Nanocrystalline Iron Pyrophosphate-Regulated Amorphous Phosphate Overlayer for Enhancing Solar Water Oxidation
Corresponding Author: Jung Kyu Kim
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 209
Abstract
A rational regulation of the solar water splitting reaction pathway by adjusting the surface composition and phase structure of catalysts is a substantial approach to ameliorate the sluggish reaction kinetics and improve the energy conversion efficiency. In this study, we demonstrate a nanocrystalline iron pyrophosphate (Fe4(P2O7)3, FePy)-regulated hybrid overlayer with amorphous iron phosphate (FePO4, FePi) on the surface of metal oxide nanostructure with boosted photoelectrochemical (PEC) water oxidation. By manipulating the facile electrochemical surface treatment followed by the phosphating process, nanocrystalline FePy is localized in the FePi amorphous overlayer to form a heterogeneous hybrid structure. The FePy-regulated hybrid overlayer (FePy@FePi) results in significantly enhanced PEC performance with long-term durability. Compared with the homogeneous FePi amorphous overlayer, FePy@FePi can improve the charge transfer efficiency more significantly, from 60% of FePi to 79% of FePy@FePi. Our density-functional theory calculations reveal that the coexistence of FePi and FePy phases on the surface of metal oxide results in much better oxygen evolution reaction kinetics, where the FePi was found to have a typical down-hill reaction for the conversion from OH* to O2, while FePy has a low free energy for the formation of OH*.
Highlights:
1 Inducing a localized crystalline iron pyrophosphate in amorphous iron phosphate overlayer.
2 Enhanced photoelectrochemical water oxidation activity with long-term durability.
3 The heterogeneous hybrid structure overcoming the energy barrier in water oxidation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
- C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting–materials and challenges. Chem. Soc. Rev. 46(15), 4645–4660 (2017). https://doi.org/10.1039/C6CS00306K
- S. Pishgar, S. Gulati, J.M. Strain, Y. Liang, M.C. Mulvehill et al., In situ analytical techniques for the investigation of material stability and interface dynamics in electrocatalytic and photoelectrochemical applications. Small Methods 5(7), 2100322 (2021). https://doi.org/10.1002/smtd.202100322
- W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14, 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
- B. Yao, J. Zhang, X. Fan, J. He, Y. Li, Surface engineering of nanomaterials for photo-electrochemical water splitting. Small 15(1), 1803746 (2019). https://doi.org/10.1002/smll.201803746
- T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). https://doi.org/10.1039/C3CS60378D
- I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1(1), 0003 (2017). https://doi.org/10.1038/s41570-016-0003
- Z. Hao, Z. Liu, Y. Li, M. Ruan, Z. Guo, Enhanced photoelectrochemical performance of 2D core-shell WO3/CuWO4 uniform heterojunction via in situ synthesis and modification of Co-Pi co-catalyst. Int. J. Hydrogen Energy 45(33), 16550–16559 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.135
- X. Shi, L. Cai, I.Y. Choi, M. Ma, K. Zhang et al., Epitaxial growth of WO3 nanoneedles achieved using a facile flame surface treatment process engineering of hole transport and water oxidation reactivity. J. Mater. Chem. A 6(40), 19542–19546 (2018). https://doi.org/10.1039/C8TA04081H
- X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim et al., Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat. Commun. 5, 4775 (2014). https://doi.org/10.1038/ncomms5775
- A. Tofanello, A.L.M. Freitas, W.M. Carvalho, T. Salminen, T. Niemi et al., Hematite surface modification toward efficient sunlight-driven water splitting activity: the role of gold nanop addition. J. Phys. Chem. C 124(11), 6171–6179 (2020). https://doi.org/10.1021/acs.jpcc.9b11966
- K.H. Kim, C.W. Choi, S. Choung, Y. Cho, S. Kim et al., Continuous oxygen vacancy gradient in TiO2 photoelectrodes by a photoelectrochemical-driven “self-purification” process. Adv. Energy Mater. 12(7), 2103495 (2022). https://doi.org/10.1002/aenm.202103495
- Y. Lu, Y. Yang, X. Fan, Y. Li, D. Zhou et al., Boosting charge transport in BiVO4 photoanode for solar water oxidation. Adv. Mater. 34(8), 2108178 (2022). https://doi.org/10.1002/adma.202108178
- Y.M. Choi, B.W. Lee, M.S. Jung, H.S. Han, S.H. Kim et al., Retarded charge–carrier recombination in photoelectrochemical cells from plasmon-induced resonance energy transfer. Adv. Energy Mater. 10(22), 2000570 (2020). https://doi.org/10.1002/aenm.202000570
- S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric–catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13, 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
- D. Wei, Y. Tan, Y. Wang, T. Kong, S. Shen et al., Function-switchable metal/semiconductor junction enables efficient photocatalytic overall water splitting with selective water oxidation products. Sci. Bull. 65(16), 1389–1395 (2020). https://doi.org/10.1016/j.scib.2020.04.042
- M. Barroso, S.R. Pendlebury, A.J. Cowan, J.R. Durrant, Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 4(7), 2724–2734 (2013). https://doi.org/10.1039/c3sc50496d
- Y. Kuang, T. Yamada, K. Domen, Surface and interface engineering for photoelectrochemical water oxidation. Joule 1(2), 290–305 (2017). https://doi.org/10.1016/j.joule.2017.08.004
- B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, T.W. Hamann, Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co–Pi”-coated hematite electrodes. J. Am. Chem. Soc. 134(40), 16693–16700 (2012). https://doi.org/10.1021/ja306427f
- T.G. Vo, Y. Tai, C.Y. Chiang, Novel hierarchical ferric phosphate/bismuth vanadate nanocactus for highly efficient and stable solar water splitting. Appl. Catal. B Environ. 243, 657–666 (2019). https://doi.org/10.1016/j.apcatb.2018.11.001
- P. Rekha, S. Yadav, L. Singh, A review on cobalt phosphate-based materials as emerging catalysts for water splitting. Ceram. Int. 47(12), 16385–16401 (2021). https://doi.org/10.1016/j.ceramint.2021.02.215
- Q. Yue, T. Gao, Y. Wu, H. Yuan, D. Xiao, S-doped Co-Fe-Pi nanosheets as highly efficient oxygen evolution electrocatalysts in alkaline media. Electrochim. Acta 362, 137123 (2020). https://doi.org/10.1016/j.electacta.2020.137123
- S.A. Khalate, S.A. Kadam, Y.R. Ma, S.S. Pujari, U.M. Patil, Cobalt doped iron phosphate thin film: an effective catalyst for electrochemical water splitting. J. Alloys Compd. 885, 160914 (2021). https://doi.org/10.1016/j.jallcom.2021.160914
- L. Wang, J. Zhu, X. Liu, Oxygen-vacancy-dominated cocatalyst/hematite interface for boosting solar water splitting. ACS Appl. Mater. Interfaces 11(25), 22272–22277 (2019). https://doi.org/10.1021/acsami.9b03789
- J. Guo, X. Yang, S. Bai, X. Xiang, R. Luo et al., Effect of mo doping and NiFe-LDH cocatalyst on PEC water oxidation efficiency. J. Colloid Interface Sci. 540, 9–19 (2019). https://doi.org/10.1016/j.jcis.2018.12.069
- S. Kumar, K. Ojha, A.K. Ganguli, Interfacial charge transfer in photoelectrochemical processes. Adv. Mater. Interfaces 4(7), 1600981 (2017). https://doi.org/10.1002/admi.201600981
- T.T. Li, Q. Zhou, J. Qian, Y. Hu, Y.Q. Zheng, Electrodeposition of a cobalt phosphide film for the enhanced photoelectrochemical water oxidation with α-Fe2O3 photoanode. Electrochim. Acta 307, 92–99 (2019). https://doi.org/10.1016/j.electacta.2019.03.183
- J. Yang, D. Wang, H. Han, C. Li, Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46(8), 1900–1909 (2013). https://doi.org/10.1021/ar300227e
- R. Guo, X. Lai, J. Huang, X. Du, Y. Yan et al., Phosphate-based electrocatalysts for water splitting: recent progress. ChemElectroChem 5(24), 3822–3834 (2018). https://doi.org/10.1002/celc.201800996
- M. Liu, Z. Qu, D. Yin, X. Chen, Y. Zhang et al., Cobalt−iron pyrophosphate porous nanosheets as highly active electrocatalysts for the oxygen evolution reaction. ChemElectroChem 5(1), 36–43 (2018). https://doi.org/10.1002/celc.201700956
- S.A. Khalate, S.A. Kadam, Y.R. Ma, S.S. Pujari, S.J. Marje et al., Hydrothermally synthesized iron phosphate hydroxide thin film electrocatalyst for electrochemical water splitting. Electrochim. Acta 319, 118–128 (2019). https://doi.org/10.1016/j.electacta.2019.06.162
- H. Kim, J. Park, I. Park, K. Jin, S.E. Jerng et al., Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun. 6, 8253 (2015). https://doi.org/10.1038/ncomms9253
- X. Li, J. Wang, Phosphorus-based electrocatalysts: black phosphorus, metal phosphides, and phosphates. Adv. Mater. Interfaces 7(18), 2000676 (2020). https://doi.org/10.1002/admi.202000676
- I.S. Cho, H.S. Han, M. Logar, J. Park, X. Zheng, Enhancing low-bias performance of hematite photoanodes for solar water splitting by simultaneous reduction of bulk, interface, and surface recombination pathways. Adv. Energy Mater. 6(4), 1501840 (2016). https://doi.org/10.1002/aenm.201501840
- Y. Ling, G. Wang, J. Reddy, C. Wang, J.Z. Zhang et al., The influence of oxygen content on the thermal activation of hematite nanowires. Angew. Chem. Int. Ed. 124(17), 4150–4155 (2012). https://doi.org/10.1002/ange.201107467
- J.A. Cuenca, K. Bugler, S. Taylor, D. Morgan, P. Williams et al., Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements. J. Phys. Condens. Matter 28(10), 106002 (2016). https://doi.org/10.1088/0953-8984/28/10/106002
- N. Eltouny, P.A. Ariya, Competing reactions of selected atmospheric gases on Fe3O4 nanops surfaces. Phys. Chem. Chem. Phys. 16(42), 23056–23066 (2014). https://doi.org/10.1039/c4cp02379j
- G. Liu, Y. Zhao, N. Li, R. Yao, M. Wang et al., Ti-doped hematite photoanode with surface phosphate ions functionalization for synergistic enhanced photoelectrochemical water oxidation. Electrochim. Acta 307, 197–205 (2019). https://doi.org/10.1016/j.electacta.2019.03.214
- L. Wu, W. Wan, Z. Shang, X. Gao, N. Kobayashi et al., Surface modification of phosphoric acid activated carbon by using non-thermal plasma for enhancement of Cu(II) adsorption from aqueous solutions. Sep. Purif. Technol. 197, 156–169 (2018). https://doi.org/10.1016/j.seppur.2018.01.007
- D. Bin, Y. Wen, Y. Yuan, Y. Liu, Y. Wang et al., Oxygen vacancies enhance the electrochemical performance of carbon-coated TiP2O7-y anode in aqueous lithium ion batteries. Electrochim. Acta 320, 134555 (2019). https://doi.org/10.1016/j.electacta.2019.134555
- L. Song, S. Zhang, Q. Ma, Synthesis of an iron phosphide catalyst based on sulfides and hydrodesulfurization property. Chem. Eng. J. 281, 281–285 (2015). https://doi.org/10.1016/j.cej.2015.06.069
- G. Woo, D.H. Lee, Y. Heo, E. Kim, S. On et al., Energy-band engineering by remote doping of self-assembled monolayers leads to high-performance IGZO/p-Si heterostructure photodetectors. Adv. Mater. 34(6), 2107364 (2022). https://doi.org/10.1002/adma.202107364
- Y. Makimizu, J. Yoo, M. Poornajar, N.T. Nguyen, H.J. Ahn et al., of low oxygen annealing on the photoelectrochemical water splitting properties of α-Fe2O3. J. Mater. Chem. A 8(3), 1315–1325 (2020). https://doi.org/10.1039/c9ta10358a
- Y. Pan, X. Ma, M. Wang, X. Yang, S. Liu et al., Construction of N, P co-doped carbon frames anchored with Fe single atoms and Fe2P nanops as a robust coupling catalyst for electrocatalytic oxygen reduction. Adv. Mater. 34(29), 2203621 (2022). https://doi.org/10.1002/adma.202203621
- Y. Xiong, H. Li, C. Liu, L. Zheng, C. Liu et al., Single-atom Fe catalysts for fenton-like reactions: roles of different N species. Adv. Mater. 34(17), 2110653 (2022). https://doi.org/10.1002/adma.202110653
- A.S.M. Ismail, I. Garcia-Torregrosa, J.C. Vollenbroek, L. Folkertsma, J.G. Bomer et al., Detection of spontaneous FeOOH formation at the hematite/Ni(Fe)OOH interface during photoelectrochemical water splitting by operando X-ray absorption spectroscopy. ACS Catal. 11(19), 12324–12335 (2021). https://doi.org/10.1021/acscatal.1c02566
- R. Baitahe, C. Sronsri, S. Thompho, K. Chaiseeda, N. Montri et al., Correlation between structure, chromaticity, and dielectric properties of calcium copper pyrophosphates, Ca2−xCuxP2O7. Sci. Rep. 12(1), 6869 (2022). https://doi.org/10.1038/s41598-022-11056-4
- S. Kim, L. Yin, M.H. Lee, P. Parajuli, L. Blanc et al., High-voltage phosphate cathodes for rechargeable Ca-ion batteries. ACS Energy Lett. 5(10), 3203–3211 (2020). https://doi.org/10.1021/acsenergylett.0c01663
- Y. Li, M. Je, J. Kim, C. Xia, S.H. Roh et al., Rational nanopositioning of homogeneous amorphous phase on crystalline tungsten oxide for boosting solar water oxidation. Chem. Eng. J. 438, 135532 (2022). https://doi.org/10.1016/j.cej.2022.135532
- S. Wan, A.K. Tieu, Q. Zhu, H. Zhu, S. Cui et al., Chemical nature of alkaline polyphosphate boundary film at heated rubbing surfaces. Sci. Rep. 6(1), 26008 (2016). https://doi.org/10.1038/srep26008
- M. Lorenz, A.A. Pawlicki, H.E. Hysmith, K. Cogen, H. Thaker et al., Direct multimodal nanoscale visualization of early phosphorus-based antiwear tribofilm formation. ACS Appl. Mater. Interfaces 14(30), 35157–35166 (2022). https://doi.org/10.1021/acsami.1c16761
- Y.M. Lai, X.F. Liang, S.Y. Yang, J.X. Wang, L.H. Cao et al., Raman and FTIR spectra of iron phosphate glasses containing cerium. J. Mol. Struct. 992(1), 84–88 (2011). https://doi.org/10.1016/j.molstruc.2011.02.049
- Q. He, M. Worku, L. Xu, C. Zhou, S. Lteif et al., Surface passivation of perovskite thin films by phosphonium halides for efficient and stable solar cells. J. Mater. Chem. A 8(4), 2039–2046 (2020). https://doi.org/10.1039/C9TA12597C
- W. Zhang, A. Sadollahkhani, Y. Li, V. Leandri, J.M. Gardner et al., Mechanistic insights from functional group exchange surface passivation: a combined theoretical and experimental study. ACS Appl. Energy Mater. 2(4), 2723–2733 (2019). https://doi.org/10.1021/acsaem.9b00050
- P. Arunkumar, Y.H. Kim, H.J. Kim, S. Unithrattil, W.B. Im, Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices. ACS Appl. Mater. Interfaces 9(8), 7232–7240 (2017). https://doi.org/10.1021/acsami.6b14012
- M. Rahman, G. Boschloo, A. Hagfeldt, T. Edvinsson, On the mechanistic understanding of photovoltage loss in iron pyrite solar cells. Adv. Mater. 32(26), 1905653 (2020). https://doi.org/10.1002/adma.201905653
- X.T. Xu, L. Pan, X. Zhang, L. Wang, J.J. Zou, Rational design and construction of cocatalysts for semiconductor-based photo-electrochemical oxygen evolution: a comprehensive review. Adv. Sci. 6(2), 1801505 (2019). https://doi.org/10.1002/advs.201801505
- H. Sun, W. Hua, Y. Li, J.G. Wang, Conformal coating of superhydrophilic metal-organic complex toward substantially improved photoelectrochemical water oxidation. Chem. Eng. J. 427, 131004 (2022). https://doi.org/10.1016/j.cej.2021.131004
- D.Y. Kim, M. Ha, K.S. Kim, A universal screening strategy for the accelerated design of superior oxygen evolution/reduction electrocatalysts. J. Mater. Chem. A 9(6), 3511–3519 (2021). https://doi.org/10.1039/D0TA02425B
- H. Han, K.M. Kim, H. Choi, G. Ali, K.Y. Chung et al., Parallelized reaction pathway and stronger internal band bending by partial oxidation of metal sulfide–graphene composites: important factors of synergistic oxygen evolution reaction enhancement. ACS Catal. 8(5), 4091–4102 (2018). https://doi.org/10.1021/acscatal.8b00017
- H. Han, H. Choi, S. Mhin, Y.R. Hong, K.M. Kim et al., Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 12(8), 2443–2454 (2019). https://doi.org/10.1039/C9EE00950G
References
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting–materials and challenges. Chem. Soc. Rev. 46(15), 4645–4660 (2017). https://doi.org/10.1039/C6CS00306K
S. Pishgar, S. Gulati, J.M. Strain, Y. Liang, M.C. Mulvehill et al., In situ analytical techniques for the investigation of material stability and interface dynamics in electrocatalytic and photoelectrochemical applications. Small Methods 5(7), 2100322 (2021). https://doi.org/10.1002/smtd.202100322
W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14, 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
B. Yao, J. Zhang, X. Fan, J. He, Y. Li, Surface engineering of nanomaterials for photo-electrochemical water splitting. Small 15(1), 1803746 (2019). https://doi.org/10.1002/smll.201803746
T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). https://doi.org/10.1039/C3CS60378D
I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1(1), 0003 (2017). https://doi.org/10.1038/s41570-016-0003
Z. Hao, Z. Liu, Y. Li, M. Ruan, Z. Guo, Enhanced photoelectrochemical performance of 2D core-shell WO3/CuWO4 uniform heterojunction via in situ synthesis and modification of Co-Pi co-catalyst. Int. J. Hydrogen Energy 45(33), 16550–16559 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.135
X. Shi, L. Cai, I.Y. Choi, M. Ma, K. Zhang et al., Epitaxial growth of WO3 nanoneedles achieved using a facile flame surface treatment process engineering of hole transport and water oxidation reactivity. J. Mater. Chem. A 6(40), 19542–19546 (2018). https://doi.org/10.1039/C8TA04081H
X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim et al., Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat. Commun. 5, 4775 (2014). https://doi.org/10.1038/ncomms5775
A. Tofanello, A.L.M. Freitas, W.M. Carvalho, T. Salminen, T. Niemi et al., Hematite surface modification toward efficient sunlight-driven water splitting activity: the role of gold nanop addition. J. Phys. Chem. C 124(11), 6171–6179 (2020). https://doi.org/10.1021/acs.jpcc.9b11966
K.H. Kim, C.W. Choi, S. Choung, Y. Cho, S. Kim et al., Continuous oxygen vacancy gradient in TiO2 photoelectrodes by a photoelectrochemical-driven “self-purification” process. Adv. Energy Mater. 12(7), 2103495 (2022). https://doi.org/10.1002/aenm.202103495
Y. Lu, Y. Yang, X. Fan, Y. Li, D. Zhou et al., Boosting charge transport in BiVO4 photoanode for solar water oxidation. Adv. Mater. 34(8), 2108178 (2022). https://doi.org/10.1002/adma.202108178
Y.M. Choi, B.W. Lee, M.S. Jung, H.S. Han, S.H. Kim et al., Retarded charge–carrier recombination in photoelectrochemical cells from plasmon-induced resonance energy transfer. Adv. Energy Mater. 10(22), 2000570 (2020). https://doi.org/10.1002/aenm.202000570
S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric–catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13, 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
D. Wei, Y. Tan, Y. Wang, T. Kong, S. Shen et al., Function-switchable metal/semiconductor junction enables efficient photocatalytic overall water splitting with selective water oxidation products. Sci. Bull. 65(16), 1389–1395 (2020). https://doi.org/10.1016/j.scib.2020.04.042
M. Barroso, S.R. Pendlebury, A.J. Cowan, J.R. Durrant, Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 4(7), 2724–2734 (2013). https://doi.org/10.1039/c3sc50496d
Y. Kuang, T. Yamada, K. Domen, Surface and interface engineering for photoelectrochemical water oxidation. Joule 1(2), 290–305 (2017). https://doi.org/10.1016/j.joule.2017.08.004
B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, T.W. Hamann, Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co–Pi”-coated hematite electrodes. J. Am. Chem. Soc. 134(40), 16693–16700 (2012). https://doi.org/10.1021/ja306427f
T.G. Vo, Y. Tai, C.Y. Chiang, Novel hierarchical ferric phosphate/bismuth vanadate nanocactus for highly efficient and stable solar water splitting. Appl. Catal. B Environ. 243, 657–666 (2019). https://doi.org/10.1016/j.apcatb.2018.11.001
P. Rekha, S. Yadav, L. Singh, A review on cobalt phosphate-based materials as emerging catalysts for water splitting. Ceram. Int. 47(12), 16385–16401 (2021). https://doi.org/10.1016/j.ceramint.2021.02.215
Q. Yue, T. Gao, Y. Wu, H. Yuan, D. Xiao, S-doped Co-Fe-Pi nanosheets as highly efficient oxygen evolution electrocatalysts in alkaline media. Electrochim. Acta 362, 137123 (2020). https://doi.org/10.1016/j.electacta.2020.137123
S.A. Khalate, S.A. Kadam, Y.R. Ma, S.S. Pujari, U.M. Patil, Cobalt doped iron phosphate thin film: an effective catalyst for electrochemical water splitting. J. Alloys Compd. 885, 160914 (2021). https://doi.org/10.1016/j.jallcom.2021.160914
L. Wang, J. Zhu, X. Liu, Oxygen-vacancy-dominated cocatalyst/hematite interface for boosting solar water splitting. ACS Appl. Mater. Interfaces 11(25), 22272–22277 (2019). https://doi.org/10.1021/acsami.9b03789
J. Guo, X. Yang, S. Bai, X. Xiang, R. Luo et al., Effect of mo doping and NiFe-LDH cocatalyst on PEC water oxidation efficiency. J. Colloid Interface Sci. 540, 9–19 (2019). https://doi.org/10.1016/j.jcis.2018.12.069
S. Kumar, K. Ojha, A.K. Ganguli, Interfacial charge transfer in photoelectrochemical processes. Adv. Mater. Interfaces 4(7), 1600981 (2017). https://doi.org/10.1002/admi.201600981
T.T. Li, Q. Zhou, J. Qian, Y. Hu, Y.Q. Zheng, Electrodeposition of a cobalt phosphide film for the enhanced photoelectrochemical water oxidation with α-Fe2O3 photoanode. Electrochim. Acta 307, 92–99 (2019). https://doi.org/10.1016/j.electacta.2019.03.183
J. Yang, D. Wang, H. Han, C. Li, Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46(8), 1900–1909 (2013). https://doi.org/10.1021/ar300227e
R. Guo, X. Lai, J. Huang, X. Du, Y. Yan et al., Phosphate-based electrocatalysts for water splitting: recent progress. ChemElectroChem 5(24), 3822–3834 (2018). https://doi.org/10.1002/celc.201800996
M. Liu, Z. Qu, D. Yin, X. Chen, Y. Zhang et al., Cobalt−iron pyrophosphate porous nanosheets as highly active electrocatalysts for the oxygen evolution reaction. ChemElectroChem 5(1), 36–43 (2018). https://doi.org/10.1002/celc.201700956
S.A. Khalate, S.A. Kadam, Y.R. Ma, S.S. Pujari, S.J. Marje et al., Hydrothermally synthesized iron phosphate hydroxide thin film electrocatalyst for electrochemical water splitting. Electrochim. Acta 319, 118–128 (2019). https://doi.org/10.1016/j.electacta.2019.06.162
H. Kim, J. Park, I. Park, K. Jin, S.E. Jerng et al., Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun. 6, 8253 (2015). https://doi.org/10.1038/ncomms9253
X. Li, J. Wang, Phosphorus-based electrocatalysts: black phosphorus, metal phosphides, and phosphates. Adv. Mater. Interfaces 7(18), 2000676 (2020). https://doi.org/10.1002/admi.202000676
I.S. Cho, H.S. Han, M. Logar, J. Park, X. Zheng, Enhancing low-bias performance of hematite photoanodes for solar water splitting by simultaneous reduction of bulk, interface, and surface recombination pathways. Adv. Energy Mater. 6(4), 1501840 (2016). https://doi.org/10.1002/aenm.201501840
Y. Ling, G. Wang, J. Reddy, C. Wang, J.Z. Zhang et al., The influence of oxygen content on the thermal activation of hematite nanowires. Angew. Chem. Int. Ed. 124(17), 4150–4155 (2012). https://doi.org/10.1002/ange.201107467
J.A. Cuenca, K. Bugler, S. Taylor, D. Morgan, P. Williams et al., Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements. J. Phys. Condens. Matter 28(10), 106002 (2016). https://doi.org/10.1088/0953-8984/28/10/106002
N. Eltouny, P.A. Ariya, Competing reactions of selected atmospheric gases on Fe3O4 nanops surfaces. Phys. Chem. Chem. Phys. 16(42), 23056–23066 (2014). https://doi.org/10.1039/c4cp02379j
G. Liu, Y. Zhao, N. Li, R. Yao, M. Wang et al., Ti-doped hematite photoanode with surface phosphate ions functionalization for synergistic enhanced photoelectrochemical water oxidation. Electrochim. Acta 307, 197–205 (2019). https://doi.org/10.1016/j.electacta.2019.03.214
L. Wu, W. Wan, Z. Shang, X. Gao, N. Kobayashi et al., Surface modification of phosphoric acid activated carbon by using non-thermal plasma for enhancement of Cu(II) adsorption from aqueous solutions. Sep. Purif. Technol. 197, 156–169 (2018). https://doi.org/10.1016/j.seppur.2018.01.007
D. Bin, Y. Wen, Y. Yuan, Y. Liu, Y. Wang et al., Oxygen vacancies enhance the electrochemical performance of carbon-coated TiP2O7-y anode in aqueous lithium ion batteries. Electrochim. Acta 320, 134555 (2019). https://doi.org/10.1016/j.electacta.2019.134555
L. Song, S. Zhang, Q. Ma, Synthesis of an iron phosphide catalyst based on sulfides and hydrodesulfurization property. Chem. Eng. J. 281, 281–285 (2015). https://doi.org/10.1016/j.cej.2015.06.069
G. Woo, D.H. Lee, Y. Heo, E. Kim, S. On et al., Energy-band engineering by remote doping of self-assembled monolayers leads to high-performance IGZO/p-Si heterostructure photodetectors. Adv. Mater. 34(6), 2107364 (2022). https://doi.org/10.1002/adma.202107364
Y. Makimizu, J. Yoo, M. Poornajar, N.T. Nguyen, H.J. Ahn et al., of low oxygen annealing on the photoelectrochemical water splitting properties of α-Fe2O3. J. Mater. Chem. A 8(3), 1315–1325 (2020). https://doi.org/10.1039/c9ta10358a
Y. Pan, X. Ma, M. Wang, X. Yang, S. Liu et al., Construction of N, P co-doped carbon frames anchored with Fe single atoms and Fe2P nanops as a robust coupling catalyst for electrocatalytic oxygen reduction. Adv. Mater. 34(29), 2203621 (2022). https://doi.org/10.1002/adma.202203621
Y. Xiong, H. Li, C. Liu, L. Zheng, C. Liu et al., Single-atom Fe catalysts for fenton-like reactions: roles of different N species. Adv. Mater. 34(17), 2110653 (2022). https://doi.org/10.1002/adma.202110653
A.S.M. Ismail, I. Garcia-Torregrosa, J.C. Vollenbroek, L. Folkertsma, J.G. Bomer et al., Detection of spontaneous FeOOH formation at the hematite/Ni(Fe)OOH interface during photoelectrochemical water splitting by operando X-ray absorption spectroscopy. ACS Catal. 11(19), 12324–12335 (2021). https://doi.org/10.1021/acscatal.1c02566
R. Baitahe, C. Sronsri, S. Thompho, K. Chaiseeda, N. Montri et al., Correlation between structure, chromaticity, and dielectric properties of calcium copper pyrophosphates, Ca2−xCuxP2O7. Sci. Rep. 12(1), 6869 (2022). https://doi.org/10.1038/s41598-022-11056-4
S. Kim, L. Yin, M.H. Lee, P. Parajuli, L. Blanc et al., High-voltage phosphate cathodes for rechargeable Ca-ion batteries. ACS Energy Lett. 5(10), 3203–3211 (2020). https://doi.org/10.1021/acsenergylett.0c01663
Y. Li, M. Je, J. Kim, C. Xia, S.H. Roh et al., Rational nanopositioning of homogeneous amorphous phase on crystalline tungsten oxide for boosting solar water oxidation. Chem. Eng. J. 438, 135532 (2022). https://doi.org/10.1016/j.cej.2022.135532
S. Wan, A.K. Tieu, Q. Zhu, H. Zhu, S. Cui et al., Chemical nature of alkaline polyphosphate boundary film at heated rubbing surfaces. Sci. Rep. 6(1), 26008 (2016). https://doi.org/10.1038/srep26008
M. Lorenz, A.A. Pawlicki, H.E. Hysmith, K. Cogen, H. Thaker et al., Direct multimodal nanoscale visualization of early phosphorus-based antiwear tribofilm formation. ACS Appl. Mater. Interfaces 14(30), 35157–35166 (2022). https://doi.org/10.1021/acsami.1c16761
Y.M. Lai, X.F. Liang, S.Y. Yang, J.X. Wang, L.H. Cao et al., Raman and FTIR spectra of iron phosphate glasses containing cerium. J. Mol. Struct. 992(1), 84–88 (2011). https://doi.org/10.1016/j.molstruc.2011.02.049
Q. He, M. Worku, L. Xu, C. Zhou, S. Lteif et al., Surface passivation of perovskite thin films by phosphonium halides for efficient and stable solar cells. J. Mater. Chem. A 8(4), 2039–2046 (2020). https://doi.org/10.1039/C9TA12597C
W. Zhang, A. Sadollahkhani, Y. Li, V. Leandri, J.M. Gardner et al., Mechanistic insights from functional group exchange surface passivation: a combined theoretical and experimental study. ACS Appl. Energy Mater. 2(4), 2723–2733 (2019). https://doi.org/10.1021/acsaem.9b00050
P. Arunkumar, Y.H. Kim, H.J. Kim, S. Unithrattil, W.B. Im, Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices. ACS Appl. Mater. Interfaces 9(8), 7232–7240 (2017). https://doi.org/10.1021/acsami.6b14012
M. Rahman, G. Boschloo, A. Hagfeldt, T. Edvinsson, On the mechanistic understanding of photovoltage loss in iron pyrite solar cells. Adv. Mater. 32(26), 1905653 (2020). https://doi.org/10.1002/adma.201905653
X.T. Xu, L. Pan, X. Zhang, L. Wang, J.J. Zou, Rational design and construction of cocatalysts for semiconductor-based photo-electrochemical oxygen evolution: a comprehensive review. Adv. Sci. 6(2), 1801505 (2019). https://doi.org/10.1002/advs.201801505
H. Sun, W. Hua, Y. Li, J.G. Wang, Conformal coating of superhydrophilic metal-organic complex toward substantially improved photoelectrochemical water oxidation. Chem. Eng. J. 427, 131004 (2022). https://doi.org/10.1016/j.cej.2021.131004
D.Y. Kim, M. Ha, K.S. Kim, A universal screening strategy for the accelerated design of superior oxygen evolution/reduction electrocatalysts. J. Mater. Chem. A 9(6), 3511–3519 (2021). https://doi.org/10.1039/D0TA02425B
H. Han, K.M. Kim, H. Choi, G. Ali, K.Y. Chung et al., Parallelized reaction pathway and stronger internal band bending by partial oxidation of metal sulfide–graphene composites: important factors of synergistic oxygen evolution reaction enhancement. ACS Catal. 8(5), 4091–4102 (2018). https://doi.org/10.1021/acscatal.8b00017
H. Han, H. Choi, S. Mhin, Y.R. Hong, K.M. Kim et al., Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 12(8), 2443–2454 (2019). https://doi.org/10.1039/C9EE00950G