al., Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy Storage Mater. 27, 212–225 (2020). https://doi.org/10.1016/j.ensm.2020.02.004
J. Wang, B. Yin, T. Gao, X. Wang, W. Li et al., Reduced graphene oxide modified few-layer exfoliated graphite to enhance the stability of the negative electrode of a graphite-based potassium ion battery. Acta Phys. Chim. Sinica 38(2), 2012088 (2021). https://doi.org/10.3866/pku.Whxb202012088
H. Tan, X. Du, R. Zhou, Z. Hou, B. Zhang, Rational design of microstructure and interphase enables high-capacity and long-life carbon anodes for potassium ion batteries. Carbon 176, 383–389 (2021). https://doi.org/10.1016/j.carbon.2021.02.003
S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji et al., Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces 10(18), 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
H.V. Ramasamy, B. Senthilkumar, P. Barpanda, Y.-S. Lee, Superior potassium-ion hybrid capacitor based on novel P3-type layered K0.45Mn0.5Co0.5O2 as high capacity cathode. Chem. Eng. J. 368, 235–243 (2019). https://doi.org/10.1016/j.cej.2019.02.172
Y. Wang, Z. Zhang, G. Wang, X. Yang, Y. Sui et al., Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horiz. 4(6), 1394–1401 (2019). https://doi.org/10.1039/c9nh00211a
Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn et al., High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6(5), 4319–4327 (2012). https://doi.org/10.1021/nn300920e
H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen et al., Self-assembled Nb2O5 nanosheets for high energy–high power sodium ion capacitors. Chem. Mater. 28(16), 5753–5760 (2016). https://doi.org/10.1021/acs.chemmater.6b01988
J. Li, Y. Hu, H. Xie, J. Peng, L. Fan et al., Weak cation-solvent interactions in ether-based electrolytes stabilizing potassium-ion batteries. Angew. Chem. Int. Ed. 61(33), 202208291 (2022). https://doi.org/10.1002/anie.202208291