Ultrasonic Plasma Engineering Toward Facile Synthesis of Single-Atom M-N4/N-Doped Carbon (M = Fe, Co) as Superior Oxygen Electrocatalyst in Rechargeable Zinc–Air Batteries
Corresponding Author: Oi Lun Li
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 60
Abstract
As bifunctional oxygen evolution/reduction electrocatalysts, transition-metal-based single-atom-doped nitrogen–carbon (NC) matrices are promising successors of the corresponding noble-metal-based catalysts, offering the advantages of ultrahigh atom utilization efficiency and surface active energy. However, the fabrication of such matrices (e.g., well-dispersed single-atom-doped M-N4/NCs) often requires numerous steps and tedious processes. Herein, ultrasonic plasma engineering allows direct carbonization in a precursor solution containing metal phthalocyanine and aniline. When combining with the dispersion effect of ultrasonic waves, we successfully fabricated uniform single-atom M-N4 (M = Fe, Co) carbon catalysts with a production rate as high as 10 mg min−1. The Co-N4/NC presented a bifunctional potential drop of ΔE = 0.79 V, outperforming the benchmark Pt/C-Ru/C catalyst (ΔE = 0.88 V) at the same catalyst loading. Theoretical calculations revealed that Co-N4 was the major active site with superior O2 adsorption–desorption mechanisms. In a practical Zn–air battery test, the air electrode coated with Co-N4/NC exhibited a specific capacity (762.8 mAh g−1) and power density (101.62 mW cm−2), exceeding those of Pt/C-Ru/C (700.8 mAh g−1 and 89.16 mW cm−2, respectively) at the same catalyst loading. Moreover, for Co-N4/NC, the potential difference increased from 1.16 to 1.47 V after 100 charge–discharge cycles. The proposed innovative and scalable strategy was concluded to be well suited for the fabrication of single-atom-doped carbons as promising bifunctional oxygen evolution/reduction electrocatalysts for metal–air batteries.
Highlights:
1 Single-atom M-N4/N-doped carbons (M = Fe, Co) prepared as OER/ORR catalysts.
2 Ultrasonication-assisted plasma engineering used for catalyst synthesis.
3 Co-N4/NC outperformed benchmark commercial catalysts in practical Zn–air battery test.
4 DFT calculations provided insights into the origin of superior ORR/OER performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.X. Han, X.Y. Meng, L. Lu, J.J. Bian, Z.P. Li et al., Single-atom Fe–Nx–C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 29, 1808872 (2019). https://doi.org/10.1002/adfm.201808872
- Q.Q. Zhang, J.Q. Guan, Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 30, 2000768 (2020). https://doi.org/10.1002/adfm.202000768
- X.J. Zheng, J. Wu, X.C. Cao, J. Abbott, C. Jin et al., N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B: Environ. 241, 442–451 (2019). https://doi.org/10.1016/j.apcatb.2018.09.054
- Y. Tong, P.Z. Chen, T.P. Zhou, K. Xu, W.S. Chu et al., A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: cobalt oxide nanoparticles strongly coupled to B,N-decorated graphene. Angew. Chem. Int. Ed. 56(25), 7121–7125 (2017). https://doi.org/10.1002/anie.201702430
- N.N. Xu, J.A. Wilson, Y.D. Wang, T.S. Su, Y.N. Wei et al., Flexible self-supported bi-metal electrode as a highly stable carbon- and binder-free cathode for large-scale solid-state zinc-air batteries. Appl. Catal. B: Environ. 272(5), 118953 (2020). https://doi.org/10.1016/j.apcatb.2020.118953
- C. Guan, A. Sumboja, H.J. Wu, W.N. Ren, X.M. Liu et al., Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 29, 1704117 (2017). https://doi.org/10.1002/adma.201704117
- Y.F. Yuan, K. Amine, J. Lu, R. Shahbazian-Yassar, Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 8, 1–14 (2017). https://doi.org/10.1038/ncomms15806
- S.H. Su, J.W. Miao, L.P. Zhang, J.J. Gao, H.M. Wang et al., An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Adv. Mater. 30, 1707261 (2018). https://doi.org/10.1002/adma.201707261
- L.Q. Li, J. Yang, H.B. Yang, L.P. Zhang, J.J. Shao et al., Anchoring Mn3O4 nanoparticles on oxygen functionalized carbon nanotubes as bifunctional catalyst for rechargeable zinc-air battery. ACS Appl. Energy Mater. 1(3), 963–969 (2018). https://doi.org/10.1021/acsaem.8b00009
- Z.H. Wang, H.H. Jin, T. Meng, K. Liao, W.Q. Meng et al., Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv. Funct. Mater. 28(39), 1802596 (2018). https://doi.org/10.1002/adfm.201802596
- H.G. Zhang, S.H. Wang, M.Y. Wang, Z.X. Feng, S. Karakalos et al., Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 139(40), 14143–14149 (2017). https://doi.org/10.1021/jacs.7b06514
- C.Z. Zhu, Q.R. Shi, B.Z. Xu, S.F. Fu, G. Wan et al., Hierarchically porous M–N–C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 8(29), 1801956 (2018). https://doi.org/10.1002/aenm.201801956
- S.S. Zheng, X.R. Li, B.Y. Yan, Q. Hu, Y.X. Xu et al., Transition-metal (Fe Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 7(18), 1602733 (2017). https://doi.org/10.1002/aenm.201602733
- M.F. Wang, T. Qian, J.Q. Zhou, C.L. Yan, An efficient bifunctional electrocatalyst for a zinc-air battery derived from Fe/N/C and bimetallic metal-organic framework composites. ACS Appl. Mater. Interfaces 9(6), 5213–5221 (2017). https://doi.org/10.1021/acsami.6b12197
- X.P. Han, X.F. Ling, D.S. Yu, D.Y. Xie, L.L. Li et al., Atomically dispersed binary Co–Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31, 1905622 (2019). https://doi.org/10.1002/adma.201905622
- X.P. Han, X.F. Ling, Y. Wang, T.Y. Ma, C. Zhong et al., Spatial isolation of zeolitic imidazole frameworks-derived cobalt catalysts: from nanoparticle, atomic cluster to single atom. Angew. Chem. Int. Ed. 58, 5359–5364 (2019). https://doi.org/10.1002/anie.2019011
- W.J. Zang, A. Sumboja, Y.Y. Ma, H. Zhang, Y. Wu et al., Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes. ACS Catal. 8, 8961–8969 (2018). https://doi.org/10.1021/acscatal.8b02556
- M.F. Craciun, S. Rogge, A.F. Morpurgo, Correlation between molecular orbitals and doping dependence of the electrical conductivity in electron-doped metal-phthalocyanine compounds. J. Am. Chem. Soc. 127(35), 12210–12211 (2005). https://doi.org/10.1021/ja054468j
- M.F. Craciun, S. Rogge, M.J.L. den Boer, S. Margadonna, K. Prassides et al., Electronic transport through electron-doped metal phthalocyanine materials. Adv. Mater. 18(3), 320–324 (2006). https://doi.org/10.1002/adma.200501268
- W.Z. Shen, W.B. Fan, Nitrogen-containing porous carbons: synthesis and application. J. Mater. Chem. A 1(4), 999–1013 (2013). https://doi.org/10.1039/C2TA00028H
- L. Yang, X.F. Zeng, W.C. Wang, D.P. Cao, Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 28(7), 1704537 (2018). https://doi.org/10.1002/adfm.201704537
- C.Z. Zhu, Q.R. Shi, B.Z. Xu, S.F. Fu, G. Wan et al., Hierachically porous M–N–C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 8, 1801956 (2018). https://doi.org/10.1002/aenm.201801956
- X.P. Han, W. Zhang, X.Y. Ma, C. Zhong, N.Q. Zhao et al., Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 31, 1808281 (2019). https://doi.org/10.1002/adma.201808281
- J. Zhao, Y. He, Z.L. Chen, X.R. Zheng, X.P. Han et al., Engineering the surface metal active sites of nickel cobalt oxide nanoplates toward enhanced oxygen electrocatalysis for Zn-air battery. ACS Appl. Mater. Interfaces 11, 4915–4921 (2018). https://doi.org/10.1021/acsami.8b16473
- Y.Q. Wang, L. Tao, Z.H. Xiao, R. Chen, Z.Q. Jiang et al., 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv. Funct. Mater. 28(11), 1705356 (2018). https://doi.org/10.1002/adfm.201705356
- T.T. Wang, Z.K. Kou, S.C. Mu, J.P. Liu, D.P. He et al., 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 28(5), 1705048 (2018). https://doi.org/10.1002/adfm.201705048
- E. Lam, J.H.T. Luong, Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal. 4(10), 3393–3410 (2014). https://doi.org/10.1021/cs5008393
- M.M. Liu, L.L. Wang, K.N. Zhao, S.S. Shi, Q.S. Shao et al., Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 12, 2890–2923 (2019). https://doi.org/10.1039/C9EE01722D
- J. Kang, O.L. Li, N. Saito, Synthesis of structure-controlled carbon nano spheres by solution plasma process. Carbon 60, 292–298 (2013). https://doi.org/10.1016/j.carbon.2013.04.040
- G. Panomsuwan, S. Chiba, Y. Kaneko, N. Saito, T. Ishizaki, In situ solution plasma synthesis of nitrogen-doped carbon nanoparticles as metal-free electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2, 18677–18686 (2014). https://doi.org/10.1039/C4TA03010A
- K. Chen, S.H. Kim, R. Rajendiran, K. Prabakar, G.Z. Li et al., Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi3 intermetallic nanoparticles doped N-doped carbon for high-performance rechargeable Zn-air battery. J. Colloid Interface Sci. 582(15), 977–990 (2021). https://doi.org/10.1016/j.jcis.2020.08.101
- S. Lee, U. Heo, M.A. Mratescu, T. Ueno, N. Saito, Solution plasma synthesis of a boron–carbon–nitrogen catalyst with a controllable bond structure. Phys. Chem. Chem. Phys. 19, 15264–15272 (2017). https://doi.org/10.1039/C6CP06063C
- O.L. Li, H. Lee, T. Ishizaki, Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems. Jpn. J. Appl. Phys. 57, 0102A2 (2018). https://doi.org/10.7567/JJAP.57.0102A2
- T. Morishita, T. Ueno, G. Panomsuwan, J. Hieda, A. Yoshida et al., Fastest formation routes of nanocarbons in solution plasma processes. Sci. Rep. 6, 36880–36892 (2016). https://doi.org/10.1038/srep36880
- P. Mohanty, R. Mahapatra, P. Padhi, C.H.V.V. Ramana, D.K. Mishra, Ultrasonic cavitation: An approach to synthesize uniformly dispersed metal matrix nanocomposites—A review. Nano-Struct. Nano-Objects 23, 100475 (2020). https://doi.org/10.1016/j.nanoso.2020.100475
- M.J. Chen, Y.H. He, J.S. Spendelow, G. Wu, Atomically dispersed metal catalysts for oxygen reduction. ACS Energy Lett. 4(7), 1619–1633 (2019). https://doi.org/10.1021/acsenergylett.9b00804
- Y. Wang, H. Yuan, Y.F. Li, Z.F. Chen, Two-dimensional iron-phthalocyanine (Fe–Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study. Nanoscale 7, 11633–11641 (2015). https://doi.org/10.1039/C5NR00302D
- Y. Peng, B.Z. Lu, S.W. Chen, Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 30, 1801995 (2018). https://doi.org/10.1002/adma.201801995
- H.L. Fei, J.C. Dong, Y.X. Feng, C.S. Allen, C.Z. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
- F. Ghani, J. Kristen, H. Riegler, Solubility properties of unsubstituted metal phthalocyanines in different types of solvents. J. Chem. Eng. Data 57(2), 439–449 (2012). https://doi.org/10.1021/je2010215
- B. Ravel, M. Newville, A THENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719
- G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave bases set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992). https://doi.org/10.1103/PhysRevB.46.6671
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- M. Methfessel, A.T. Paxton, High-precision sampling for brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989). https://doi.org/10.1103/PhysRevB.40.3616
- P.T. Liu, D.Q. Gao, W. Xiao, L. Ma, K. Sun et al., Self powered water-splitting devices by core–shell NiFe@ N-graphite-based Zn-air batteries. Adv. Funct. Mater. 28(14), 1706928 (2018). https://doi.org/10.1002/adfm.201706928
- Y.L. Zhang, Z.J. Mu, C. Yang, Z.K. Xu, S. Zhang et al., Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 28(38), 1707578 (2018). https://doi.org/10.1002/adfm.201707578
- X.Y. Qiu, X.H. Yan, H. Pang, J.C. Wang, D.M. Sun et al., Isolated Fe single atomic sites anchored on highly steady hollow graphene nanospheres as an efficient electrocatalyst for the oxygen reduction reaction. Adv. Sci. 6(2), 1801103 (2019). https://doi.org/10.1002/advs.201801103
- M. Li, S.J. Wu, X.Y. Yang, J. Hu, L. Peng et al., Highly efficient single atom cobalt catalyst for selective oxidation of alcohols. Appl. Catal. A Gen. 543(5), 61–66 (2017). https://doi.org/10.1016/j.apcata.2017.06.018
- Y. Pan, S.J. Liu, K. Sun, X. Chen, B. Wang et al., A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe–N4 catalytic site: a superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem. Int. Ed. 57(28), 8614–8618 (2018). https://doi.org/10.1002/anie.201804349
- L. Yang, L. Shi, D. Wang, Y.L. Lv, D.P. Cao, Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 50, 691–698 (2018). https://doi.org/10.1016/j.nanoen.2018.06.023
- K. Kim, T. Kang, M. Kim, J. Kim, Three-dimensional entangled and twisted structures of nitrogen doped poly-(1,4-diethynylbenzene) chain combined with cobalt single atom as a highly efficient bifunctional electrocatalyst. Appl. Catal. B: Environ. 275, 119107 (2020). https://doi.org/10.1016/j.apcatb.2020.119107
- K. Yuan, D. Lützenkirchen-Hecht, L.B. Li, L. Shuai, Y.Z. Li et al., Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 142(5), 2404–2412 (2020). https://doi.org/10.1021/jacs.9b11852
- K. Yuan, S. Sfaelou, M. Qiu, D. Lützenkirchen-Hecht, X.D. Zhuang et al., Synergetic contribution of boron and Fe–Nx species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett. 3(1), 252–260 (2018). https://doi.org/10.1021/acsenergylett.7b01188
- C.C. Hou, L.L. Zou, L.M. Sun, K.X. Zhang, Z. Liu et al., Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 132, 7454–7459 (2020). https://doi.org/10.1002/ange.202002665
- N.C. Cheng, L. Zhang, K. Doyle-Davis, X.L. Sun, Single-atom catalysts: from design to application. Electrochem. Energy Rev. 2, 539–573 (2019). https://doi.org/10.1007/s41918-019-00050-6
- N.C. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
- H.J. Qiu, Y. Ito, W.T. Cong, Y.W. Tan, P. Liu et al., Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54, 14031–14035 (2015). https://doi.org/10.1002/anie.201507381
- C. Gao, S.M. Chen, Y. Wang, J.W. Wang, X.S. Zheng et al., Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: the role of electron transfer. Adv. Mater. 30, 1704624 (2018). https://doi.org/10.1002/adma.201704624
- H.L. Fei, J.C. Dong, M.J. Arellano-Jimenez, G.L. Ye, N.D. Kim et al., Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). https://doi.org/10.1038/ncomms9668
- W.G. Liu, L.L. Zhang, W.S. Yan, X.Y. Liu, X.F. Yang et al., Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chen. Sci. 7, 5758–5764 (2016). https://doi.org/10.1039/C6SC02105K
- A.J. Han, W.X. Chen, S.L. Zhang, M.L. Zhang, Y.H. Han et al., A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts. Adv. Mater. 30, 1706508 (2018). https://doi.org/10.1002/adma.201706508
- Y. Cheng, S.Y. Zhao, B. Johannessen, J.P. Veder, M. Saunders et al., Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 30, 1706287 (2018). https://doi.org/10.1002/adma.201706287
- X.L. Zhang, Z.S. Lu, Z.X. Yang, Single non-noble-metal cobalt atom stabilized by pyridinic vacancy graphene: an efficient catalyst for CO oxidation. J. Mol. Catal. A: Chem. 417, 28–35 (2016). https://doi.org/10.1016/j.molcata.2016.03.008
- W.H. Lee, W.-J. Ko, J.-Y. Kim, B.K. Min, Y.J. Hwang et al., Single-atom catalysts for the oxygen evolution reaction: recent developments and future perspectives. Chem. Comm. 56, 12687 (2020). https://doi.org/10.1039/D0CC04752J
- P. Li, M. Wang, X. Duan, L. Zheng, X. Chen et al., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Comm. 10, 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0
- J.B. Wu, H. Zhou, Q. Li, M. Chen, J. Wan et al., Densely populated isolated single Co–N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 9, 1900149 (2019). https://doi.org/10.1002/aenm.201900149
- S. Kattel, G.F. Wang, Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 5(3), 452–456 (2014). https://doi.org/10.1021/jz402717r
- F.L. Meng, H.X. Zhong, D. Bao, J.M. Yan, X.B. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
References
J.X. Han, X.Y. Meng, L. Lu, J.J. Bian, Z.P. Li et al., Single-atom Fe–Nx–C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 29, 1808872 (2019). https://doi.org/10.1002/adfm.201808872
Q.Q. Zhang, J.Q. Guan, Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 30, 2000768 (2020). https://doi.org/10.1002/adfm.202000768
X.J. Zheng, J. Wu, X.C. Cao, J. Abbott, C. Jin et al., N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B: Environ. 241, 442–451 (2019). https://doi.org/10.1016/j.apcatb.2018.09.054
Y. Tong, P.Z. Chen, T.P. Zhou, K. Xu, W.S. Chu et al., A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: cobalt oxide nanoparticles strongly coupled to B,N-decorated graphene. Angew. Chem. Int. Ed. 56(25), 7121–7125 (2017). https://doi.org/10.1002/anie.201702430
N.N. Xu, J.A. Wilson, Y.D. Wang, T.S. Su, Y.N. Wei et al., Flexible self-supported bi-metal electrode as a highly stable carbon- and binder-free cathode for large-scale solid-state zinc-air batteries. Appl. Catal. B: Environ. 272(5), 118953 (2020). https://doi.org/10.1016/j.apcatb.2020.118953
C. Guan, A. Sumboja, H.J. Wu, W.N. Ren, X.M. Liu et al., Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 29, 1704117 (2017). https://doi.org/10.1002/adma.201704117
Y.F. Yuan, K. Amine, J. Lu, R. Shahbazian-Yassar, Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 8, 1–14 (2017). https://doi.org/10.1038/ncomms15806
S.H. Su, J.W. Miao, L.P. Zhang, J.J. Gao, H.M. Wang et al., An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Adv. Mater. 30, 1707261 (2018). https://doi.org/10.1002/adma.201707261
L.Q. Li, J. Yang, H.B. Yang, L.P. Zhang, J.J. Shao et al., Anchoring Mn3O4 nanoparticles on oxygen functionalized carbon nanotubes as bifunctional catalyst for rechargeable zinc-air battery. ACS Appl. Energy Mater. 1(3), 963–969 (2018). https://doi.org/10.1021/acsaem.8b00009
Z.H. Wang, H.H. Jin, T. Meng, K. Liao, W.Q. Meng et al., Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv. Funct. Mater. 28(39), 1802596 (2018). https://doi.org/10.1002/adfm.201802596
H.G. Zhang, S.H. Wang, M.Y. Wang, Z.X. Feng, S. Karakalos et al., Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 139(40), 14143–14149 (2017). https://doi.org/10.1021/jacs.7b06514
C.Z. Zhu, Q.R. Shi, B.Z. Xu, S.F. Fu, G. Wan et al., Hierarchically porous M–N–C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 8(29), 1801956 (2018). https://doi.org/10.1002/aenm.201801956
S.S. Zheng, X.R. Li, B.Y. Yan, Q. Hu, Y.X. Xu et al., Transition-metal (Fe Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 7(18), 1602733 (2017). https://doi.org/10.1002/aenm.201602733
M.F. Wang, T. Qian, J.Q. Zhou, C.L. Yan, An efficient bifunctional electrocatalyst for a zinc-air battery derived from Fe/N/C and bimetallic metal-organic framework composites. ACS Appl. Mater. Interfaces 9(6), 5213–5221 (2017). https://doi.org/10.1021/acsami.6b12197
X.P. Han, X.F. Ling, D.S. Yu, D.Y. Xie, L.L. Li et al., Atomically dispersed binary Co–Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31, 1905622 (2019). https://doi.org/10.1002/adma.201905622
X.P. Han, X.F. Ling, Y. Wang, T.Y. Ma, C. Zhong et al., Spatial isolation of zeolitic imidazole frameworks-derived cobalt catalysts: from nanoparticle, atomic cluster to single atom. Angew. Chem. Int. Ed. 58, 5359–5364 (2019). https://doi.org/10.1002/anie.2019011
W.J. Zang, A. Sumboja, Y.Y. Ma, H. Zhang, Y. Wu et al., Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes. ACS Catal. 8, 8961–8969 (2018). https://doi.org/10.1021/acscatal.8b02556
M.F. Craciun, S. Rogge, A.F. Morpurgo, Correlation between molecular orbitals and doping dependence of the electrical conductivity in electron-doped metal-phthalocyanine compounds. J. Am. Chem. Soc. 127(35), 12210–12211 (2005). https://doi.org/10.1021/ja054468j
M.F. Craciun, S. Rogge, M.J.L. den Boer, S. Margadonna, K. Prassides et al., Electronic transport through electron-doped metal phthalocyanine materials. Adv. Mater. 18(3), 320–324 (2006). https://doi.org/10.1002/adma.200501268
W.Z. Shen, W.B. Fan, Nitrogen-containing porous carbons: synthesis and application. J. Mater. Chem. A 1(4), 999–1013 (2013). https://doi.org/10.1039/C2TA00028H
L. Yang, X.F. Zeng, W.C. Wang, D.P. Cao, Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 28(7), 1704537 (2018). https://doi.org/10.1002/adfm.201704537
C.Z. Zhu, Q.R. Shi, B.Z. Xu, S.F. Fu, G. Wan et al., Hierachically porous M–N–C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 8, 1801956 (2018). https://doi.org/10.1002/aenm.201801956
X.P. Han, W. Zhang, X.Y. Ma, C. Zhong, N.Q. Zhao et al., Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 31, 1808281 (2019). https://doi.org/10.1002/adma.201808281
J. Zhao, Y. He, Z.L. Chen, X.R. Zheng, X.P. Han et al., Engineering the surface metal active sites of nickel cobalt oxide nanoplates toward enhanced oxygen electrocatalysis for Zn-air battery. ACS Appl. Mater. Interfaces 11, 4915–4921 (2018). https://doi.org/10.1021/acsami.8b16473
Y.Q. Wang, L. Tao, Z.H. Xiao, R. Chen, Z.Q. Jiang et al., 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv. Funct. Mater. 28(11), 1705356 (2018). https://doi.org/10.1002/adfm.201705356
T.T. Wang, Z.K. Kou, S.C. Mu, J.P. Liu, D.P. He et al., 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 28(5), 1705048 (2018). https://doi.org/10.1002/adfm.201705048
E. Lam, J.H.T. Luong, Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal. 4(10), 3393–3410 (2014). https://doi.org/10.1021/cs5008393
M.M. Liu, L.L. Wang, K.N. Zhao, S.S. Shi, Q.S. Shao et al., Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 12, 2890–2923 (2019). https://doi.org/10.1039/C9EE01722D
J. Kang, O.L. Li, N. Saito, Synthesis of structure-controlled carbon nano spheres by solution plasma process. Carbon 60, 292–298 (2013). https://doi.org/10.1016/j.carbon.2013.04.040
G. Panomsuwan, S. Chiba, Y. Kaneko, N. Saito, T. Ishizaki, In situ solution plasma synthesis of nitrogen-doped carbon nanoparticles as metal-free electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2, 18677–18686 (2014). https://doi.org/10.1039/C4TA03010A
K. Chen, S.H. Kim, R. Rajendiran, K. Prabakar, G.Z. Li et al., Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi3 intermetallic nanoparticles doped N-doped carbon for high-performance rechargeable Zn-air battery. J. Colloid Interface Sci. 582(15), 977–990 (2021). https://doi.org/10.1016/j.jcis.2020.08.101
S. Lee, U. Heo, M.A. Mratescu, T. Ueno, N. Saito, Solution plasma synthesis of a boron–carbon–nitrogen catalyst with a controllable bond structure. Phys. Chem. Chem. Phys. 19, 15264–15272 (2017). https://doi.org/10.1039/C6CP06063C
O.L. Li, H. Lee, T. Ishizaki, Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems. Jpn. J. Appl. Phys. 57, 0102A2 (2018). https://doi.org/10.7567/JJAP.57.0102A2
T. Morishita, T. Ueno, G. Panomsuwan, J. Hieda, A. Yoshida et al., Fastest formation routes of nanocarbons in solution plasma processes. Sci. Rep. 6, 36880–36892 (2016). https://doi.org/10.1038/srep36880
P. Mohanty, R. Mahapatra, P. Padhi, C.H.V.V. Ramana, D.K. Mishra, Ultrasonic cavitation: An approach to synthesize uniformly dispersed metal matrix nanocomposites—A review. Nano-Struct. Nano-Objects 23, 100475 (2020). https://doi.org/10.1016/j.nanoso.2020.100475
M.J. Chen, Y.H. He, J.S. Spendelow, G. Wu, Atomically dispersed metal catalysts for oxygen reduction. ACS Energy Lett. 4(7), 1619–1633 (2019). https://doi.org/10.1021/acsenergylett.9b00804
Y. Wang, H. Yuan, Y.F. Li, Z.F. Chen, Two-dimensional iron-phthalocyanine (Fe–Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study. Nanoscale 7, 11633–11641 (2015). https://doi.org/10.1039/C5NR00302D
Y. Peng, B.Z. Lu, S.W. Chen, Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 30, 1801995 (2018). https://doi.org/10.1002/adma.201801995
H.L. Fei, J.C. Dong, Y.X. Feng, C.S. Allen, C.Z. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
F. Ghani, J. Kristen, H. Riegler, Solubility properties of unsubstituted metal phthalocyanines in different types of solvents. J. Chem. Eng. Data 57(2), 439–449 (2012). https://doi.org/10.1021/je2010215
B. Ravel, M. Newville, A THENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719
G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave bases set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992). https://doi.org/10.1103/PhysRevB.46.6671
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
M. Methfessel, A.T. Paxton, High-precision sampling for brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989). https://doi.org/10.1103/PhysRevB.40.3616
P.T. Liu, D.Q. Gao, W. Xiao, L. Ma, K. Sun et al., Self powered water-splitting devices by core–shell NiFe@ N-graphite-based Zn-air batteries. Adv. Funct. Mater. 28(14), 1706928 (2018). https://doi.org/10.1002/adfm.201706928
Y.L. Zhang, Z.J. Mu, C. Yang, Z.K. Xu, S. Zhang et al., Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 28(38), 1707578 (2018). https://doi.org/10.1002/adfm.201707578
X.Y. Qiu, X.H. Yan, H. Pang, J.C. Wang, D.M. Sun et al., Isolated Fe single atomic sites anchored on highly steady hollow graphene nanospheres as an efficient electrocatalyst for the oxygen reduction reaction. Adv. Sci. 6(2), 1801103 (2019). https://doi.org/10.1002/advs.201801103
M. Li, S.J. Wu, X.Y. Yang, J. Hu, L. Peng et al., Highly efficient single atom cobalt catalyst for selective oxidation of alcohols. Appl. Catal. A Gen. 543(5), 61–66 (2017). https://doi.org/10.1016/j.apcata.2017.06.018
Y. Pan, S.J. Liu, K. Sun, X. Chen, B. Wang et al., A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe–N4 catalytic site: a superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem. Int. Ed. 57(28), 8614–8618 (2018). https://doi.org/10.1002/anie.201804349
L. Yang, L. Shi, D. Wang, Y.L. Lv, D.P. Cao, Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 50, 691–698 (2018). https://doi.org/10.1016/j.nanoen.2018.06.023
K. Kim, T. Kang, M. Kim, J. Kim, Three-dimensional entangled and twisted structures of nitrogen doped poly-(1,4-diethynylbenzene) chain combined with cobalt single atom as a highly efficient bifunctional electrocatalyst. Appl. Catal. B: Environ. 275, 119107 (2020). https://doi.org/10.1016/j.apcatb.2020.119107
K. Yuan, D. Lützenkirchen-Hecht, L.B. Li, L. Shuai, Y.Z. Li et al., Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 142(5), 2404–2412 (2020). https://doi.org/10.1021/jacs.9b11852
K. Yuan, S. Sfaelou, M. Qiu, D. Lützenkirchen-Hecht, X.D. Zhuang et al., Synergetic contribution of boron and Fe–Nx species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett. 3(1), 252–260 (2018). https://doi.org/10.1021/acsenergylett.7b01188
C.C. Hou, L.L. Zou, L.M. Sun, K.X. Zhang, Z. Liu et al., Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 132, 7454–7459 (2020). https://doi.org/10.1002/ange.202002665
N.C. Cheng, L. Zhang, K. Doyle-Davis, X.L. Sun, Single-atom catalysts: from design to application. Electrochem. Energy Rev. 2, 539–573 (2019). https://doi.org/10.1007/s41918-019-00050-6
N.C. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
H.J. Qiu, Y. Ito, W.T. Cong, Y.W. Tan, P. Liu et al., Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54, 14031–14035 (2015). https://doi.org/10.1002/anie.201507381
C. Gao, S.M. Chen, Y. Wang, J.W. Wang, X.S. Zheng et al., Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: the role of electron transfer. Adv. Mater. 30, 1704624 (2018). https://doi.org/10.1002/adma.201704624
H.L. Fei, J.C. Dong, M.J. Arellano-Jimenez, G.L. Ye, N.D. Kim et al., Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). https://doi.org/10.1038/ncomms9668
W.G. Liu, L.L. Zhang, W.S. Yan, X.Y. Liu, X.F. Yang et al., Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chen. Sci. 7, 5758–5764 (2016). https://doi.org/10.1039/C6SC02105K
A.J. Han, W.X. Chen, S.L. Zhang, M.L. Zhang, Y.H. Han et al., A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts. Adv. Mater. 30, 1706508 (2018). https://doi.org/10.1002/adma.201706508
Y. Cheng, S.Y. Zhao, B. Johannessen, J.P. Veder, M. Saunders et al., Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 30, 1706287 (2018). https://doi.org/10.1002/adma.201706287
X.L. Zhang, Z.S. Lu, Z.X. Yang, Single non-noble-metal cobalt atom stabilized by pyridinic vacancy graphene: an efficient catalyst for CO oxidation. J. Mol. Catal. A: Chem. 417, 28–35 (2016). https://doi.org/10.1016/j.molcata.2016.03.008
W.H. Lee, W.-J. Ko, J.-Y. Kim, B.K. Min, Y.J. Hwang et al., Single-atom catalysts for the oxygen evolution reaction: recent developments and future perspectives. Chem. Comm. 56, 12687 (2020). https://doi.org/10.1039/D0CC04752J
P. Li, M. Wang, X. Duan, L. Zheng, X. Chen et al., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Comm. 10, 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0
J.B. Wu, H. Zhou, Q. Li, M. Chen, J. Wan et al., Densely populated isolated single Co–N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 9, 1900149 (2019). https://doi.org/10.1002/aenm.201900149
S. Kattel, G.F. Wang, Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 5(3), 452–456 (2014). https://doi.org/10.1021/jz402717r
F.L. Meng, H.X. Zhong, D. Bao, J.M. Yan, X.B. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046