Three-Dimensional Hierarchical Nanostructured Cu/Ni–Co Coating Electrode for Hydrogen Evolution Reaction in Alkaline Media
Corresponding Author: Dewei Chu
Nano-Micro Letters,
Vol. 7 No. 4 (2015), Article Number: 347-352
Abstract
In this work, three-dimensional hierarchical nickel–cobalt alloy coating for hydrogen evolution cathode was fabricated by electrodeposition processes. The coatings’ morphology evolves from sea cucumber-like nanostructure to caterpillar-like one with the increase of cobalt content. A large amount of nanometric “steps,” served as the active sites for hydrogen evolution reaction, were observed. According to Tafel polarization measurements, the exchange current density of the as-synthesized coating with hierarchical nanostructure was 21.9 times compared with that of flat nickel coating. In addition, the hierarchical coating also displayed good electrochemical stability from the galvanostatic test.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414(6861), 345–352 (2001). doi:10.1038/35104620
- S.H. Ahn, S.J. Hwang, S.J. Yoo, I. Choi, H.-J. Kim, J.H. Jang, S.W. Nam, T.-H. Lim, T. Lim, S.-K. Kim, Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. J. Mater. Chem. 22(30), 15153–15159 (2012). doi:10.1039/c2jm31439h
- P.-C. Chen, Y.-M. Chang, P.-W. Wu, Y.-F. Chiu, Fabrication of Ni nanowires for hydrogen evolution reaction in a neutral electrolyte. Int. J. Hydrog. Energy 34(16), 6596–6602 (2009). doi:10.1016/j.ijhydene.2009.05.126
- R. Solmaz, A. Döner, G. Kardaş, Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution. Int. J. Hydrog. Energy 35(19), 10045–10049 (2010). doi:10.1016/j.ijhydene.2010.07.145
- H. Zhang, C. Hu, S. Chen, K. Zhang, X. Wang, Synthesis of SnO2 nanostructures and their application for hydrogen evolution reaction. Catal. Lett. 142(6), 809–815 (2012). doi:10.1007/s10562-012-0826-0
- I. Herraiz-Cardona, E. Ortega, L. Vázquez-Gómez, V. Pérez-Herranz, Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction. Int. J. Hydrog. Energy 37(3), 2147–2156 (2012). doi:10.1016/j.ijhydene.2011.09.155
- D.-E. Zhang, X.-M. Ni, X.-J. Zhang, H.-G. Zheng, Synthesis and characterization of Ni–Co needle-like alloys in water-in-oil microemulsion. J. Magn. Magn. Mater. 302(2), 290–293 (2006). doi:10.1016/j.jmmm.2005.09.020
- G. Qiao, T. Jing, N. Wang, Y. Gao, X. Zhao, J. Zhou, W. Wang, High-speed jet electrodeposition and microstructure of nanocrystalline Ni–Co alloys. Electrochim. Acta 51(1), 85–92 (2005). doi:10.1016/j.electacta.2005.03.050
- X.-M. Liu, S.-Y. Fu, C.-J. Huang, Fabrication and characterization of spherical Co/Ni alloy particles. Mater. Lett. 59(28), 3791–3794 (2005). doi:10.1016/j.matlet.2005.06.057
- P.-L. Chen, W.-J. Huang, J.-K. Chang, C.-T. Kuo, F.-M. Pan, Fabrication and field emission characteristics of highly ordered titanium oxide nanodot arrays. Electrochem. Solid-State Lett. 8(10), H83–H86 (2005). doi:10.1149/1.2030489
- C.R. Sides, C.R. Martin, Nanostructured electrodes and the low-temperature performance of Li-lion batteries. Adv. Mater. 17(1), 125–128 (2005). doi:10.1002/adma.200400517
- A. Phuruangrat, D.J. Ham, S. Thongtem, J.S. Lee, Electrochemical hydrogen evolution over MoO3 nanowires produced by microwave-assisted hydrothermal reaction. Electrochem. Commun. 11(9), 1740–1743 (2009). doi:10.1016/j.elecom.2009.07.005
- N. Wang, T. Hang, H. Ling, A. Hu, M. Li, High-performance Si-based 3D Cu nanostructured electrode assembly for rechargeable lithium batteries. J. Mater. Chem. A (2015). doi:10.1039/C5TA01978H. (Advance Article)
- W. Zhang, Z. Yu, Z. Chen, M. Li, Preparation of super-hydrophobic Cu/Ni coating with micro-nano hierarchical structure. Mater. Lett. 67(1), 327–330 (2012). doi:10.1016/j.matlet.2011.09.114
- R. Sen, S. Das, K. Das, Influence of sodium saccharin on the microstructure of pulse electrodeposited Ni–CeO2 nanocomposite coating. J. Nanosci. Nanotechnol. 12(10), 7944–7949 (2012). doi:10.1166/jnn.2012.6654
- C. Fan, D. Piron, Study of anomalous nickel-cobalt electrodeposition with different electrolytes and current densities. Electrochim. Acta 41(10), 1713–1719 (1996). doi:10.1016/0013-4686(95)00488-2
- K.Y. Sasaki, J.B. Talbot, Electrodeposition of iron–group metals and binary alloys from sulfate baths. II. Modeling. J. Electrochem. Soc. 147(1), 189–197 (2000). doi:10.1149/1.1838375
- M. Holm, T. O’keefe, Electrolyte parameter effects in the electrowinning of nickel from sulfate electrolytes. Miner. Eng. 13(2), 193–204 (2000). doi:10.1016/S0892-6875(99)00165-X
- C. Lupi, D. Pilone, Electrodeposition of nickel–cobalt alloys: the effect of process parameters on energy consumption. Miner. Eng. 14(11), 1403–1410 (2001). doi:10.1016/S0892-6875(01)00154-6
- H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, In situ cobalt-cobalt oxide/n-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. JACS 137(7), 2688–2694 (2015). doi:10.1021/ja5127165
- N. Wang, T. Hang, S. Sangaraju, M. Li, Preparation and characterization of nickel-cobalt alloy nanostructures array fabricated by electrodeposition. Cryst. Eng. Comm. 16(30), 6937–6943 (2014). doi:10.1039/C4CE00565A
- T. Hang, H. Ling, A. Hu, M. Li, Growth mechanism and field emission properties of nickel nanocones array fabricated by one-step electrodeposition. J. Electrochem. Soc. 157(12), D624–D627 (2010). doi:10.1149/1.3499352
- H. Matsushima, T. Nishida, Y. Konishi, Y. Fukunaka, Y. Ito, K. Kuribayashi, Water electrolysis under microgravity: part 1. Experimental technique. Electrochim. Acta 48(28), 4119–4125 (2003). doi:10.1016/S0013-4686(03)00579-6
- N. Krstajić, V. Jović, L. Gajić-Krstajić, B. Jović, A. Antozzi, G. Martelli, Int. J. Hydrog. Energy 33(14), 3676–3687 (2008). doi:10.1016/j.ijhydene.2008.04.039
- R. Solmaz, A. Döner, G. Kardas, Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction. Electrochem. Commun. 10(12), 1909–1911 (2008). doi:10.1016/j.elecom.2008.10.011
References
B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414(6861), 345–352 (2001). doi:10.1038/35104620
S.H. Ahn, S.J. Hwang, S.J. Yoo, I. Choi, H.-J. Kim, J.H. Jang, S.W. Nam, T.-H. Lim, T. Lim, S.-K. Kim, Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. J. Mater. Chem. 22(30), 15153–15159 (2012). doi:10.1039/c2jm31439h
P.-C. Chen, Y.-M. Chang, P.-W. Wu, Y.-F. Chiu, Fabrication of Ni nanowires for hydrogen evolution reaction in a neutral electrolyte. Int. J. Hydrog. Energy 34(16), 6596–6602 (2009). doi:10.1016/j.ijhydene.2009.05.126
R. Solmaz, A. Döner, G. Kardaş, Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution. Int. J. Hydrog. Energy 35(19), 10045–10049 (2010). doi:10.1016/j.ijhydene.2010.07.145
H. Zhang, C. Hu, S. Chen, K. Zhang, X. Wang, Synthesis of SnO2 nanostructures and their application for hydrogen evolution reaction. Catal. Lett. 142(6), 809–815 (2012). doi:10.1007/s10562-012-0826-0
I. Herraiz-Cardona, E. Ortega, L. Vázquez-Gómez, V. Pérez-Herranz, Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction. Int. J. Hydrog. Energy 37(3), 2147–2156 (2012). doi:10.1016/j.ijhydene.2011.09.155
D.-E. Zhang, X.-M. Ni, X.-J. Zhang, H.-G. Zheng, Synthesis and characterization of Ni–Co needle-like alloys in water-in-oil microemulsion. J. Magn. Magn. Mater. 302(2), 290–293 (2006). doi:10.1016/j.jmmm.2005.09.020
G. Qiao, T. Jing, N. Wang, Y. Gao, X. Zhao, J. Zhou, W. Wang, High-speed jet electrodeposition and microstructure of nanocrystalline Ni–Co alloys. Electrochim. Acta 51(1), 85–92 (2005). doi:10.1016/j.electacta.2005.03.050
X.-M. Liu, S.-Y. Fu, C.-J. Huang, Fabrication and characterization of spherical Co/Ni alloy particles. Mater. Lett. 59(28), 3791–3794 (2005). doi:10.1016/j.matlet.2005.06.057
P.-L. Chen, W.-J. Huang, J.-K. Chang, C.-T. Kuo, F.-M. Pan, Fabrication and field emission characteristics of highly ordered titanium oxide nanodot arrays. Electrochem. Solid-State Lett. 8(10), H83–H86 (2005). doi:10.1149/1.2030489
C.R. Sides, C.R. Martin, Nanostructured electrodes and the low-temperature performance of Li-lion batteries. Adv. Mater. 17(1), 125–128 (2005). doi:10.1002/adma.200400517
A. Phuruangrat, D.J. Ham, S. Thongtem, J.S. Lee, Electrochemical hydrogen evolution over MoO3 nanowires produced by microwave-assisted hydrothermal reaction. Electrochem. Commun. 11(9), 1740–1743 (2009). doi:10.1016/j.elecom.2009.07.005
N. Wang, T. Hang, H. Ling, A. Hu, M. Li, High-performance Si-based 3D Cu nanostructured electrode assembly for rechargeable lithium batteries. J. Mater. Chem. A (2015). doi:10.1039/C5TA01978H. (Advance Article)
W. Zhang, Z. Yu, Z. Chen, M. Li, Preparation of super-hydrophobic Cu/Ni coating with micro-nano hierarchical structure. Mater. Lett. 67(1), 327–330 (2012). doi:10.1016/j.matlet.2011.09.114
R. Sen, S. Das, K. Das, Influence of sodium saccharin on the microstructure of pulse electrodeposited Ni–CeO2 nanocomposite coating. J. Nanosci. Nanotechnol. 12(10), 7944–7949 (2012). doi:10.1166/jnn.2012.6654
C. Fan, D. Piron, Study of anomalous nickel-cobalt electrodeposition with different electrolytes and current densities. Electrochim. Acta 41(10), 1713–1719 (1996). doi:10.1016/0013-4686(95)00488-2
K.Y. Sasaki, J.B. Talbot, Electrodeposition of iron–group metals and binary alloys from sulfate baths. II. Modeling. J. Electrochem. Soc. 147(1), 189–197 (2000). doi:10.1149/1.1838375
M. Holm, T. O’keefe, Electrolyte parameter effects in the electrowinning of nickel from sulfate electrolytes. Miner. Eng. 13(2), 193–204 (2000). doi:10.1016/S0892-6875(99)00165-X
C. Lupi, D. Pilone, Electrodeposition of nickel–cobalt alloys: the effect of process parameters on energy consumption. Miner. Eng. 14(11), 1403–1410 (2001). doi:10.1016/S0892-6875(01)00154-6
H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, In situ cobalt-cobalt oxide/n-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. JACS 137(7), 2688–2694 (2015). doi:10.1021/ja5127165
N. Wang, T. Hang, S. Sangaraju, M. Li, Preparation and characterization of nickel-cobalt alloy nanostructures array fabricated by electrodeposition. Cryst. Eng. Comm. 16(30), 6937–6943 (2014). doi:10.1039/C4CE00565A
T. Hang, H. Ling, A. Hu, M. Li, Growth mechanism and field emission properties of nickel nanocones array fabricated by one-step electrodeposition. J. Electrochem. Soc. 157(12), D624–D627 (2010). doi:10.1149/1.3499352
H. Matsushima, T. Nishida, Y. Konishi, Y. Fukunaka, Y. Ito, K. Kuribayashi, Water electrolysis under microgravity: part 1. Experimental technique. Electrochim. Acta 48(28), 4119–4125 (2003). doi:10.1016/S0013-4686(03)00579-6
N. Krstajić, V. Jović, L. Gajić-Krstajić, B. Jović, A. Antozzi, G. Martelli, Int. J. Hydrog. Energy 33(14), 3676–3687 (2008). doi:10.1016/j.ijhydene.2008.04.039
R. Solmaz, A. Döner, G. Kardas, Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction. Electrochem. Commun. 10(12), 1909–1911 (2008). doi:10.1016/j.elecom.2008.10.011