Interface Engineering of NixSy@MnOxHy Nanorods to Efficiently Enhance Overall-Water-Splitting Activity and Stability
Corresponding Author: Zhicong Shi
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 120
Abstract
Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid mass transfer, and strong structure stability for overall water splitting. Herein, an interface engineering coupled with shell-protection strategy was applied to construct three-dimensional (3D) core‐shell NixSy@MnOxHy heterostructure nanorods grown on nickel foam (NixSy@MnOxHy/NF) as a bifunctional electrocatalyst. NixSy@MnOxHy/NF was synthesized via a facile hydrothermal reaction followed by an electrodeposition process. The X-ray absorption fine structure spectra reveal that abundant Mn‐S bonds connect the heterostructure interfaces of NixSy@MnOxHy, leading to a strong electronic interaction, which improves the intrinsic activities of hydrogen evolution reaction and oxygen evolution reaction (OER). Besides, as an efficient protective shell, the MnOxHy dramatically inhibits the electrochemical corrosion of the electrocatalyst at high current densities, which remarkably enhances the stability at high potentials. Furthermore, the 3D nanorod structure not only exposes enriched active sites, but also accelerates the electrolyte diffusion and bubble desorption. Therefore, NixSy@MnOxHy/NF exhibits exceptional bifunctional activity and stability for overall water splitting, with low overpotentials of 326 and 356 mV for OER at 100 and 500 mA cm–2, respectively, along with high stability of 150 h at 100 mA cm–2. Furthermore, for overall water splitting, it presents a low cell voltage of 1.529 V at 10 mA cm–2, accompanied by excellent stability at 100 mA cm–2 for 100 h. This work sheds a light on exploring highly active and stable bifunctional electrocatalysts by the interface engineering coupled with shell-protection strategy.
Highlights:
1 Three-dimensional (3D) core‐shell heterostructured NixSy@MnOxHy nanorods grown on nickel foam (NixSy@MnOxHy/NF) were successfully fabricated via a simple hydrothermal reaction and a subsequent electrodeposition process.
2 The fabricated NixSy@MnOxHy/NF shows outstanding bifunctional activity and stability for hydrogen evolution reaction and oxygen evolution reaction, as well as overall‐water‐splitting performance.
3 The main origins are the interface engineering of NixSy@MnOxHy, the shell‐protection characteristic of MnOxHy, and the 3D open nanorod structure, which remarkably endow the electrocatalyst with high activity and stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.X. Zhao, J.N. Liu, J. Wang, D. Ren, B.Q. Li et al., Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 50(13), 7745–7778 (2021). https://doi.org/10.1039/d1cs00135c
- L. Yao, J. Lin, Y. Chen, X. Li, D. Wang et al., Supramolecular-mediated ball-in-ball porous carbon nanospheres for ultrafast energy storage. InfoMat (2021). https://doi.org/10.1002/inf2.12278
- W.J. Jiang, T. Tang, Y. Zhang, J.S. Hu, Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc. Chem. Res. 53(6), 1111–1123 (2020). https://doi.org/10.1021/acs.accounts.0c00127
- Z. Zhou, Z. Pei, L. Wei, S.L. Zhao, X. Jian et al., Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy Environ. Sci. 13(10), 3185–3206 (2020). https://doi.org/10.1039/d0ee01856b
- J. Chen, H. Chen, T. Yu, R. Li, Y. Wang et al., Recent advances in the understanding of the surface reconstruction of oxygen evolution electrocatalysts and materials development. Electrochem. Energy Rev. 4, 566–600 (2021). https://doi.org/10.1007/s41918-021-00104-8
- T. Zhao, Y. Wang, S. Karuturi, K. Catchpole, Q. Zhang et al., Design and operando/in situ characterization of precious-metal-free electrocatalysts for alkaline water splitting. Carbon Energy 2(4), 582–613 (2020). https://doi.org/10.1002/cey2.79
- W. Zhang, Y. Chao, W. Zhang, J. Zhou, F. Lv et al., Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 33(36), 2102576 (2021). https://doi.org/10.1002/adma.202102576
- H. Wu, C. Feng, L. Zhang, J. Zhang, D.P. Wilkinson, Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energy Rev. 4, 473–507 (2021). https://doi.org/10.1007/s41918-020-00086-z
- J.S. Chen, J. Ren, M. Shalom, T. Fellinger, M. Antonietti, Stainless steel mesh-supported NiS nanosheet array as highly efficient catalyst for oxygen evolution reaction. ACS Appl. Mater. Interfaces 8(8), 5509–5516 (2016). https://doi.org/10.1021/acsami.5b10099
- M. Tong, L. Wang, P. Yu, C. Tian, X. Liu et al., Ni3S2 nanosheets in situ epitaxially grown on nanorods as high active and stable homojunction electrocatalyst for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 6(2), 2474–2481 (2018). https://doi.org/10.1021/acssuschemeng.7b03915
- W. Zhou, X.J. Wu, X. Cao, X. Huang, C. Tan et al., Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 6(10), 2921–2924 (2013). https://doi.org/10.1039/C3EE41572D
- C. Karakaya, N. Solati, U. Savacı, E. Keleş, S. Turan et al., Mesoporous thin-film NiS2 as an idealized pre-electrocatalyst for a hydrogen evolution reaction. ACS Catal. 10(24), 15114–15122 (2020). https://doi.org/10.1021/acscatal.0c03094
- P. Wang, T. Wang, R. Qin, Z. Pu, C. Zhang et al., Swapping catalytic active sites from cationic Ni to anionic S in nickel sulfide enables more efficient alkaline hydrogen generation. Adv. Energy Mater. 12(8), 2103359 (2022). https://doi.org/10.1002/aenm.202103359
- Y. Wang, W. Qiu, E. Song, F. Gu, Z. Zheng et al., Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. Natl. Sci. Rev. 5, 327–341 (2017). https://doi.org/10.1093/nsr/nwx119
- Q. Xiong, Y. Wang, P.F. Liu, L.R. Zheng, G. Wang et al., Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv. Mater. 30(29), 1801450–1801456 (2018). https://doi.org/10.1002/adma.201801450
- H. Su, S. Song, S. Li, Y. Gao, L. Ge et al., High-valent bimetal Ni3S2/Co3S4 induced by Cu doping for bifunctional electrocatalytic water splitting. Appl. Catal. B Environ. 293, 120225 (2021). https://doi.org/10.1016/j.apcatb.2021.120225
- T. Tang, W.J. Jiang, S. Niu, N. Liu, H. Luo et al., Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 139(24), 8320–8328 (2017). https://doi.org/10.1021/jacs.7b03507
- T. Wu, E. Song, S. Zhang, M. Luo, C. Zhao et al., Engineering metallic heterostructure based on Ni3N and 2M-MoS2 for alkaline water electrolysis with industry-compatible current density and stability. Adv. Mater. 34(9), 2108505 (2021). https://doi.org/10.1002/adma.202108505
- P. Wang, J. Qi, C. Li, X. Chen, T. Wang et al., N-doped carbon nanotubes encapsulating Ni/MoN heterostructures grown on carbon cloth for overall water splitting. ChemElectroChem 7(3), 745–752 (2020). https://doi.org/10.1002/celc.202000023
- Y. Guo, P. Yuan, J. Zhang, H. Xia, F. Cheng et al., Co2P–CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn–air batteries driven water splitting. Adv. Funct. Mater. 28(51), 1805641 (2018). https://doi.org/10.1002/adfm.201805641
- L. Zhang, C. Lu, F. Ye, R. Pang, Y. Liu et al., Selenic acid etching assisted vacancy engineering for designing highly active electrocatalysts toward the oxygen evolution reaction. Adv. Mater. 33(14), 2007523–2007533 (2021). https://doi.org/10.1002/adma.202007523
- J. Duan, S. Chen, C.A. Ortiz-Ledon, M. Jaroniec, S.Z. Qiao, Phosphorus vacancies that boost electrocatalytic hydrogen evolution by two orders of magnitude. Angew. Chem. Int. Ed. 59(21), 8181–8186 (2020). https://doi.org/10.1002/anie.201914967
- P. Wang, J. Zhu, Z. Pu, R. Qin, C. Zhang et al., Interfacial engineering of Co nanops/Co2C nanowires boosts overall water splitting kinetics. Appl. Catal. B Environ. 296, 120334 (2021). https://doi.org/10.1016/j.apcatb.2021.120334
- S. Riyajuddin, K. Azmi, M. Pahuja, S. Kumar, T. Maruyama et al., Super-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nano-architecture as efficient electrocatalyst for overall water splitting. ACS Nano 15(3), 5586–5599 (2021). https://doi.org/10.1021/acsnano.1c00647
- Q. Zhang, W. Xiao, W.H. Guo, Y.X. Yang, J.L. Lei et al., Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self-supporting electrode for effective overall water splitting. Adv. Funct. Mater. 31(33), 2102117 (2021). https://doi.org/10.1002/adfm.202102117
- S. Jin, Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2(8), 1937–1938 (2017). https://doi.org/10.1021/acsenergylett.7b00679
- N. Kornienko, N. Heidary, G. Cibin, E. Reisner, Catalysis by design: development of a bifunctional water splitting catalyst through an operando measurement directed optimization cycle. Chem. Sci. 9(24), 5322–5333 (2018). https://doi.org/10.1039/c8sc01415a
- X. Wang, W. Li, D. Xiong, D.Y. Petrovykh, L. Liu, Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 26(23), 4067–4077 (2016). https://doi.org/10.1002/adfm.201505509
- X. Li, G.Q. Han, Y.R. Liu, B. Dong, W.H. Hu et al., NiSe@NiOOH core–shell hyacinth-like nanostructures on nickel foam synthesized by in situ electrochemical oxidation as an efficient electrocatalyst for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 8(31), 20057–20066 (2016). https://doi.org/10.1021/acsami.6b05597
- J. Deng, D. Deng, X. Bao, Robust catalysis on 2D materials encapsulating metals: concept, application, and perspective. Adv. Mater. 29(43), 1606967–1606989 (2017). https://doi.org/10.1002/adma.201606967
- P. Wang, Y. Luo, G. Zhang, M. Wu, Z. Chen et al., MnOx-decorated nickel-iron phosphides nanosheets: interface modifications for robust overall water splitting at ultra-high current densities. Small 18(7), 2105803 (2022). https://doi.org/10.1002/smll.202105803
- J. Deng, P. Ren, D. Deng, X. Bao, Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54(7), 2100–2104 (2015). https://doi.org/10.1002/anie.201409524
- P. Wang, J. Qi, C. Li, W. Li, T. Wang et al., Hierarchical CoNi2S4@NiMn-layered double hydroxide heterostructure nanoarrays on superhydrophilic carbon cloth for enhanced overall water splitting. Electrochim. Acta 345, 136247–136257 (2020). https://doi.org/10.1016/j.electacta.2020.136247
- Y. Hao, Y. Li, J. Wu, L. Meng, J. Wang et al., Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity. J. Am. Chem. Soc. 143(3), 1493–1502 (2021). https://doi.org/10.1021/jacs.0c11307
- K. Zhu, X. Zhu, W. Yang, Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem. Int. Ed. 58(5), 1252–1265 (2018). https://doi.org/10.1002/anie.201802923
- F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu et al., Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748–7759 (2018). https://doi.org/10.1021/jacs.8b04546
- B. Zhang, Y. Li, M. Valvo, L. Fan, Q. Daniel et al., Electrocatalytic water oxidation promoted by 3D nano-architectured turbostratic δ-MnOx on carbon nanotube. Chemsuschem 10(22), 4472–4478 (2017). https://doi.org/10.1002/cssc.201700824
- X. Long, Z. Chen, M. Ju, M. Sun, L. Jin et al., TM LDH meets birnessite: a 2D–2D hybrid catalyst with long-term stability for water oxidation at industrial operating conditions. Angew. Chem. Int. Ed. 60(17), 9699–9705 (2021). https://doi.org/10.1002/anie.202016064
- N.K. Chaudhari, H. Jin, B. Kim, K. Lee, Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 9(34), 12231–12247 (2017). https://doi.org/10.1039/C7NR04187J
- N. Jiang, Q. Tang, M. Sheng, B. You, D. Jiang et al., Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS2, and Ni3S2 nanops. Catal. Sci. Technol. 6(4), 1077–1084 (2016). https://doi.org/10.1039/C5CY01111F
- L. Zhang, Y. Zheng, J. Wang, Y. Geng, B. Zhang et al., Ni/Mo bimetallic-oxide-derived heterointerface-rich sulfide nanosheets with Co-doping for efficient alkaline hydrogen evolution by boosting volmer reaction. Small 17(10), 2006730 (2021). https://doi.org/10.1002/smll.202006730
- J. Yuan, X. Cheng, H. Wang, C. Lei, S. Pardiwala et al., A superaerophobic bimetallic selenides heterostructure for efficient industrial-level oxygen evolution at ultra-high current densities. Nano-Micro Lett. 12, 104 (2020). https://doi.org/10.1007/s40820-020-00442-0
- X. Luo, P. Ji, P. Wang, R. Cheng, D. Chen et al., Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 10(17), 1903891 (2020). https://doi.org/10.1002/aenm.201903891
- J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang et al., Synthesis of 3D hexagram-like cobalt-manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10, 6 (2017). https://doi.org/10.1007/s40820-017-0160-6
- M.P. Suryawanshi, U.V. Ghorpade, S.W. Shin, U.P. Suryawanshi, H.J. Shim et al., Facile, room temperature, electroless deposited (Fe1-x, Mnx)OOH nanosheets as advanced catalysts: the role of Mn incorporation. Small 14(30), 1801226–1801233 (2018). https://doi.org/10.1002/smll.201801226
- H. Abe, A. Murakami, S. Tsunekawa, T. Okada, T. Wakabayashi et al., Selective catalyst for oxygen evolution in neutral brine electrolysis: an oxygen-deficient manganese oxide film. ACS Catal. 11(11), 6390–6397 (2021). https://doi.org/10.1021/acscatal.0c05496
- B. Ravel, M. Newville, Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719
- F. Hartmann, M. Etter, G. Cibin, L. Liers, H. Terraschke et al., Superior sodium storage properties in the anode material NiCr2S4 for sodium-ion batteries: an X-ray diffraction, pair distribution function, and X-ray absorption study reveals a conversion mechanism via nickel extrusion. Adv. Mater. 33(44), 2101576 (2021). https://doi.org/10.1002/adma.202101576
- H. Funke, A.C. Scheinost, M. Chukalina, Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 71, 094110 (2005). https://doi.org/10.1103/PhysRevB.71.094110
- Y. Wang, L. Yan, K. Dastafkan, C. Zhao, X. Zhao et al., Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation. Adv. Mater. 33(8), 2006351–2006362 (2021). https://doi.org/10.1002/adma.202006351
- S. Wang, P. Yang, X. Sun, H. Xing, J. Hu et al., Synthesis of 3D heterostructure Co-doped Fe2P electrocatalyst for overall seawater electrolysis. Appl. Catal. B Environ. 297, 120386–120396 (2021). https://doi.org/10.1016/j.apcatb.2021.120386
- Z. Xu, S. Jin, M.H. Seo, X. Wang, Hierarchical Ni-Mo2C/N-doped carbon mott-schottky array for water electrolysis. Appl. Catal. B Environ. 292, 120168 (2021). https://doi.org/10.1016/j.apcatb.2021.120168
References
C.X. Zhao, J.N. Liu, J. Wang, D. Ren, B.Q. Li et al., Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 50(13), 7745–7778 (2021). https://doi.org/10.1039/d1cs00135c
L. Yao, J. Lin, Y. Chen, X. Li, D. Wang et al., Supramolecular-mediated ball-in-ball porous carbon nanospheres for ultrafast energy storage. InfoMat (2021). https://doi.org/10.1002/inf2.12278
W.J. Jiang, T. Tang, Y. Zhang, J.S. Hu, Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc. Chem. Res. 53(6), 1111–1123 (2020). https://doi.org/10.1021/acs.accounts.0c00127
Z. Zhou, Z. Pei, L. Wei, S.L. Zhao, X. Jian et al., Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy Environ. Sci. 13(10), 3185–3206 (2020). https://doi.org/10.1039/d0ee01856b
J. Chen, H. Chen, T. Yu, R. Li, Y. Wang et al., Recent advances in the understanding of the surface reconstruction of oxygen evolution electrocatalysts and materials development. Electrochem. Energy Rev. 4, 566–600 (2021). https://doi.org/10.1007/s41918-021-00104-8
T. Zhao, Y. Wang, S. Karuturi, K. Catchpole, Q. Zhang et al., Design and operando/in situ characterization of precious-metal-free electrocatalysts for alkaline water splitting. Carbon Energy 2(4), 582–613 (2020). https://doi.org/10.1002/cey2.79
W. Zhang, Y. Chao, W. Zhang, J. Zhou, F. Lv et al., Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 33(36), 2102576 (2021). https://doi.org/10.1002/adma.202102576
H. Wu, C. Feng, L. Zhang, J. Zhang, D.P. Wilkinson, Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energy Rev. 4, 473–507 (2021). https://doi.org/10.1007/s41918-020-00086-z
J.S. Chen, J. Ren, M. Shalom, T. Fellinger, M. Antonietti, Stainless steel mesh-supported NiS nanosheet array as highly efficient catalyst for oxygen evolution reaction. ACS Appl. Mater. Interfaces 8(8), 5509–5516 (2016). https://doi.org/10.1021/acsami.5b10099
M. Tong, L. Wang, P. Yu, C. Tian, X. Liu et al., Ni3S2 nanosheets in situ epitaxially grown on nanorods as high active and stable homojunction electrocatalyst for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 6(2), 2474–2481 (2018). https://doi.org/10.1021/acssuschemeng.7b03915
W. Zhou, X.J. Wu, X. Cao, X. Huang, C. Tan et al., Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 6(10), 2921–2924 (2013). https://doi.org/10.1039/C3EE41572D
C. Karakaya, N. Solati, U. Savacı, E. Keleş, S. Turan et al., Mesoporous thin-film NiS2 as an idealized pre-electrocatalyst for a hydrogen evolution reaction. ACS Catal. 10(24), 15114–15122 (2020). https://doi.org/10.1021/acscatal.0c03094
P. Wang, T. Wang, R. Qin, Z. Pu, C. Zhang et al., Swapping catalytic active sites from cationic Ni to anionic S in nickel sulfide enables more efficient alkaline hydrogen generation. Adv. Energy Mater. 12(8), 2103359 (2022). https://doi.org/10.1002/aenm.202103359
Y. Wang, W. Qiu, E. Song, F. Gu, Z. Zheng et al., Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. Natl. Sci. Rev. 5, 327–341 (2017). https://doi.org/10.1093/nsr/nwx119
Q. Xiong, Y. Wang, P.F. Liu, L.R. Zheng, G. Wang et al., Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv. Mater. 30(29), 1801450–1801456 (2018). https://doi.org/10.1002/adma.201801450
H. Su, S. Song, S. Li, Y. Gao, L. Ge et al., High-valent bimetal Ni3S2/Co3S4 induced by Cu doping for bifunctional electrocatalytic water splitting. Appl. Catal. B Environ. 293, 120225 (2021). https://doi.org/10.1016/j.apcatb.2021.120225
T. Tang, W.J. Jiang, S. Niu, N. Liu, H. Luo et al., Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 139(24), 8320–8328 (2017). https://doi.org/10.1021/jacs.7b03507
T. Wu, E. Song, S. Zhang, M. Luo, C. Zhao et al., Engineering metallic heterostructure based on Ni3N and 2M-MoS2 for alkaline water electrolysis with industry-compatible current density and stability. Adv. Mater. 34(9), 2108505 (2021). https://doi.org/10.1002/adma.202108505
P. Wang, J. Qi, C. Li, X. Chen, T. Wang et al., N-doped carbon nanotubes encapsulating Ni/MoN heterostructures grown on carbon cloth for overall water splitting. ChemElectroChem 7(3), 745–752 (2020). https://doi.org/10.1002/celc.202000023
Y. Guo, P. Yuan, J. Zhang, H. Xia, F. Cheng et al., Co2P–CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn–air batteries driven water splitting. Adv. Funct. Mater. 28(51), 1805641 (2018). https://doi.org/10.1002/adfm.201805641
L. Zhang, C. Lu, F. Ye, R. Pang, Y. Liu et al., Selenic acid etching assisted vacancy engineering for designing highly active electrocatalysts toward the oxygen evolution reaction. Adv. Mater. 33(14), 2007523–2007533 (2021). https://doi.org/10.1002/adma.202007523
J. Duan, S. Chen, C.A. Ortiz-Ledon, M. Jaroniec, S.Z. Qiao, Phosphorus vacancies that boost electrocatalytic hydrogen evolution by two orders of magnitude. Angew. Chem. Int. Ed. 59(21), 8181–8186 (2020). https://doi.org/10.1002/anie.201914967
P. Wang, J. Zhu, Z. Pu, R. Qin, C. Zhang et al., Interfacial engineering of Co nanops/Co2C nanowires boosts overall water splitting kinetics. Appl. Catal. B Environ. 296, 120334 (2021). https://doi.org/10.1016/j.apcatb.2021.120334
S. Riyajuddin, K. Azmi, M. Pahuja, S. Kumar, T. Maruyama et al., Super-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nano-architecture as efficient electrocatalyst for overall water splitting. ACS Nano 15(3), 5586–5599 (2021). https://doi.org/10.1021/acsnano.1c00647
Q. Zhang, W. Xiao, W.H. Guo, Y.X. Yang, J.L. Lei et al., Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self-supporting electrode for effective overall water splitting. Adv. Funct. Mater. 31(33), 2102117 (2021). https://doi.org/10.1002/adfm.202102117
S. Jin, Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2(8), 1937–1938 (2017). https://doi.org/10.1021/acsenergylett.7b00679
N. Kornienko, N. Heidary, G. Cibin, E. Reisner, Catalysis by design: development of a bifunctional water splitting catalyst through an operando measurement directed optimization cycle. Chem. Sci. 9(24), 5322–5333 (2018). https://doi.org/10.1039/c8sc01415a
X. Wang, W. Li, D. Xiong, D.Y. Petrovykh, L. Liu, Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 26(23), 4067–4077 (2016). https://doi.org/10.1002/adfm.201505509
X. Li, G.Q. Han, Y.R. Liu, B. Dong, W.H. Hu et al., NiSe@NiOOH core–shell hyacinth-like nanostructures on nickel foam synthesized by in situ electrochemical oxidation as an efficient electrocatalyst for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 8(31), 20057–20066 (2016). https://doi.org/10.1021/acsami.6b05597
J. Deng, D. Deng, X. Bao, Robust catalysis on 2D materials encapsulating metals: concept, application, and perspective. Adv. Mater. 29(43), 1606967–1606989 (2017). https://doi.org/10.1002/adma.201606967
P. Wang, Y. Luo, G. Zhang, M. Wu, Z. Chen et al., MnOx-decorated nickel-iron phosphides nanosheets: interface modifications for robust overall water splitting at ultra-high current densities. Small 18(7), 2105803 (2022). https://doi.org/10.1002/smll.202105803
J. Deng, P. Ren, D. Deng, X. Bao, Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54(7), 2100–2104 (2015). https://doi.org/10.1002/anie.201409524
P. Wang, J. Qi, C. Li, W. Li, T. Wang et al., Hierarchical CoNi2S4@NiMn-layered double hydroxide heterostructure nanoarrays on superhydrophilic carbon cloth for enhanced overall water splitting. Electrochim. Acta 345, 136247–136257 (2020). https://doi.org/10.1016/j.electacta.2020.136247
Y. Hao, Y. Li, J. Wu, L. Meng, J. Wang et al., Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity. J. Am. Chem. Soc. 143(3), 1493–1502 (2021). https://doi.org/10.1021/jacs.0c11307
K. Zhu, X. Zhu, W. Yang, Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem. Int. Ed. 58(5), 1252–1265 (2018). https://doi.org/10.1002/anie.201802923
F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu et al., Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748–7759 (2018). https://doi.org/10.1021/jacs.8b04546
B. Zhang, Y. Li, M. Valvo, L. Fan, Q. Daniel et al., Electrocatalytic water oxidation promoted by 3D nano-architectured turbostratic δ-MnOx on carbon nanotube. Chemsuschem 10(22), 4472–4478 (2017). https://doi.org/10.1002/cssc.201700824
X. Long, Z. Chen, M. Ju, M. Sun, L. Jin et al., TM LDH meets birnessite: a 2D–2D hybrid catalyst with long-term stability for water oxidation at industrial operating conditions. Angew. Chem. Int. Ed. 60(17), 9699–9705 (2021). https://doi.org/10.1002/anie.202016064
N.K. Chaudhari, H. Jin, B. Kim, K. Lee, Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 9(34), 12231–12247 (2017). https://doi.org/10.1039/C7NR04187J
N. Jiang, Q. Tang, M. Sheng, B. You, D. Jiang et al., Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS2, and Ni3S2 nanops. Catal. Sci. Technol. 6(4), 1077–1084 (2016). https://doi.org/10.1039/C5CY01111F
L. Zhang, Y. Zheng, J. Wang, Y. Geng, B. Zhang et al., Ni/Mo bimetallic-oxide-derived heterointerface-rich sulfide nanosheets with Co-doping for efficient alkaline hydrogen evolution by boosting volmer reaction. Small 17(10), 2006730 (2021). https://doi.org/10.1002/smll.202006730
J. Yuan, X. Cheng, H. Wang, C. Lei, S. Pardiwala et al., A superaerophobic bimetallic selenides heterostructure for efficient industrial-level oxygen evolution at ultra-high current densities. Nano-Micro Lett. 12, 104 (2020). https://doi.org/10.1007/s40820-020-00442-0
X. Luo, P. Ji, P. Wang, R. Cheng, D. Chen et al., Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 10(17), 1903891 (2020). https://doi.org/10.1002/aenm.201903891
J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang et al., Synthesis of 3D hexagram-like cobalt-manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10, 6 (2017). https://doi.org/10.1007/s40820-017-0160-6
M.P. Suryawanshi, U.V. Ghorpade, S.W. Shin, U.P. Suryawanshi, H.J. Shim et al., Facile, room temperature, electroless deposited (Fe1-x, Mnx)OOH nanosheets as advanced catalysts: the role of Mn incorporation. Small 14(30), 1801226–1801233 (2018). https://doi.org/10.1002/smll.201801226
H. Abe, A. Murakami, S. Tsunekawa, T. Okada, T. Wakabayashi et al., Selective catalyst for oxygen evolution in neutral brine electrolysis: an oxygen-deficient manganese oxide film. ACS Catal. 11(11), 6390–6397 (2021). https://doi.org/10.1021/acscatal.0c05496
B. Ravel, M. Newville, Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719
F. Hartmann, M. Etter, G. Cibin, L. Liers, H. Terraschke et al., Superior sodium storage properties in the anode material NiCr2S4 for sodium-ion batteries: an X-ray diffraction, pair distribution function, and X-ray absorption study reveals a conversion mechanism via nickel extrusion. Adv. Mater. 33(44), 2101576 (2021). https://doi.org/10.1002/adma.202101576
H. Funke, A.C. Scheinost, M. Chukalina, Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 71, 094110 (2005). https://doi.org/10.1103/PhysRevB.71.094110
Y. Wang, L. Yan, K. Dastafkan, C. Zhao, X. Zhao et al., Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation. Adv. Mater. 33(8), 2006351–2006362 (2021). https://doi.org/10.1002/adma.202006351
S. Wang, P. Yang, X. Sun, H. Xing, J. Hu et al., Synthesis of 3D heterostructure Co-doped Fe2P electrocatalyst for overall seawater electrolysis. Appl. Catal. B Environ. 297, 120386–120396 (2021). https://doi.org/10.1016/j.apcatb.2021.120386
Z. Xu, S. Jin, M.H. Seo, X. Wang, Hierarchical Ni-Mo2C/N-doped carbon mott-schottky array for water electrolysis. Appl. Catal. B Environ. 292, 120168 (2021). https://doi.org/10.1016/j.apcatb.2021.120168