Tailoring Nitrogen Terminals on MXene Enables Fast Charging and Stable Cycling Na-Ion Batteries at Low Temperature
Corresponding Author: Zhenbo Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 143
Abstract
Sodium-ion batteries stand a chance of enabling fast charging ability and long lifespan while operating at low temperature (low-T). However, sluggish kinetics and aggravated dendrites present two major challenges for anodes to achieve the goal at low-T. Herein, we propose an interlayer confined strategy for tailoring nitrogen terminals on Ti3C2 MXene (Ti3C2-Nfunct) to address these issues. The introduction of nitrogen terminals endows Ti3C2-Nfunct with large interlayer space and charge redistribution, improved conductivity and sufficient adsorption sites for Na+, which improves the possibility of Ti3C2 for accommodating more Na atoms, further enhancing the Na+ storage capability of Ti3C2. As revealed, Ti3C2-Nfunct not only possesses a lower Na-ion diffusion energy barrier and charge transfer activation energy, but also exhibits Na+-solvent co-intercalation behavior to circumvent a high de-solvation energy barrier at low-T. Besides, the solid electrolyte interface dominated by inorganic compounds is more beneficial for the Na+ transfer at the electrode/electrolyte interface. Compared with of the unmodified sample, Ti3C2-Nfunct exhibits a twofold capacity (201 mAh g−1), fast-charging ability (18 min at 80% capacity retention), and great superiority in cycle life (80.9%@5000 cycles) at − 25 °C. When coupling with Na3V2(PO4)2F3 cathode, the Ti3C2-Nfunct//NVPF exhibits high energy density and cycle stability at − 25 °C.
Highlights:
1 An interlayer confined strategy to realize the substitution of nitrogen terminals between Ti3C2 MXene layers is proposed.
2 The targeted Ti3C2-Nfunct anode exhibits fast-charging ability and great superiority in cycle life at − 25 °C.
3 Ti3C2-Nfunct not only possesses a lower Na-ion diffusion energy barrier and charge transfer activation energy, but also exhibits Na+-solvent co-intercalation behavior at low temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10(38), 2001972 (2020). https://doi.org/10.1002/aenm.202001972
- X. Dong, Z.W. Guo, Z.Y. Guo, Y. Wang, Y. Xia, Organic batteries operated at −70°C. Joule 2(5), 902–913 (2018). https://doi.org/10.1016/j.joule.2018.01.017
- Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4(7), 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
- M.J. Lee, K. Lee, J. Lim, M. Li, S. Noda et al., Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism. Adv. Funct. Mater. 31(14), 2009397 (2021). https://doi.org/10.1002/adfm.202009397
- J. Deng, W.B. Luo, S.L. Chou, H.K. Liu, S.X. Dou, Sodium-ion batteries: from academic research to practical commercialization. Adv. Energy Mater. 8(4), 1701428 (2018). https://doi.org/10.1002/aenm.201701428
- T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120(14), 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463
- W. Zhang, X. Sun, Y. Tang, H. Xia, Y. Zeng et al., Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures. J. Am. Chem. Soc. 141(36), 14038–14042 (2019). https://doi.org/10.1021/jacs.9b05531
- L.F. Que, F.D. Yu, Y. Xia, L. Deng, K. Goh et al., Enhancing Na-ion storage at subzero temperature via interlayer confinement of Sn2+. ACS Nano 14(10), 13765–13774 (2020). https://doi.org/10.1021/acsnano.0c05925
- X. Gao, X. Du, T.S. Mathis, M.M. Zhang, X.H. Wang et al., Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 11, 6160 (2020). https://doi.org/10.1038/s41467-020-19992-3
- C.Y. Wang, G.S. Zhang, S.H. Ge, T. Xu, Y. Ji et al., Lithium-ion battery structure that self-heats at low temperatures. Nature 529(7587), 515–518 (2016). https://doi.org/10.1038/nature16502
- X.S. Hu, Y.S. Zheng, D.A. Howey, H. Perez, A. Foley et al., Battery warm-up methodologies at subzero temperatures for automotive applications: recent advances and perspectives. Prog. Energy Combust. Sci. 77, 100806 (2020). https://doi.org/10.1016/j.pecs.2019.100806
- J. Holoubek, H.D. Liu, Z.H. Wu, Y.J. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z
- B. Liao, H.Y. Li, M.Q. Xu, L.D. Xing, Y.H. Liao et al., Designing low impedance interface films simultaneously on anode and cathode for high energy batteries. Adv. Energy Mater. 8(22), 1800802 (2018). https://doi.org/10.1002/aenm.201800802
- M.C. Smart, B.L. Lucht, S. Dalavi, F.C. Krause, B.V. Ratnakumar, The effect of additives upon the performance of MCMB/LiNixCo1−xO2 Li-ion cells containing methyl butyrate-based wide operating temperature range electrolytes. J. Electrochem. Soc. 159(6), A739–A751 (2012). https://doi.org/10.1149/2.058206jes
- Z.H. Lin, Q.B. Xia, W.L. Wang, W.S. Li, S.L. Chou, Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat 1(3), 376–389 (2019). https://doi.org/10.1002/inf2.12023
- Y.X. Huang, L.Z. Zhao, L. Li, M. Xie, F. Wu et al., Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv. Mater. 31(21), 1808393 (2019). https://doi.org/10.1002/adma.201808393
- C. Brissot, M. Rosso, J.N. Chazalviel, P. Baudry, S. Lascaud, In-situ study of dendritic growth in lithium/PEO-salt/lithium cells. Electrochim. Acta 43, 1569–1574 (1998). https://doi.org/10.1016/S0013-4686(97)10055-X
- B. Lee, E. Paek, D. Mitlin, S.W. Lee, Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119(8), 5416–5460 (2019). https://doi.org/10.1021/acs.chemrev.8b00642
- Y. Zhang, T.T. Zuo, J. Popovic, K. Lim, Y.X. Yin et al., Towards better Li metal anodes: challenges and strategies. Mater. Today 33, 56–74 (2020). https://doi.org/10.1016/j.mattod.2019.09.018
- D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6(14), 11173–11179 (2014). https://doi.org/10.1021/am501144q
- P. Ma, D. Fang, Y. Liu, Y. Shang, Y. Shi et al., MXene-based materials for electrochemical sodium-ion storage. Adv. Sci. 8(11), 2003185 (2021). https://doi.org/10.1002/advs.202003185
- Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916 (2012). https://doi.org/10.1021/ja308463r
- Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi et al., Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136(17), 6385–6394 (2014). https://doi.org/10.1021/ja501520b
- M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
- F. Song, J. Hu, G. Li, J. Wang, S. Chen et al., Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage. Nano-Micro Lett. 14, 37 (2021). https://doi.org/10.1007/s40820-021-00781-6
- N. Zhao, F. Zhang, F. Zhan, D. Yi, Y. Yang et al., Fe3+-stabilized Ti3C2T MXene enables ultrastable Li-ion storage at low temperature. J. Mater. Sci. Technol. 67, 156–164 (2021). https://doi.org/10.1016/j.jmst.2020.06.037
- X. Wang, J. Wang, J. Qin, X. Xie, R. Yang et al., Surface charge engineering for covalently assembling three-dimensional MXene network for all-climate sodium ion batteries. ACS Appl. Mater. Interfaces 12(35), 39181–39194 (2020). https://doi.org/10.1021/acsami.0c10605
- Y. Wu, P. Nie, L. Wu, H. Dou, X. Zhang, 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chem. Eng. J. 334, 932–938 (2018). https://doi.org/10.1016/j.cej.2017.10.007
- Y. Wang, C. Ma, W. Ma, W. Fan, Y. Sun et al., Enhanced low-temperature Li-ion storage in MXene titanium carbide by surface oxygen termination. 2D Mater. 6(4), 045025 (2019). https://doi.org/10.1088/2053-1583/ab30f9
- N. Sun, Z. Guan, Q. Zhu, B. Anasori, Y. Gogotsi et al., Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 12, 89 (2020). https://doi.org/10.1007/s40820-020-00426-0
- P. Zhang, R. Soomro, Z. Guan, N. Sun, B. Xu, 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater. 29, 163–171 (2020). https://doi.org/10.1016/j.ensm.2020.04.016
- C. Lu, L. Yang, B. Yan, L. Sun, P. Zhang et al., Nitrogen-doped Ti3C2 MXene: mechanism investigation and electrochemical analysis. Adv. Funct. Mater. 30(47), 2000852 (2020). https://doi.org/10.1002/adfm.202000852
- J. Zheng, D.C. Bock, T. Tang, Q. Zhao, J. Yin et al., Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal-substrate bonding. Nat. Energy 6(4), 398–406 (2021). https://doi.org/10.1038/s41560-021-00797-7
- J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared structure design of mxene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11(3), 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668
- J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019). https://doi.org/10.1002/adfm.201808107
- J. Zhang, Q. Lei, Z. Ren, X. Zhu, J. Li et al., A superlattice-stabilized layered CuS anode for high-performance aqueous zinc-ion batteries. ACS Nano 15, 17748–17756 (2021). https://doi.org/10.1021/acsnano.1c05725
- F. Zhang, X. Guo, P. Xiong, J. Zhang, J. Song et al., Interface engineering of MXene composite separator for high-performance Li-Se and Na-Se batteries. Adv. Energy Mater. 10(20), 2000446 (2020). https://doi.org/10.1002/aenm.202000446
- J. Luo, X. Lu, E. Matios, C. Wang, H. Wang et al., Tunable MXene-derived 1D/2D hybrid nanoarchitectures as a stable matrix for dendrite-free and ultrahigh capacity sodium metal anode. Nano Lett. 20(10), 7700–7708 (2020). https://doi.org/10.1021/acs.nanolett.0c03215
- O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
- J. Hart, K. Hantanasirisakul, A. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
- P. Wang, X. Lu, Y. Boyjoo, X. Wei, Y. Zhang et al., Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteries. J. Power Sources 451, 227756 (2020). https://doi.org/10.1016/j.jpowsour.2020.227756
- W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 8(13), 1702485 (2018). https://doi.org/10.1002/aenm.201702485
- Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu et al., Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368–376 (2017). https://doi.org/10.1016/j.nanoen.2017.06.009
- N. Chen, Y. Zhou, S. Zhang, H. Huang, C. Zhang et al., Tailoring Ti3CNTx MXene via an acid molecular scissor. Nano Energy 85, 106007 (2021). https://doi.org/10.1016/j.nanoen.2021.106007
- J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
- Y. Tian, W. Que, Y. Luo, C. Yang, X. Yin et al., Surface nitrogen-modified 2D titanium carbide (MXene) with high energy density for aqueous supercapacitor applications. J. Mater. Chem. A 7(10), 5416–5425 (2019). https://doi.org/10.1039/c9ta00076c
- Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang et al., Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10(9), 974–980 (2018). https://doi.org/10.1038/s41557-018-0092-x
- X. Rui, X. Zhang, S. Xu, H. Tan, Y. Jiang et al., A low-temperature sodium-ion full battery: superb kinetics and cycling stability. Adv. Funct. Mater. 31(11), 2009458 (2020). https://doi.org/10.1002/adfm.202009458
- Y.Y. Wang, B.H. Hou, J.Z. Guo, Q.L. Ning, W.L. Pang et al., An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv. Energy Mater. 8(18), 1703252 (2018). https://doi.org/10.1002/aenm.201703252
- C. Chen, Y. Yang, X. Tang, R. Qiu, S. Wang et al., Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+ /K+ batteries in a wide temperature range. Small 15(10), 1804740 (2019). https://doi.org/10.1002/smll.201804740
- L. Deng, K. Goh, F.D. Yu, Y. Xia, Y.S. Jiang et al., Self-optimizing weak solvation effects achieving faster low-temperature charge transfer kinetics for high-voltage Na3V2(PO4)2F3 cathode. Energy Storage Mater. 44, 82–92 (2022). https://doi.org/10.1016/j.ensm.2021.10.012
- X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu et al., Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc. 137(7), 2715–2721 (2015). https://doi.org/10.1021/ja512820k
- R. Zheng, H. Yu, X. Zhang, Y. Ding, M. Xia et al., A TiSe2-graphite dual ion battery: fast Na-ion insertion and excellent stability. Angew. Chem. Int. Ed. 60(34), 18430–18437 (2021). https://doi.org/10.1002/anie.202105439
- C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan et al., Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015). https://doi.org/10.1038/ncomms7929
- T. Liu, X. Zhang, M. Xia, H. Yu, N. Peng et al., Functional cation defects engineering in TiS2 for high-stability anode. Nano Energy 67, 104295 (2020). https://doi.org/10.1016/j.nanoen.2019.104295
- L.F. Que, F.D. Yu, X.L. Sui, L. Zhao, J.G. Zhou et al., Thermal-induced interlayer defect engineering toward super high-performance sodium ion capacitors. Nano Energy 59, 17–25 (2019). https://doi.org/10.1016/j.nanoen.2019.02.030
- N. Schulz, R. Hausbrand, C. Wittich, L. Dimesso, W. Jaegermann, XPS-surface analysis of SEI layers on Li-ion cathodes: part II. SEI-composition and formation inside composite electrodes. J. Electrochem. Soc. 165(5), A833–A846 (2018). https://doi.org/10.1149/2.0881803jes
- K. Li, J. Zhang, D. Lin, D.W. Wang, B. Li et al., Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 10, 725 (2019). https://doi.org/10.1038/s41467-019-08506-5
- Z. Tang, H. Wang, P.F. Wu, S.Y. Zhou, Y.C. Huang et al., Electrode-electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion battery. Angew. Chem. Int. Ed. 61(18), e202200475 (2022). https://doi.org/10.1002/anie.202200475
- J. Luo, C. Fang, C. Jin, H. Yuan, O. Sheng et al., Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J. Mater. Chem. A 6(17), 7794–7806 (2018). https://doi.org/10.1039/c8ta02068j
- X. Wang, T.S. Mathis, K. Li, Z. Lin, L. Vlcek et al., Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4(3), 241–248 (2019). https://doi.org/10.1038/s41560-019-0339-9
- M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, MXene as a charge storage host. Acc. Chem. Res. 51(3), 591–599 (2018). https://doi.org/10.1021/acs.accounts.7b00481
- D. Lin, K. Li, Q. Wang, L. Lyu, B. Li et al., Rate-independent and ultra-stable low-temperature sodium storage in pseudocapacitive TiO2 nanowires. J. Mater. Chem. A 7(33), 19297–19304 (2019). https://doi.org/10.1039/c9ta05039f
- S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita et al., Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 10(3), 3334–3341 (2016). https://doi.org/10.1021/acsnano.5b06958
- J. Holoubek, Y. Yin, M. Li, M. Yu, Y.S. Meng et al., Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature. Angew. Chem. Int. Ed. 58(52), 18892–18897 (2019). https://doi.org/10.1002/anie.201912167
- J. Chen, Y. Peng, Y. Yin, Z. Fang, Y. Cao et al., A desolvation-free sodium dual-ion chemistry for high power density and extremely low temperature. Angew. Chem. Int. Ed. 60(44), 23858–23862 (2021). https://doi.org/10.1002/anie.202110501
- M. Liu, L. Xing, K. Xu, H. Zhou, J. Lan et al., Deciphering the paradox between the co-intercalation of sodium-solvent into graphite and its irreversible capacity. Energy Storage Mater. 26, 32–39 (2020). https://doi.org/10.1016/j.ensm.2019.12.026
- M.L. Divya, Y.S. Lee, V. Aravindan, Solvent co-intercalation: an emerging mechanism in Li-, Na-, and K-ion capacitors. ACS Energy Lett. 6(12), 4228–4244 (2021). https://doi.org/10.1021/acsenergylett.1c01801
- Z. Li, Y. Zhang, J. Zhang, Y. Cao, J. Chen et al., Sodium-ion battery with a wide operation-temperature range from -70 to 100°C. Angew. Chem. Int. Ed. 61, e202116930 (2022). https://doi.org/10.1002/anie.202116930
- M.Y. Sun, F.D. Yu, Y. Xia, L. Deng, Y.S. Jiang et al., Trigger Na+-solvent co-intercalation to achieve high-performance sodium-ion batteries at subzero temperature. Chem. Eng. J. 430, 132750 (2022). https://doi.org/10.1016/j.cej.2021.132750
References
A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10(38), 2001972 (2020). https://doi.org/10.1002/aenm.202001972
X. Dong, Z.W. Guo, Z.Y. Guo, Y. Wang, Y. Xia, Organic batteries operated at −70°C. Joule 2(5), 902–913 (2018). https://doi.org/10.1016/j.joule.2018.01.017
Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4(7), 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
M.J. Lee, K. Lee, J. Lim, M. Li, S. Noda et al., Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism. Adv. Funct. Mater. 31(14), 2009397 (2021). https://doi.org/10.1002/adfm.202009397
J. Deng, W.B. Luo, S.L. Chou, H.K. Liu, S.X. Dou, Sodium-ion batteries: from academic research to practical commercialization. Adv. Energy Mater. 8(4), 1701428 (2018). https://doi.org/10.1002/aenm.201701428
T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120(14), 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463
W. Zhang, X. Sun, Y. Tang, H. Xia, Y. Zeng et al., Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures. J. Am. Chem. Soc. 141(36), 14038–14042 (2019). https://doi.org/10.1021/jacs.9b05531
L.F. Que, F.D. Yu, Y. Xia, L. Deng, K. Goh et al., Enhancing Na-ion storage at subzero temperature via interlayer confinement of Sn2+. ACS Nano 14(10), 13765–13774 (2020). https://doi.org/10.1021/acsnano.0c05925
X. Gao, X. Du, T.S. Mathis, M.M. Zhang, X.H. Wang et al., Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 11, 6160 (2020). https://doi.org/10.1038/s41467-020-19992-3
C.Y. Wang, G.S. Zhang, S.H. Ge, T. Xu, Y. Ji et al., Lithium-ion battery structure that self-heats at low temperatures. Nature 529(7587), 515–518 (2016). https://doi.org/10.1038/nature16502
X.S. Hu, Y.S. Zheng, D.A. Howey, H. Perez, A. Foley et al., Battery warm-up methodologies at subzero temperatures for automotive applications: recent advances and perspectives. Prog. Energy Combust. Sci. 77, 100806 (2020). https://doi.org/10.1016/j.pecs.2019.100806
J. Holoubek, H.D. Liu, Z.H. Wu, Y.J. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z
B. Liao, H.Y. Li, M.Q. Xu, L.D. Xing, Y.H. Liao et al., Designing low impedance interface films simultaneously on anode and cathode for high energy batteries. Adv. Energy Mater. 8(22), 1800802 (2018). https://doi.org/10.1002/aenm.201800802
M.C. Smart, B.L. Lucht, S. Dalavi, F.C. Krause, B.V. Ratnakumar, The effect of additives upon the performance of MCMB/LiNixCo1−xO2 Li-ion cells containing methyl butyrate-based wide operating temperature range electrolytes. J. Electrochem. Soc. 159(6), A739–A751 (2012). https://doi.org/10.1149/2.058206jes
Z.H. Lin, Q.B. Xia, W.L. Wang, W.S. Li, S.L. Chou, Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat 1(3), 376–389 (2019). https://doi.org/10.1002/inf2.12023
Y.X. Huang, L.Z. Zhao, L. Li, M. Xie, F. Wu et al., Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv. Mater. 31(21), 1808393 (2019). https://doi.org/10.1002/adma.201808393
C. Brissot, M. Rosso, J.N. Chazalviel, P. Baudry, S. Lascaud, In-situ study of dendritic growth in lithium/PEO-salt/lithium cells. Electrochim. Acta 43, 1569–1574 (1998). https://doi.org/10.1016/S0013-4686(97)10055-X
B. Lee, E. Paek, D. Mitlin, S.W. Lee, Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119(8), 5416–5460 (2019). https://doi.org/10.1021/acs.chemrev.8b00642
Y. Zhang, T.T. Zuo, J. Popovic, K. Lim, Y.X. Yin et al., Towards better Li metal anodes: challenges and strategies. Mater. Today 33, 56–74 (2020). https://doi.org/10.1016/j.mattod.2019.09.018
D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6(14), 11173–11179 (2014). https://doi.org/10.1021/am501144q
P. Ma, D. Fang, Y. Liu, Y. Shang, Y. Shi et al., MXene-based materials for electrochemical sodium-ion storage. Adv. Sci. 8(11), 2003185 (2021). https://doi.org/10.1002/advs.202003185
Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916 (2012). https://doi.org/10.1021/ja308463r
Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi et al., Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136(17), 6385–6394 (2014). https://doi.org/10.1021/ja501520b
M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
F. Song, J. Hu, G. Li, J. Wang, S. Chen et al., Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage. Nano-Micro Lett. 14, 37 (2021). https://doi.org/10.1007/s40820-021-00781-6
N. Zhao, F. Zhang, F. Zhan, D. Yi, Y. Yang et al., Fe3+-stabilized Ti3C2T MXene enables ultrastable Li-ion storage at low temperature. J. Mater. Sci. Technol. 67, 156–164 (2021). https://doi.org/10.1016/j.jmst.2020.06.037
X. Wang, J. Wang, J. Qin, X. Xie, R. Yang et al., Surface charge engineering for covalently assembling three-dimensional MXene network for all-climate sodium ion batteries. ACS Appl. Mater. Interfaces 12(35), 39181–39194 (2020). https://doi.org/10.1021/acsami.0c10605
Y. Wu, P. Nie, L. Wu, H. Dou, X. Zhang, 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chem. Eng. J. 334, 932–938 (2018). https://doi.org/10.1016/j.cej.2017.10.007
Y. Wang, C. Ma, W. Ma, W. Fan, Y. Sun et al., Enhanced low-temperature Li-ion storage in MXene titanium carbide by surface oxygen termination. 2D Mater. 6(4), 045025 (2019). https://doi.org/10.1088/2053-1583/ab30f9
N. Sun, Z. Guan, Q. Zhu, B. Anasori, Y. Gogotsi et al., Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 12, 89 (2020). https://doi.org/10.1007/s40820-020-00426-0
P. Zhang, R. Soomro, Z. Guan, N. Sun, B. Xu, 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater. 29, 163–171 (2020). https://doi.org/10.1016/j.ensm.2020.04.016
C. Lu, L. Yang, B. Yan, L. Sun, P. Zhang et al., Nitrogen-doped Ti3C2 MXene: mechanism investigation and electrochemical analysis. Adv. Funct. Mater. 30(47), 2000852 (2020). https://doi.org/10.1002/adfm.202000852
J. Zheng, D.C. Bock, T. Tang, Q. Zhao, J. Yin et al., Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal-substrate bonding. Nat. Energy 6(4), 398–406 (2021). https://doi.org/10.1038/s41560-021-00797-7
J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared structure design of mxene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11(3), 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668
J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019). https://doi.org/10.1002/adfm.201808107
J. Zhang, Q. Lei, Z. Ren, X. Zhu, J. Li et al., A superlattice-stabilized layered CuS anode for high-performance aqueous zinc-ion batteries. ACS Nano 15, 17748–17756 (2021). https://doi.org/10.1021/acsnano.1c05725
F. Zhang, X. Guo, P. Xiong, J. Zhang, J. Song et al., Interface engineering of MXene composite separator for high-performance Li-Se and Na-Se batteries. Adv. Energy Mater. 10(20), 2000446 (2020). https://doi.org/10.1002/aenm.202000446
J. Luo, X. Lu, E. Matios, C. Wang, H. Wang et al., Tunable MXene-derived 1D/2D hybrid nanoarchitectures as a stable matrix for dendrite-free and ultrahigh capacity sodium metal anode. Nano Lett. 20(10), 7700–7708 (2020). https://doi.org/10.1021/acs.nanolett.0c03215
O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
J. Hart, K. Hantanasirisakul, A. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
P. Wang, X. Lu, Y. Boyjoo, X. Wei, Y. Zhang et al., Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteries. J. Power Sources 451, 227756 (2020). https://doi.org/10.1016/j.jpowsour.2020.227756
W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 8(13), 1702485 (2018). https://doi.org/10.1002/aenm.201702485
Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu et al., Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368–376 (2017). https://doi.org/10.1016/j.nanoen.2017.06.009
N. Chen, Y. Zhou, S. Zhang, H. Huang, C. Zhang et al., Tailoring Ti3CNTx MXene via an acid molecular scissor. Nano Energy 85, 106007 (2021). https://doi.org/10.1016/j.nanoen.2021.106007
J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
Y. Tian, W. Que, Y. Luo, C. Yang, X. Yin et al., Surface nitrogen-modified 2D titanium carbide (MXene) with high energy density for aqueous supercapacitor applications. J. Mater. Chem. A 7(10), 5416–5425 (2019). https://doi.org/10.1039/c9ta00076c
Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang et al., Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10(9), 974–980 (2018). https://doi.org/10.1038/s41557-018-0092-x
X. Rui, X. Zhang, S. Xu, H. Tan, Y. Jiang et al., A low-temperature sodium-ion full battery: superb kinetics and cycling stability. Adv. Funct. Mater. 31(11), 2009458 (2020). https://doi.org/10.1002/adfm.202009458
Y.Y. Wang, B.H. Hou, J.Z. Guo, Q.L. Ning, W.L. Pang et al., An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv. Energy Mater. 8(18), 1703252 (2018). https://doi.org/10.1002/aenm.201703252
C. Chen, Y. Yang, X. Tang, R. Qiu, S. Wang et al., Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+ /K+ batteries in a wide temperature range. Small 15(10), 1804740 (2019). https://doi.org/10.1002/smll.201804740
L. Deng, K. Goh, F.D. Yu, Y. Xia, Y.S. Jiang et al., Self-optimizing weak solvation effects achieving faster low-temperature charge transfer kinetics for high-voltage Na3V2(PO4)2F3 cathode. Energy Storage Mater. 44, 82–92 (2022). https://doi.org/10.1016/j.ensm.2021.10.012
X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu et al., Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc. 137(7), 2715–2721 (2015). https://doi.org/10.1021/ja512820k
R. Zheng, H. Yu, X. Zhang, Y. Ding, M. Xia et al., A TiSe2-graphite dual ion battery: fast Na-ion insertion and excellent stability. Angew. Chem. Int. Ed. 60(34), 18430–18437 (2021). https://doi.org/10.1002/anie.202105439
C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan et al., Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015). https://doi.org/10.1038/ncomms7929
T. Liu, X. Zhang, M. Xia, H. Yu, N. Peng et al., Functional cation defects engineering in TiS2 for high-stability anode. Nano Energy 67, 104295 (2020). https://doi.org/10.1016/j.nanoen.2019.104295
L.F. Que, F.D. Yu, X.L. Sui, L. Zhao, J.G. Zhou et al., Thermal-induced interlayer defect engineering toward super high-performance sodium ion capacitors. Nano Energy 59, 17–25 (2019). https://doi.org/10.1016/j.nanoen.2019.02.030
N. Schulz, R. Hausbrand, C. Wittich, L. Dimesso, W. Jaegermann, XPS-surface analysis of SEI layers on Li-ion cathodes: part II. SEI-composition and formation inside composite electrodes. J. Electrochem. Soc. 165(5), A833–A846 (2018). https://doi.org/10.1149/2.0881803jes
K. Li, J. Zhang, D. Lin, D.W. Wang, B. Li et al., Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 10, 725 (2019). https://doi.org/10.1038/s41467-019-08506-5
Z. Tang, H. Wang, P.F. Wu, S.Y. Zhou, Y.C. Huang et al., Electrode-electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion battery. Angew. Chem. Int. Ed. 61(18), e202200475 (2022). https://doi.org/10.1002/anie.202200475
J. Luo, C. Fang, C. Jin, H. Yuan, O. Sheng et al., Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J. Mater. Chem. A 6(17), 7794–7806 (2018). https://doi.org/10.1039/c8ta02068j
X. Wang, T.S. Mathis, K. Li, Z. Lin, L. Vlcek et al., Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4(3), 241–248 (2019). https://doi.org/10.1038/s41560-019-0339-9
M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, MXene as a charge storage host. Acc. Chem. Res. 51(3), 591–599 (2018). https://doi.org/10.1021/acs.accounts.7b00481
D. Lin, K. Li, Q. Wang, L. Lyu, B. Li et al., Rate-independent and ultra-stable low-temperature sodium storage in pseudocapacitive TiO2 nanowires. J. Mater. Chem. A 7(33), 19297–19304 (2019). https://doi.org/10.1039/c9ta05039f
S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita et al., Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 10(3), 3334–3341 (2016). https://doi.org/10.1021/acsnano.5b06958
J. Holoubek, Y. Yin, M. Li, M. Yu, Y.S. Meng et al., Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature. Angew. Chem. Int. Ed. 58(52), 18892–18897 (2019). https://doi.org/10.1002/anie.201912167
J. Chen, Y. Peng, Y. Yin, Z. Fang, Y. Cao et al., A desolvation-free sodium dual-ion chemistry for high power density and extremely low temperature. Angew. Chem. Int. Ed. 60(44), 23858–23862 (2021). https://doi.org/10.1002/anie.202110501
M. Liu, L. Xing, K. Xu, H. Zhou, J. Lan et al., Deciphering the paradox between the co-intercalation of sodium-solvent into graphite and its irreversible capacity. Energy Storage Mater. 26, 32–39 (2020). https://doi.org/10.1016/j.ensm.2019.12.026
M.L. Divya, Y.S. Lee, V. Aravindan, Solvent co-intercalation: an emerging mechanism in Li-, Na-, and K-ion capacitors. ACS Energy Lett. 6(12), 4228–4244 (2021). https://doi.org/10.1021/acsenergylett.1c01801
Z. Li, Y. Zhang, J. Zhang, Y. Cao, J. Chen et al., Sodium-ion battery with a wide operation-temperature range from -70 to 100°C. Angew. Chem. Int. Ed. 61, e202116930 (2022). https://doi.org/10.1002/anie.202116930
M.Y. Sun, F.D. Yu, Y. Xia, L. Deng, Y.S. Jiang et al., Trigger Na+-solvent co-intercalation to achieve high-performance sodium-ion batteries at subzero temperature. Chem. Eng. J. 430, 132750 (2022). https://doi.org/10.1016/j.cej.2021.132750