Recent Progress on Two-Dimensional Nanoflake Ensembles for Energy Storage Applications
Corresponding Author: Jianan Zhang
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 66
Abstract
The rational design and synthesis of two-dimensional (2D) nanoflake ensemble-based materials have garnered great attention owing to the properties of the components of these materials, such as high mechanical flexibility, high specific surface area, numerous active sites, chemical stability, and superior electrical and thermal conductivity. These properties render the 2D ensembles great choices as alternative electrode materials for electrochemical energy storage systems. More recently, recognition of the numerous advantages of these 2D ensemble structures has led to the realization that the performance of certain devices could be significantly enhanced by utilizing three-dimensional (3D) architectures that can furnish an increased number of active sites. The present review summarizes the recent progress in 2D ensemble-based materials for energy storage applications, including supercapacitors, lithium-ion batteries, and sodium-ion batteries. Further, perspectives relating to the challenges and opportunities in this promising research area are discussed.
Highlights:
1 In this review, we emphasize the recent developments on two-dimensional nanoflake ensembles and their applications for enhanced electrochemical performance in supercapacitors, lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, and zinc-ion batteries.
2 An overview of recent advances in three-dimensional hierarchical structures from two-dimensional nanoflake ensembles with controllable shape and compositions is provided.
3 Enhanced electrochemical energy storage performance based on assemblies of these two-dimensional nanoflake ensembles is discussed in detail.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
- K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490(7419), 192–200 (2012). https://doi.org/10.1038/nature11458
- M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
- M.R. Gao, Y.F. Xu, J. Jiang, S.H. Yu, Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42(7), 2986–3017 (2013). https://doi.org/10.1039/c2cs35310e
- D. Xu, Q. Xu, K. Wang, J. Chen, Z. Chen, Fabrication of free-standing hierarchical carbon nanofiber/graphene oxide/polyaniline films for supercapacitors. ACS Appl. Mater. Interfaces 6(1), 200–209 (2014). https://doi.org/10.1021/am404799a
- M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013). https://doi.org/10.1021/cr300263a
- C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44(9), 2713–2731 (2015). https://doi.org/10.1039/c4cs00182f
- L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai et al., Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11(6), 5800–5807 (2017). https://doi.org/10.1021/acsnano.7b01409
- Q. Yun, Q. Lu, X. Zhang, C. Tan, H. Zhang, Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem. Int. Edit. 57(3), 626–646 (2018). https://doi.org/10.1002/anie.201706426
- H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
- C. Liu, S. Zhao, Y. Lu, Y. Chang, D. Xu, Q. Wang, Z. Dai, J. Bao, M. Han, 3D porous nanoarchitectures derived from SnS/S-doped graphene hybrid nanosheets for flexible all-solid-state supercapacitors. Small 13(12), 1603494 (2017). https://doi.org/10.1002/smll.201603494
- D.M. Xu, D.L. Chao, H.W. Wang, Y.S. Gong, R. Wang, B.B. He, X.L. Hu, H.J. Fan, Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor. Adv. Energy Mater. 8(13), 1702769 (2018). https://doi.org/10.1002/aenm.201702769
- E.J. Robertson, A. Battigelli, C. Proulx, R.V. Mannige, T.K. Haxton, L. Yun, S. Whitelam, R.N. Zuckermann, Design, synthesis, assembly, and engineering of peptoid nanosheets. Acc. Chem. Res. 49(3), 379–389 (2016). https://doi.org/10.1021/acs.accounts.5b00439
- H. Yin, Z. Tang, Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev. 45(18), 4873–4891 (2016). https://doi.org/10.1039/c6cs00343e
- H. Hong, C. Liu, T. Cao, C.H. Jin, S.X. Wang, F. Wang, K.H. Liu, Interfacial engineering of van der waals coupled 2D layered materials. Adv. Mater. Interfaces 4(9), 1601054 (2017). https://doi.org/10.1002/admi.201601054
- C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- P. Lu, Y. Sun, H.F. Xiang, X. Liang, Y. Yu, 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 8(8), 1702434 (2018). https://doi.org/10.1002/aenm.201702434
- G. Jia, D. Chao, N.H. Tiep, Z. Zhang, H.J. Fan, Intercalation na-ion storage in two-dimensional MoS2-XSeX and capacity enhancement by selenium substitution. Energy Storage Mater. 14, 136–142 (2018). https://doi.org/10.1016/j.ensm.2018.02.019
- F. Lai, D. Yong, X. Ning, B. Pan, Y.E. Miao, T. Liu, Bionanofiber assisted decoration of few-layered MoSe2 nanosheets on 3D conductive networks for efficient hydrogen evolution. Small 13(7), 1602866 (2017). https://doi.org/10.1002/smll.201602866
- G. Huang, Y. Mei, Assembly and self-assembly of nanomembrane materials-from 2D to 3D. Small 14(14), 1703665 (2018). https://doi.org/10.1002/smll.201703665
- J. Meng, H. Guo, C. Niu, Y. Zhao, L. Xu, Q. Li, L. Mai, Advances in structure and property optimizations of battery electrode materials. Joule 1(3), 522–547 (2017). https://doi.org/10.1016/j.joule.2017.08.001
- A. Zavabeti, J.Z. Ou, B.J. Carey, N. Syed, R. Orrell-Trigg et al., A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358(6361), 332–335 (2017). https://doi.org/10.1126/science.aao4249
- B.J. Carey, J.Z. Ou, R.M. Clark, K.J. Berean, A. Zavabeti et al., Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nat. Commun. 8, 14482 (2017). https://doi.org/10.1038/ncomms14482
- R.S. Datta, J.Z. Ou, M. Mohiuddin, B.J. Carey, B.Y. Zhang et al., Two dimensional PbMoO4: a photocatalytic material derived from a naturally non-layered crystal. Nano Energy 49, 237–246 (2018). https://doi.org/10.1016/j.nanoen.2018.04.041
- H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.Z. Qiao, Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118(13), 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
- Y. Gong, S. Yang, L. Zhan, L. Ma, R. Vajtai, P.M. Ajayan, A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv. Funct. Mater. 24(1), 125–130 (2014). https://doi.org/10.1002/adfm.201300844
- Y. Sun, D. Chen, Z. Liang, Two-dimensional mxenes for energy storage and conversion applications. Mater. Today Energy 5, 22–36 (2017). https://doi.org/10.1016/j.mtener.2017.04.008
- T. Yu, Z. Zhao, L. Liu, S. Zhang, H. Xu, G. Yang, TiC3 monolayer with high specific capacity for sodium-ion batteries. J. Am. Chem. Soc. 140(18), 5962–5968 (2018). https://doi.org/10.1021/jacs.8b02016
- W. Jiang, X. Zou, H. Du, L. Gan, C. Xu, F. Kang, W. Duan, J. Li, Universal descriptor for large-scale screening of high-performance mxene-based materials for energy storage and conversion. Chem. Mater. 30(8), 2687–2693 (2018). https://doi.org/10.1021/acs.chemmater.8b00156
- Y. Yoon, M. Lee, S.K. Kim, G. Bae, W. Song et al., A strategy for synthesis of carbon nitride induced chemically doped 2D mxene for high-performance supercapacitor electrodes. Adv. Energy Mater. 8(15), 1703173 (2018). https://doi.org/10.1002/aenm.201703173
- C. Wang, H. Xie, S. Chen, B. Ge, D. Liu et al., Atomic cobalt covalently engineered interlayers for superior lithium-ion storage. Adv. Mater. 30, 1802525 (2018). https://doi.org/10.1002/adma.201802525
- Y.T. Liu, P. Zhang, N. Sun, B. Anasori, Q.Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Self-assembly of transition metal oxide nanostructures on mxene nanosheets for fast and stable lithium storage. Adv. Mater. 30(23), 1707334 (2018). https://doi.org/10.1002/adma.201707334
- A.M. Evans, L.R. Parent, N.C. Flanders, R.P. Bisbey, E. Vitaku et al., Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361(6397), 52–57 (2018). https://doi.org/10.1126/science.aar7883
- N. Huang, X. Chen, R. Krishna, D. Jiang, Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew. Chem. Int. Edit. 54(10), 2986–2990 (2015). https://doi.org/10.1002/anie.201411262
- A.P. Cote, H.M. El-Kaderi, H. Furukawa, J.R. Hunt, O.M. Yaghi, Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 129(43), 12914–12915 (2007). https://doi.org/10.1021/ja0751781
- H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131(25), 8875–8883 (2009). https://doi.org/10.1021/ja9015765
- J.W. Colson, A.R. Woll, A. Mukherjee, M.P. Levendorf, E.L. Spitler, V.B. Shields, M.G. Spencer, J. Park, W.R. Dichtel, Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332(6026), 228–231 (2011). https://doi.org/10.1126/science.1202747
- Z. Luo, L. Liu, J. Ning, K. Lei, Y. Lu, F. Li, J. Chen, A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem. Int. Edit. 57(30), 9443–9446 (2018). https://doi.org/10.1002/anie.201805540
- J.A.R. Navarro, The dynamic art of growing cof crystals. Science 361(6397), 35 (2018). https://doi.org/10.1126/science.aau1701
- H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong et al., Cationic covalent organic framework nanosheets for fast li-ion conduction. J. Am. Chem. Soc. 140(3), 896–899 (2018). https://doi.org/10.1021/jacs.7b12292
- G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). https://doi.org/10.1039/c1cs15060j
- L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009). https://doi.org/10.1039/b813846j
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
- M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1(6), 16070 (2016). https://doi.org/10.1038/Nenergy.2016.70
- T. Zhai, L. Wan, S. Sun, Q. Chen, J. Sun, Q. Xia, H. Xia, Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29(7), 1604167 (2017). https://doi.org/10.1002/adma.201604167
- J. Zhang, X. Zhang, Y. Zhou, S. Guo, K. Wang, Z. Liang, Q. Xu, Nitrogen-doped hierarchical porous carbon nanowhisker ensembles on carbon nanofiber for high-performance supercapacitors. ACS Sustain. Chem. Eng. 2(6), 1525–1533 (2014). https://doi.org/10.1021/sc500221s
- Y. Liu, J. Zhang, S. Wang, K. Wang, Z. Chen, Q. Xu, Facilely constructing 3D porous NiCo2S4 nanonetworks for high-performance supercapacitors. New J. Chem. 38(9), 4045 (2014). https://doi.org/10.1039/c4nj00816b
- Y. Li, Z. Chen, J. Zhang, Q. Xu, Dual tuning of 1D heteroatoms doped porous carbon nanoarchitectures for supercapacitors: the role of balanced P/N doping and core@shell nano-networks. RSC Adv. 6(11), 9180–9185 (2016). https://doi.org/10.1039/c5ra27230k
- Y. Li, W. Xia, R. Zou, J. Zhang, Z. Chen, Q. Xu, Facile fabrication of N-doped hierarchical porous carbon@CNT coaxial nanocables with high performance for energy storage and conversion. RSC Adv. 5(117), 96580–96586 (2015). https://doi.org/10.1039/c5ra18624b
- Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a One-step hydrothermal process. ACS Nano 4(7), 4324–4330 (2010). https://doi.org/10.1021/nn101187z
- Z.S. Wu, W. Ren, D.W. Wang, F. Li, B. Liu, H.M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4(10), 5835–5842 (2010). https://doi.org/10.1021/nn101754k
- D. Yu, L. Dai, Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1(2), 467–470 (2009). https://doi.org/10.1021/jz9003137
- J. Wang, Y. Xu, B. Ding, Z. Chang, X. Zhang, Y. Yamauchi, K.C. Wu, Confined self-assembly in two-dimensional interlayer space: monolayered mesoporous carbon nanosheets with in-plane orderly arranged mesopores and a highly graphitized framework. Angew. Chem. Int. Edit. 57(11), 2894–2898 (2018). https://doi.org/10.1002/anie.201712959
- E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6), 937–950 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
- C. Zhang, H. Yin, M. Han, Z. Dai, H. Pang, Y. Zheng, Y.Q. Lan, J. Bao, J. Zhu, Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors. ACS Nano 8(4), 3761–3770 (2014). https://doi.org/10.1021/nn5004315
- Z. Xu, X. Zhuang, C. Yang, J. Cao, Z. Yao, Y. Tang, J. Jiang, D. Wu, X. Feng, Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 28(10), 1981–1987 (2016). https://doi.org/10.1002/adma.201505131
- J. Li, B.X. Ji, R. Jiang, P.P. Zhang, N. Chen, G.F. Zhang, L.T. Qu, Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization. Carbon 129, 95–103 (2018). https://doi.org/10.1016/j.carbon.2017.11.095
- P. Li, Z. Jin, L. Peng, F. Zhao, D. Xiao, Y. Jin, G. Yu, Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater. 30, 1800124 (2018). https://doi.org/10.1002/adma.201800124
- C.Z. Yuan, X.G. Zhang, L.H. Su, B. Gao, L.F. Shen, Facile synthesis and self-assembly of hierarchical porous nio nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. A 19(32), 5772–5777 (2009). https://doi.org/10.1039/b902221j
- Y.Q. Jiang, L.Y. Chen, H.Q. Zhang, Q. Zhang, W.F. Chen, J.K. Zhu, D.M. Song, Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes. Chem. Eng. J. 292, 1–12 (2016). https://doi.org/10.1016/j.cej.2016.02.009
- P. Yu, W. Fu, Q. Zeng, J. Lin, C. Yan et al., Controllable synthesis of atomically thin type-ii weyl semimetal WTe2 nanosheets: an advanced electrode material for all-solid-state flexible supercapacitors. Adv. Mater. 29(34), 1701909 (2017). https://doi.org/10.1002/adma.201701909
- L.L. Du, W.M. Du, H.L. Ren, N. Wang, Z.J. Yao, X.S. Shi, B. Zhang, J.T. Zai, X.F. Qian, Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for high-performance hybrid asymmetric supercapacitors. J. Mater. Chem. A 5(43), 22527–22535 (2017). https://doi.org/10.1039/c7ta06921a
- H.C. Xia, J.N. Zhang, Z. Yang, S.Y. Guo, S.H. Guo, Q. Xu, 2D mof nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9(4), 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
- J. Yan, Q. Wang, T. Wei, Z.J. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014). https://doi.org/10.1002/aenm.201300816
- M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16(16), 3184–3190 (2004). https://doi.org/10.1021/cm049649j
- Z.J. Fan, J. Yan, T. Wei, L.J. Zhi, G.Q. Ning, T.Y. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21(12), 2366–2375 (2011). https://doi.org/10.1002/adfm.201100058
- N. Yu, K. Guo, W. Zhang, X.F. Wang, M.Q. Zhu, Flexible high-energy asymmetric supercapacitors based on MnO@C composite nanosheet electrodes. J. Mater. Chem. A 5(2), 804–813 (2017). https://doi.org/10.1039/c6ta08330g
- S.W. Zhang, B.S. Yin, C. Liu, Z.B. Wang, D.M. Gu, Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/Ppy core-shell heterostructured nanobelts for supercapacitor. Chem. Eng. J. 312, 296–305 (2017). https://doi.org/10.1016/j.cej.2016.11.144
- P. Shang, J.A. Zhang, W.Y. Tang, Q. Xu, S.J. Guo, 2D Thin nanoflakes assembled on mesoporous carbon nanorods for enhancing electrocatalysis and for improving asymmetric supercapacitors. Adv. Funct. Mater. 26(43), 7766–7774 (2016). https://doi.org/10.1002/adfm.201603504
- N. Jabeen, A. Hussain, Q. Xia, S. Sun, J. Zhu, H. Xia, High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29(32), 1700804 (2017). https://doi.org/10.1002/adma.201700804
- J.Q. Qi, Y. Chang, Y.W. Sui, Y.Z. He, Q.K. Meng, F.X. Wei, Y.J. Ren, Y.X. Jin, Facile synthesis of Ag-decorated Ni3S2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor. Adv. Mater. Interfaces 5(3), 1700985 (2018). https://doi.org/10.1002/admi.201700985
- J.S. Xu, Y.D. Sun, M.J. Lu, L. Wang, J. Zhang, J.H. Qian, X.Y. Liu, Fabrication of hierarchical mnmoo4 center dot H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chem. Eng. J. 334, 1466–1476 (2018). https://doi.org/10.1016/j.cej.2017.11.085
- X.J. Yang, L.J. Zhao, J.S. Lian, Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor. J. Power Sources 343, 373–382 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.078
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
- H. Xia, K. Li, Y. Guo, J. Guo, Q. Xu, J. Zhang, CoS2 nanodots trapped within graphitic structured N-doped carbon spheres with efficient performances for lithium storage. J. Mater. Chem. A 6(16), 7148–7154 (2018). https://doi.org/10.1039/c8ta00689j
- J. Zhang, K. Wang, Q. Xu, Y. Zhou, F. Cheng, S. Guo, Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 9(3), 3369–3376 (2015). https://doi.org/10.1021/acsnano.5b00760
- G. Chen, L. Yan, H. Luo, S. Guo, Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv. Mater. 28(35), 7580–7602 (2016). https://doi.org/10.1002/adma.201600164
- M. Zheng, H. Tang, L. Li, Q. Hu, L. Zhang, H. Xue, H. Pang, Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv. Sci. 5(3), 1700592 (2018). https://doi.org/10.1002/advs.201700592
- L.M. Zhou, K. Zhang, Z. Hu, Z.L. Tao, L.Q. Mai, Y.M. Kang, S.L. Chou, J. Chen, Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries. Adv. Energy Mater. 8(6), 1701415 (2018). https://doi.org/10.1002/aenm.201701415
- A.Q. Pan, H.B. Wu, L. Zhang, X.W. Lou, Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 6(5), 1476–1479 (2013). https://doi.org/10.1039/c3ee40260f
- G. Wang, J. Zhang, S. Yang, F.X. Wang, X.D. Zhuang, K. Mullen, X.L. Feng, Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv. Energy Mater. 8(8), 1702254 (2018). https://doi.org/10.1002/aenm.201702254
- X. Wang, X.L. Wu, Y.G. Guo, Y.T. Zhong, X.Q. Cao, Y. Ma, J.N. Yao, Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 20(10), 1680–1686 (2010). https://doi.org/10.1002/adfm.200902295
- Z. Zhu, Y. Tang, Z. Lv, J. Wei, Y. Zhang et al., Fluoroethylene carbonate enabling a robust lif-rich solid electrolyte interphase to enhance the stability of the MoS2 anode for lithium-ion storage. Angew. Chem. Int. Edit. 57(14), 3656–3660 (2018). https://doi.org/10.1002/anie.201712907
- K. Zhu, H. Gao, G. Hu, M. Liu, H. Wang, Scalable synthesis of hierarchical hollow Li4Ti5O12 microspheres assembled by zigzag-like nanosheets for high rate lithium-ion batteries. J. Power Sources 340, 263–272 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.074
- Y.J. Zhao, X.M. Zhai, D. Yan, C.H. Ding, N. Wu et al., Rational construction the composite of graphene and hierarchical structure assembled by Fe2O3 nanosheets for lithium storage. Electrochim. Acta 243, 18–25 (2017). https://doi.org/10.1016/j.electacta.2017.04.085
- S. Hu, W. Chen, J. Zhou, F. Yin, E. Uchaker, Q.F. Zhang, G.Z. Cao, Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes. J. Mater. Chem. A 2(21), 7862–7872 (2014). https://doi.org/10.1039/c4ta01247j
- C.M. Mao, Y. Zhong, H.J. Shang, C.S. Li, Z.Y. Guo, G.C. Li, Carbon encapsulated nanosheet-assembled MoS2 nanospheres with highly reversible lithium storage. Chem. Eng. J. 304, 511–517 (2016). https://doi.org/10.1016/j.cej.2016.06.120
- Y. Shi, Y. Wang, J.I. Wong, A.Y. Tan, C.L. Hsu, L.J. Li, Y.C. Lu, H.Y. Yang, Self-assembly of hierarchical MoSx/CNT nanocomposites (2 < X<3): towards high performance anode materials for lithium ion batteries. Sci. Rep. 3, 2169 (2013). https://doi.org/10.1038/srep02169
- L. Hu, Y. Ren, H. Yang, Q. Xu, Fabrication of 3d hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Appl. Mater. Interfaces 6(16), 14644–14652 (2014). https://doi.org/10.1021/am503995s
- L. Zhang, X.W. Lou, Hierarchical Mos2 shells supported on carbon spheres for highly reversible lithium storage. Chem. Eur. J. 20(18), 5219–5223 (2014). https://doi.org/10.1002/chem.201400128
- J.B. Ding, Y. Zhou, Y.G. Li, S.J. Guo, X.Q. Huang, MoS2 nanosheet assembling superstructure with a three-dimensional ion accessible site: a new class of bifunctional materials for batteries and electrocatalysis. Chem. Mater. 28(7), 2074–2080 (2016). https://doi.org/10.1021/acs.chemmater.5b04815
- L. Chen, H. Jiang, H.B. Jiang, H.X. Zhang, S.J. Guo, Y.J. Hu, C.Z. Li, Mo-based ultrasmall nanoparticles on hierarchical carbon nanosheets for superior lithium ion storage and hydrogen generation catalysis. Adv. Energy Mater. 7(15), 1602782 (2017). https://doi.org/10.1002/aenm.201602782
- J. Zhang, C. Du, Z. Dai, W. Chen, Y. Zheng et al., NbS2 nanosheets with M/Se (M = Fe Co, Ni) codopants for Li+ and Na+ storage. ACS Nano 11(10), 10599–10607 (2017). https://doi.org/10.1021/acsnano.7b06133
- T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 7(1), 209–231 (2014). https://doi.org/10.1039/c3ee42591f
- H. Liu, X.J. Chen, L. Deng, X. Su, K. Guo, Z.F. Zhu, preparation of ultrathin 2D MoS2/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries. Electrochim. Acta 206, 184–191 (2016). https://doi.org/10.1016/j.electacta.2016.04.160
- Y. Liu, M.Q. Zhu, D. Chen, Sheet-like MoSe2/C composites with enhanced li-ion storage properties. J. Mater. Chem. A 3(22), 11857–11862 (2015). https://doi.org/10.1039/c5ta02100f
- X.Y. Yu, H. Hu, Y. Wang, H. Chen, X.W. Lou, Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem. Int. Edit. 54(25), 7395–7398 (2015). https://doi.org/10.1002/anie.201502117
- L. Zhang, G. Zhang, H.B. Wu, L. Yu, X.W. Lou, Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Adv. Mater. 25(18), 2589–2593 (2013). https://doi.org/10.1002/adma.201300105
- H. Xia, J. Zhang, Z. Chen, Q. Xu, 1D Cu(OH)2 nanorod/2D SnO2 nanosheets core/shell structured array: covering with graphene layer leads to excellent performances on lithium-ion battery. Appl. Surf. Sci. 440, 91–98 (2018). https://doi.org/10.1016/j.apsusc.2017.12.263
- T. Xiang, S. Tao, W. Xu, Q. Fang, C. Wu et al., Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: binder-free and high-performance li-ion anode. ACS Nano 11(6), 6483–6491 (2017). https://doi.org/10.1021/acsnano.7b03329
- Q. Lian, G. Zhou, X. Zeng, C. Wu, Y. Wei, C. Cui, W. Wei, L. Chen, C. Li, Carbon coated SnS/SnO2 heterostructures wrapping on cnfs as an improved-performance anode for li-ion batteries: lithiation-induced structural optimization upon cycling. ACS Appl. Mater. Interfaces 8(44), 30256–30263 (2016). https://doi.org/10.1021/acsami.6b10391
- S. Wang, B.Y. Guan, L. Yu, X.W.D. Lou, Rational design of three-layered TiO2 @Carbon@MoS2 hierarchical nanotubes for enhanced lithium storage. Adv. Mater. 29(37), 1702724 (2017). https://doi.org/10.1002/adma.201702724
- F.F. Lu, C.B. Xu, F.C. Meng, T. Xia, R.H. Wang, J.P. Wang, Two-step synthesis of hierarchical dual few-layered Fe3O4/MoS2 nanosheets and their synergistic effects on lithium-storage performance. Adv. Mater. Interfaces 4(22), 1700639 (2017). https://doi.org/10.1002/admi.201700639
- L. Xue, S.V. Savilov, V.V. Lunin, H. Xia, Self-standing porous LiCoO2 nanosheet arrays as 3d cathodes for flexible Li-Ion batteries. Adv. Funct. Mater. 28(7), 1705836 (2018). https://doi.org/10.1002/adfm.201705836
- R. Jia, J. Yue, Q. Xia, J. Xu, X. Zhu, S. Sun, T. Zhai, H. Xia, Carbon shelled porous SnO2 nanosheet arrays as advanced anodes for lithium-ion batteries. Energy Storage Mater. 13, 303–311 (2018). https://doi.org/10.1016/j.ensm.2018.02.009
- X. Hu, Y. Li, G. Zeng, J. Jia, H. Zhan, Z. Wen, Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage. ACS Nano 12(2), 1592–1602 (2018). https://doi.org/10.1021/acsnano.7b08161
- H.L. Pan, Y.S. Hu, L.Q. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6(8), 2338–2360 (2013). https://doi.org/10.1039/c3ee40847g
- L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J.B. Goodenough, A superior low-cost cathode for a na-ion battery. Angew. Chem. Int. Edit. 52(7), 1964–1967 (2013). https://doi.org/10.1002/anie.201206854
- Y.Z. Jiang, M.J. Hu, D. Zhang, T.Z. Yuan, W.P. Sun, B. Xu, M. Yan, Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 5, 60–66 (2014). https://doi.org/10.1016/j.nanoen.2014.02.002
- C. Wu, X. Tong, Y. Ai, D.-S. Liu, P. Yu, J. Wu, Z.M. Wang, A review: enhanced anodes of Li/Na-Ion batteries based on yolk–shell structured nanomaterials. Nano-Micro Lett. 10(3), 40 (2018). https://doi.org/10.1007/s40820-018-0194-4
- N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014). https://doi.org/10.1021/cr500192f
- M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015). https://doi.org/10.1039/c4ee03192j
- K. Kubota, S. Komaba, Review-practical issues and future perspective for Na-ion batteries. J. Electrochem. Soc. 162(14), A2538–A2550 (2015). https://doi.org/10.1149/2.0151514jes
- X. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27(36), 5343–5364 (2015). https://doi.org/10.1002/adma.201501527
- C. Fang, Y.H. Huang, W.X. Zhang, J.T. Han, Z. Deng, Y.L. Cao, H.X. Yang, Routes to high energy cathodes of sodium-ion batteries. Adv. Energy Mater. 6(5), 1501727 (2016). https://doi.org/10.1002/aenm.201501727
- H.S. Hou, X.Q. Qiu, W.F. Wei, Y. Zhang, X.B. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7(24), 1602898 (2017). https://doi.org/10.1002/aenm.201602898
- D. Chao, C.-H.M. Lai, P. Liang, Q. Wei, Y.-S. Wang et al., Sodium vanadium fluorophosphates (NVOPF) array cathode designed for high-rate full sodium ion storage device. Adv. Energy Mater. 8(16), 1800058 (2018). https://doi.org/10.1002/aenm.201800058
- N. Ortiz-Vitoriano, N.E. Drewett, E. Gonzalo, T. Rojo, High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ. Sci. 10(5), 1051–1074 (2017). https://doi.org/10.1039/c7ee00566k
- Q. Zhao, Y. Lu, J. Chen, Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 7(8), 1601792 (2017). https://doi.org/10.1002/aenm.201601792
- F. Li, Z. Zhou, Micro/nanostructured materials for sodium ion batteries and capacitors. Small 14(6), 1702961 (2018). https://doi.org/10.1002/smll.201702961
- X. Wang, X. Li, Q. Li, H. Li, J. Xu et al., Improved electrochemical performance based on nanostructured SnS2@CoS2–rGO composite anode for sodium-ion batteries. Nano-Micro Lett. 10(3), 46 (2018). https://doi.org/10.1007/s40820-018-0200-x
- P.K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Edit. 57(1), 102–120 (2018). https://doi.org/10.1002/anie.201703772
- J.F. Mao, T.F. Zhou, Y. Zheng, H. Gao, H.K. Liu, Z.P. Guo, Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A 6(8), 3284–3303 (2018). https://doi.org/10.1039/c7ta10500b
- P.F. Wang, Y. You, Y.X. Yin, Y.G. Guo, Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv. Energy Mater. 8(8), 1701912 (2018). https://doi.org/10.1002/aenm.201701912
- D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu et al., Array of nanosheets render ultrafast and high-capacity na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
- Q. Guo, Y. Ma, T. Chen, Q. Xia, M. Yang, H. Xia, Y. Yu, Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano 11(12), 12658–12667 (2017). https://doi.org/10.1021/acsnano.7b07132
- C. Xu, Y. Xu, C. Tang, Q. Wei, J. Meng et al., Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy 28, 224–231 (2016). https://doi.org/10.1016/j.nanoen.2016.08.026
- J. Zhou, L. Wang, M. Yang, J. Wu, F. Chen et al., Hierarchical VS2 nanosheet assemblies: a universal host material for the reversible storage of alkali metal ions. Adv. Mater. 29(35), 1702061 (2017). https://doi.org/10.1002/adma.201702061
- X. Zhao, W. Cai, Y. Yang, X. Song, Z. Neale, H.-E. Wang, J. Sui, G. Cao, MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy 47, 224–234 (2018). https://doi.org/10.1016/j.nanoen.2018.03.002
- X.Q. Xie, T. Makaryan, M.Q. Zhao, K.L. Van Aken, Y. Gogotsi, G.X. Wang, MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 6(5), 1502161 (2016). https://doi.org/10.1002/aenm.201502161
- D. Yu, Q. Pang, Y. Gao, Y. Wei, C. Wang, G. Chen, F. Du, Hierarchical flower-like VS2 nanosheets—a high rate-capacity and stable anode material for sodium-ion battery. Energy Storage Mater. 11, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.09.002
- D. Xie, X.H. Xia, Y. Zhong, Y.D. Wang, D.H. Wang, X.L. Wang, J.P. Tu, Exploring advanced sandwiched arrays by vertical graphene and N-doped carbon for enhanced sodium storage. Adv. Energy Mater. 7(3), 1601804 (2017). https://doi.org/10.1002/aenm.201601804
- P. He, Y. Fang, X.Y. Yu, X.W.D. Lou, Hierarchical nanotubes constructed by carbon-coated ultrathin sns nanosheets for fast capacitive sodium storage. Angew. Chem. Int. Edit. 56(40), 12202–12205 (2017). https://doi.org/10.1002/anie.201706652
- D. Sun, D. Ye, P. Liu, Y. Tang, J. Guo, L. Wang, H. Wang, MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater. 8(10), 1702383 (2018). https://doi.org/10.1002/aenm.201702383
- X.M. Geng, Y.C. Jiao, Y. Han, A. Mukhopadhyay, L. Yang, H.L. Zhu, Freestanding metallic 1T MoS2 with dual ion diffusion paths as high rate anode for sodium-ion batteries. Adv. Funct. Mater. 27(40), 1702998 (2017). https://doi.org/10.1002/adfm.201702998
- E. Yang, H. Ji, Y. Jung, Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes. J. Phys. Chem. C 119(47), 26374–26380 (2015). https://doi.org/10.1021/acs.jpcc.5b09935
- Y. Pang, S. Zhang, L. Liu, J. Liang, Z. Sun, Y. Wang, C. Xiao, D. Ding, S. Ding, Few-layer MoS2 anchored at nitrogen-doped carbon ribbons for sodium-ion battery anodes with high rate performance. J. Mater. Chem. A 5(34), 17963–17972 (2017). https://doi.org/10.1039/c7ta05780f
- D.P. Leonard, Z. Wei, G. Chen, F. Du, X. Ji, Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3(2), 373–374 (2018). https://doi.org/10.1021/acsenergylett.8b00009
- B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. 29(19), 1700519 (2017). https://doi.org/10.1002/adma.201700519
- J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou, Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4(10), 1700146 (2017). https://doi.org/10.1002/advs.201700146
- M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S. Guo, H. Yang, sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8(19), 1800171 (2018). https://doi.org/10.1002/aenm.201800171
- Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016). https://doi.org/10.1002/aenm.201501874
- H. Kim, J.C. Kim, M. Bianchini, D.-H. Seo, J. Rodriguez-Garcia, G. Ceder, Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8(9), 1702384 (2018). https://doi.org/10.1002/aenm.201702384
- J.C. Pramudita, D. Sehrawat, D. Goonetilleke, N. Sharma, An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 7(24), 1602911 (2017). https://doi.org/10.1002/aenm.201602911
- W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang, S. Guo, Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648 (2018). https://doi.org/10.1002/aenm.201701648
- L. Deng, X. Niu, G. Ma, Z. Yang, L. Zeng, Y. Zhu, L. Guo, Layered potassium vanadate K0.5V2O5 as a cathode material for nonaqueous potassium ion batteries. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201800670
- M. Morant-Giner, R. Sanchis-Gual, J. Romero, A. Alberola, L. García-Cruz et al., Prussian blue@MoS2 layer composites as highly efficient cathodes for sodium- and potassium-ion batteries. Adv. Funct. Mater. 28(27), 1706125 (2018). https://doi.org/10.1002/adfm.201706125
- M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, H. Nakai, Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 164(2), A54–A60 (2016). https://doi.org/10.1149/2.0211702jes
- C. Yang, J. Feng, F. Lv, J. Zhou, C. Lin et al., Metallic graphene-like Vse2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism. Adv. Mater. 30(27), 1800036 (2018). https://doi.org/10.1002/adma.201800036
- K. Xie, K. Yuan, X. Li, W. Lu, C. Shen, C. Liang, R. Vajtai, P. Ajayan, B. Wei, Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene. Small 13(42), 1701471 (2017). https://doi.org/10.1002/smll.201701471
- P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang et al., Alkalized Ti3C2 mxene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
- Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- M. Naguib, R.A. Adams, Y. Zhao, D. Zemlyanov, A. Varma, J. Nanda, V.G. Pol, Electrochemical performance of mxenes as K-ion battery anodes. Chem. Commun. 53(51), 6883–6886 (2017). https://doi.org/10.1039/c7cc02026k
- J. Zhao, X. Zou, Y. Zhu, Y. Xu, C. Wang, Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 26(44), 8103–8110 (2016). https://doi.org/10.1002/adfm.201602248
- Z. Chen, D. Yin, M. Zhang, Sandwich-like MoS2 @SnO2 @C with high capacity and stability for sodium/potassium ion batteries. Small 14(17), 1703818 (2018). https://doi.org/10.1002/smll.201703818
- W. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen et al., Potassium ion batteries with graphitic materials. Nano Lett. 15(11), 7671–7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667
- V. Lakshmi, Y. Chen, A.A. Mikhaylov, A.G. Medvedev, I. Sultana, M.M. Rahman, O. Lev, P.V. Prikhodchenko, A.M. Glushenkov, Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 53(59), 8272–8275 (2017). https://doi.org/10.1039/c7cc03998k
- K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu, F. Li, J. Chen, A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Edit. 57(17), 4687–4691 (2018). https://doi.org/10.1002/anie.201801389
- I. Sultana, M.M. Rahman, Y. Chen, A.M. Glushenkov, Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv. Funct. Mater. 28(5), 1703857 (2018). https://doi.org/10.1002/adfm.201703857
- N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
- C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30(5), 1705580 (2018). https://doi.org/10.1002/adma.201705580
- Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang, P.M. Voyles, G. Chen, Y. Wei, X. Wang, H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8(19), 1800144 (2018). https://doi.org/10.1002/aenm.201800144
- L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
- D. Chao, C.R. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30, 1803181 (2018). https://doi.org/10.1002/adma.201803181
- C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Edit. 57(15), 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
- C. Zhu, G. Fang, J. Zhou, J. Guo, Z. Wang, C. Wang, J. Li, Y. Tang, S. Liang, Binder-free stainless steel@Mn3O4 nanoflower composite: a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. J. Mater. Chem. A 6(20), 9677–9683 (2018). https://doi.org/10.1039/c8ta01198b
- Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie, X. Lu, Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. (2018). https://doi.org/10.1002/adma.201802396
- P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7(11), 1601920 (2017). https://doi.org/10.1002/aenm.201601920
References
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490(7419), 192–200 (2012). https://doi.org/10.1038/nature11458
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
M.R. Gao, Y.F. Xu, J. Jiang, S.H. Yu, Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42(7), 2986–3017 (2013). https://doi.org/10.1039/c2cs35310e
D. Xu, Q. Xu, K. Wang, J. Chen, Z. Chen, Fabrication of free-standing hierarchical carbon nanofiber/graphene oxide/polyaniline films for supercapacitors. ACS Appl. Mater. Interfaces 6(1), 200–209 (2014). https://doi.org/10.1021/am404799a
M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013). https://doi.org/10.1021/cr300263a
C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44(9), 2713–2731 (2015). https://doi.org/10.1039/c4cs00182f
L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai et al., Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11(6), 5800–5807 (2017). https://doi.org/10.1021/acsnano.7b01409
Q. Yun, Q. Lu, X. Zhang, C. Tan, H. Zhang, Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem. Int. Edit. 57(3), 626–646 (2018). https://doi.org/10.1002/anie.201706426
H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
C. Liu, S. Zhao, Y. Lu, Y. Chang, D. Xu, Q. Wang, Z. Dai, J. Bao, M. Han, 3D porous nanoarchitectures derived from SnS/S-doped graphene hybrid nanosheets for flexible all-solid-state supercapacitors. Small 13(12), 1603494 (2017). https://doi.org/10.1002/smll.201603494
D.M. Xu, D.L. Chao, H.W. Wang, Y.S. Gong, R. Wang, B.B. He, X.L. Hu, H.J. Fan, Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor. Adv. Energy Mater. 8(13), 1702769 (2018). https://doi.org/10.1002/aenm.201702769
E.J. Robertson, A. Battigelli, C. Proulx, R.V. Mannige, T.K. Haxton, L. Yun, S. Whitelam, R.N. Zuckermann, Design, synthesis, assembly, and engineering of peptoid nanosheets. Acc. Chem. Res. 49(3), 379–389 (2016). https://doi.org/10.1021/acs.accounts.5b00439
H. Yin, Z. Tang, Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev. 45(18), 4873–4891 (2016). https://doi.org/10.1039/c6cs00343e
H. Hong, C. Liu, T. Cao, C.H. Jin, S.X. Wang, F. Wang, K.H. Liu, Interfacial engineering of van der waals coupled 2D layered materials. Adv. Mater. Interfaces 4(9), 1601054 (2017). https://doi.org/10.1002/admi.201601054
C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
P. Lu, Y. Sun, H.F. Xiang, X. Liang, Y. Yu, 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 8(8), 1702434 (2018). https://doi.org/10.1002/aenm.201702434
G. Jia, D. Chao, N.H. Tiep, Z. Zhang, H.J. Fan, Intercalation na-ion storage in two-dimensional MoS2-XSeX and capacity enhancement by selenium substitution. Energy Storage Mater. 14, 136–142 (2018). https://doi.org/10.1016/j.ensm.2018.02.019
F. Lai, D. Yong, X. Ning, B. Pan, Y.E. Miao, T. Liu, Bionanofiber assisted decoration of few-layered MoSe2 nanosheets on 3D conductive networks for efficient hydrogen evolution. Small 13(7), 1602866 (2017). https://doi.org/10.1002/smll.201602866
G. Huang, Y. Mei, Assembly and self-assembly of nanomembrane materials-from 2D to 3D. Small 14(14), 1703665 (2018). https://doi.org/10.1002/smll.201703665
J. Meng, H. Guo, C. Niu, Y. Zhao, L. Xu, Q. Li, L. Mai, Advances in structure and property optimizations of battery electrode materials. Joule 1(3), 522–547 (2017). https://doi.org/10.1016/j.joule.2017.08.001
A. Zavabeti, J.Z. Ou, B.J. Carey, N. Syed, R. Orrell-Trigg et al., A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358(6361), 332–335 (2017). https://doi.org/10.1126/science.aao4249
B.J. Carey, J.Z. Ou, R.M. Clark, K.J. Berean, A. Zavabeti et al., Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nat. Commun. 8, 14482 (2017). https://doi.org/10.1038/ncomms14482
R.S. Datta, J.Z. Ou, M. Mohiuddin, B.J. Carey, B.Y. Zhang et al., Two dimensional PbMoO4: a photocatalytic material derived from a naturally non-layered crystal. Nano Energy 49, 237–246 (2018). https://doi.org/10.1016/j.nanoen.2018.04.041
H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.Z. Qiao, Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118(13), 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
Y. Gong, S. Yang, L. Zhan, L. Ma, R. Vajtai, P.M. Ajayan, A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv. Funct. Mater. 24(1), 125–130 (2014). https://doi.org/10.1002/adfm.201300844
Y. Sun, D. Chen, Z. Liang, Two-dimensional mxenes for energy storage and conversion applications. Mater. Today Energy 5, 22–36 (2017). https://doi.org/10.1016/j.mtener.2017.04.008
T. Yu, Z. Zhao, L. Liu, S. Zhang, H. Xu, G. Yang, TiC3 monolayer with high specific capacity for sodium-ion batteries. J. Am. Chem. Soc. 140(18), 5962–5968 (2018). https://doi.org/10.1021/jacs.8b02016
W. Jiang, X. Zou, H. Du, L. Gan, C. Xu, F. Kang, W. Duan, J. Li, Universal descriptor for large-scale screening of high-performance mxene-based materials for energy storage and conversion. Chem. Mater. 30(8), 2687–2693 (2018). https://doi.org/10.1021/acs.chemmater.8b00156
Y. Yoon, M. Lee, S.K. Kim, G. Bae, W. Song et al., A strategy for synthesis of carbon nitride induced chemically doped 2D mxene for high-performance supercapacitor electrodes. Adv. Energy Mater. 8(15), 1703173 (2018). https://doi.org/10.1002/aenm.201703173
C. Wang, H. Xie, S. Chen, B. Ge, D. Liu et al., Atomic cobalt covalently engineered interlayers for superior lithium-ion storage. Adv. Mater. 30, 1802525 (2018). https://doi.org/10.1002/adma.201802525
Y.T. Liu, P. Zhang, N. Sun, B. Anasori, Q.Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Self-assembly of transition metal oxide nanostructures on mxene nanosheets for fast and stable lithium storage. Adv. Mater. 30(23), 1707334 (2018). https://doi.org/10.1002/adma.201707334
A.M. Evans, L.R. Parent, N.C. Flanders, R.P. Bisbey, E. Vitaku et al., Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361(6397), 52–57 (2018). https://doi.org/10.1126/science.aar7883
N. Huang, X. Chen, R. Krishna, D. Jiang, Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew. Chem. Int. Edit. 54(10), 2986–2990 (2015). https://doi.org/10.1002/anie.201411262
A.P. Cote, H.M. El-Kaderi, H. Furukawa, J.R. Hunt, O.M. Yaghi, Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 129(43), 12914–12915 (2007). https://doi.org/10.1021/ja0751781
H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131(25), 8875–8883 (2009). https://doi.org/10.1021/ja9015765
J.W. Colson, A.R. Woll, A. Mukherjee, M.P. Levendorf, E.L. Spitler, V.B. Shields, M.G. Spencer, J. Park, W.R. Dichtel, Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332(6026), 228–231 (2011). https://doi.org/10.1126/science.1202747
Z. Luo, L. Liu, J. Ning, K. Lei, Y. Lu, F. Li, J. Chen, A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem. Int. Edit. 57(30), 9443–9446 (2018). https://doi.org/10.1002/anie.201805540
J.A.R. Navarro, The dynamic art of growing cof crystals. Science 361(6397), 35 (2018). https://doi.org/10.1126/science.aau1701
H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong et al., Cationic covalent organic framework nanosheets for fast li-ion conduction. J. Am. Chem. Soc. 140(3), 896–899 (2018). https://doi.org/10.1021/jacs.7b12292
G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). https://doi.org/10.1039/c1cs15060j
L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009). https://doi.org/10.1039/b813846j
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1(6), 16070 (2016). https://doi.org/10.1038/Nenergy.2016.70
T. Zhai, L. Wan, S. Sun, Q. Chen, J. Sun, Q. Xia, H. Xia, Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29(7), 1604167 (2017). https://doi.org/10.1002/adma.201604167
J. Zhang, X. Zhang, Y. Zhou, S. Guo, K. Wang, Z. Liang, Q. Xu, Nitrogen-doped hierarchical porous carbon nanowhisker ensembles on carbon nanofiber for high-performance supercapacitors. ACS Sustain. Chem. Eng. 2(6), 1525–1533 (2014). https://doi.org/10.1021/sc500221s
Y. Liu, J. Zhang, S. Wang, K. Wang, Z. Chen, Q. Xu, Facilely constructing 3D porous NiCo2S4 nanonetworks for high-performance supercapacitors. New J. Chem. 38(9), 4045 (2014). https://doi.org/10.1039/c4nj00816b
Y. Li, Z. Chen, J. Zhang, Q. Xu, Dual tuning of 1D heteroatoms doped porous carbon nanoarchitectures for supercapacitors: the role of balanced P/N doping and core@shell nano-networks. RSC Adv. 6(11), 9180–9185 (2016). https://doi.org/10.1039/c5ra27230k
Y. Li, W. Xia, R. Zou, J. Zhang, Z. Chen, Q. Xu, Facile fabrication of N-doped hierarchical porous carbon@CNT coaxial nanocables with high performance for energy storage and conversion. RSC Adv. 5(117), 96580–96586 (2015). https://doi.org/10.1039/c5ra18624b
Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a One-step hydrothermal process. ACS Nano 4(7), 4324–4330 (2010). https://doi.org/10.1021/nn101187z
Z.S. Wu, W. Ren, D.W. Wang, F. Li, B. Liu, H.M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4(10), 5835–5842 (2010). https://doi.org/10.1021/nn101754k
D. Yu, L. Dai, Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1(2), 467–470 (2009). https://doi.org/10.1021/jz9003137
J. Wang, Y. Xu, B. Ding, Z. Chang, X. Zhang, Y. Yamauchi, K.C. Wu, Confined self-assembly in two-dimensional interlayer space: monolayered mesoporous carbon nanosheets with in-plane orderly arranged mesopores and a highly graphitized framework. Angew. Chem. Int. Edit. 57(11), 2894–2898 (2018). https://doi.org/10.1002/anie.201712959
E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6), 937–950 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
C. Zhang, H. Yin, M. Han, Z. Dai, H. Pang, Y. Zheng, Y.Q. Lan, J. Bao, J. Zhu, Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors. ACS Nano 8(4), 3761–3770 (2014). https://doi.org/10.1021/nn5004315
Z. Xu, X. Zhuang, C. Yang, J. Cao, Z. Yao, Y. Tang, J. Jiang, D. Wu, X. Feng, Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 28(10), 1981–1987 (2016). https://doi.org/10.1002/adma.201505131
J. Li, B.X. Ji, R. Jiang, P.P. Zhang, N. Chen, G.F. Zhang, L.T. Qu, Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization. Carbon 129, 95–103 (2018). https://doi.org/10.1016/j.carbon.2017.11.095
P. Li, Z. Jin, L. Peng, F. Zhao, D. Xiao, Y. Jin, G. Yu, Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater. 30, 1800124 (2018). https://doi.org/10.1002/adma.201800124
C.Z. Yuan, X.G. Zhang, L.H. Su, B. Gao, L.F. Shen, Facile synthesis and self-assembly of hierarchical porous nio nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. A 19(32), 5772–5777 (2009). https://doi.org/10.1039/b902221j
Y.Q. Jiang, L.Y. Chen, H.Q. Zhang, Q. Zhang, W.F. Chen, J.K. Zhu, D.M. Song, Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes. Chem. Eng. J. 292, 1–12 (2016). https://doi.org/10.1016/j.cej.2016.02.009
P. Yu, W. Fu, Q. Zeng, J. Lin, C. Yan et al., Controllable synthesis of atomically thin type-ii weyl semimetal WTe2 nanosheets: an advanced electrode material for all-solid-state flexible supercapacitors. Adv. Mater. 29(34), 1701909 (2017). https://doi.org/10.1002/adma.201701909
L.L. Du, W.M. Du, H.L. Ren, N. Wang, Z.J. Yao, X.S. Shi, B. Zhang, J.T. Zai, X.F. Qian, Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for high-performance hybrid asymmetric supercapacitors. J. Mater. Chem. A 5(43), 22527–22535 (2017). https://doi.org/10.1039/c7ta06921a
H.C. Xia, J.N. Zhang, Z. Yang, S.Y. Guo, S.H. Guo, Q. Xu, 2D mof nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9(4), 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
J. Yan, Q. Wang, T. Wei, Z.J. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014). https://doi.org/10.1002/aenm.201300816
M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16(16), 3184–3190 (2004). https://doi.org/10.1021/cm049649j
Z.J. Fan, J. Yan, T. Wei, L.J. Zhi, G.Q. Ning, T.Y. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21(12), 2366–2375 (2011). https://doi.org/10.1002/adfm.201100058
N. Yu, K. Guo, W. Zhang, X.F. Wang, M.Q. Zhu, Flexible high-energy asymmetric supercapacitors based on MnO@C composite nanosheet electrodes. J. Mater. Chem. A 5(2), 804–813 (2017). https://doi.org/10.1039/c6ta08330g
S.W. Zhang, B.S. Yin, C. Liu, Z.B. Wang, D.M. Gu, Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/Ppy core-shell heterostructured nanobelts for supercapacitor. Chem. Eng. J. 312, 296–305 (2017). https://doi.org/10.1016/j.cej.2016.11.144
P. Shang, J.A. Zhang, W.Y. Tang, Q. Xu, S.J. Guo, 2D Thin nanoflakes assembled on mesoporous carbon nanorods for enhancing electrocatalysis and for improving asymmetric supercapacitors. Adv. Funct. Mater. 26(43), 7766–7774 (2016). https://doi.org/10.1002/adfm.201603504
N. Jabeen, A. Hussain, Q. Xia, S. Sun, J. Zhu, H. Xia, High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29(32), 1700804 (2017). https://doi.org/10.1002/adma.201700804
J.Q. Qi, Y. Chang, Y.W. Sui, Y.Z. He, Q.K. Meng, F.X. Wei, Y.J. Ren, Y.X. Jin, Facile synthesis of Ag-decorated Ni3S2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor. Adv. Mater. Interfaces 5(3), 1700985 (2018). https://doi.org/10.1002/admi.201700985
J.S. Xu, Y.D. Sun, M.J. Lu, L. Wang, J. Zhang, J.H. Qian, X.Y. Liu, Fabrication of hierarchical mnmoo4 center dot H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chem. Eng. J. 334, 1466–1476 (2018). https://doi.org/10.1016/j.cej.2017.11.085
X.J. Yang, L.J. Zhao, J.S. Lian, Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor. J. Power Sources 343, 373–382 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.078
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
H. Xia, K. Li, Y. Guo, J. Guo, Q. Xu, J. Zhang, CoS2 nanodots trapped within graphitic structured N-doped carbon spheres with efficient performances for lithium storage. J. Mater. Chem. A 6(16), 7148–7154 (2018). https://doi.org/10.1039/c8ta00689j
J. Zhang, K. Wang, Q. Xu, Y. Zhou, F. Cheng, S. Guo, Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 9(3), 3369–3376 (2015). https://doi.org/10.1021/acsnano.5b00760
G. Chen, L. Yan, H. Luo, S. Guo, Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv. Mater. 28(35), 7580–7602 (2016). https://doi.org/10.1002/adma.201600164
M. Zheng, H. Tang, L. Li, Q. Hu, L. Zhang, H. Xue, H. Pang, Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv. Sci. 5(3), 1700592 (2018). https://doi.org/10.1002/advs.201700592
L.M. Zhou, K. Zhang, Z. Hu, Z.L. Tao, L.Q. Mai, Y.M. Kang, S.L. Chou, J. Chen, Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries. Adv. Energy Mater. 8(6), 1701415 (2018). https://doi.org/10.1002/aenm.201701415
A.Q. Pan, H.B. Wu, L. Zhang, X.W. Lou, Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 6(5), 1476–1479 (2013). https://doi.org/10.1039/c3ee40260f
G. Wang, J. Zhang, S. Yang, F.X. Wang, X.D. Zhuang, K. Mullen, X.L. Feng, Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv. Energy Mater. 8(8), 1702254 (2018). https://doi.org/10.1002/aenm.201702254
X. Wang, X.L. Wu, Y.G. Guo, Y.T. Zhong, X.Q. Cao, Y. Ma, J.N. Yao, Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 20(10), 1680–1686 (2010). https://doi.org/10.1002/adfm.200902295
Z. Zhu, Y. Tang, Z. Lv, J. Wei, Y. Zhang et al., Fluoroethylene carbonate enabling a robust lif-rich solid electrolyte interphase to enhance the stability of the MoS2 anode for lithium-ion storage. Angew. Chem. Int. Edit. 57(14), 3656–3660 (2018). https://doi.org/10.1002/anie.201712907
K. Zhu, H. Gao, G. Hu, M. Liu, H. Wang, Scalable synthesis of hierarchical hollow Li4Ti5O12 microspheres assembled by zigzag-like nanosheets for high rate lithium-ion batteries. J. Power Sources 340, 263–272 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.074
Y.J. Zhao, X.M. Zhai, D. Yan, C.H. Ding, N. Wu et al., Rational construction the composite of graphene and hierarchical structure assembled by Fe2O3 nanosheets for lithium storage. Electrochim. Acta 243, 18–25 (2017). https://doi.org/10.1016/j.electacta.2017.04.085
S. Hu, W. Chen, J. Zhou, F. Yin, E. Uchaker, Q.F. Zhang, G.Z. Cao, Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes. J. Mater. Chem. A 2(21), 7862–7872 (2014). https://doi.org/10.1039/c4ta01247j
C.M. Mao, Y. Zhong, H.J. Shang, C.S. Li, Z.Y. Guo, G.C. Li, Carbon encapsulated nanosheet-assembled MoS2 nanospheres with highly reversible lithium storage. Chem. Eng. J. 304, 511–517 (2016). https://doi.org/10.1016/j.cej.2016.06.120
Y. Shi, Y. Wang, J.I. Wong, A.Y. Tan, C.L. Hsu, L.J. Li, Y.C. Lu, H.Y. Yang, Self-assembly of hierarchical MoSx/CNT nanocomposites (2 < X<3): towards high performance anode materials for lithium ion batteries. Sci. Rep. 3, 2169 (2013). https://doi.org/10.1038/srep02169
L. Hu, Y. Ren, H. Yang, Q. Xu, Fabrication of 3d hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Appl. Mater. Interfaces 6(16), 14644–14652 (2014). https://doi.org/10.1021/am503995s
L. Zhang, X.W. Lou, Hierarchical Mos2 shells supported on carbon spheres for highly reversible lithium storage. Chem. Eur. J. 20(18), 5219–5223 (2014). https://doi.org/10.1002/chem.201400128
J.B. Ding, Y. Zhou, Y.G. Li, S.J. Guo, X.Q. Huang, MoS2 nanosheet assembling superstructure with a three-dimensional ion accessible site: a new class of bifunctional materials for batteries and electrocatalysis. Chem. Mater. 28(7), 2074–2080 (2016). https://doi.org/10.1021/acs.chemmater.5b04815
L. Chen, H. Jiang, H.B. Jiang, H.X. Zhang, S.J. Guo, Y.J. Hu, C.Z. Li, Mo-based ultrasmall nanoparticles on hierarchical carbon nanosheets for superior lithium ion storage and hydrogen generation catalysis. Adv. Energy Mater. 7(15), 1602782 (2017). https://doi.org/10.1002/aenm.201602782
J. Zhang, C. Du, Z. Dai, W. Chen, Y. Zheng et al., NbS2 nanosheets with M/Se (M = Fe Co, Ni) codopants for Li+ and Na+ storage. ACS Nano 11(10), 10599–10607 (2017). https://doi.org/10.1021/acsnano.7b06133
T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 7(1), 209–231 (2014). https://doi.org/10.1039/c3ee42591f
H. Liu, X.J. Chen, L. Deng, X. Su, K. Guo, Z.F. Zhu, preparation of ultrathin 2D MoS2/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries. Electrochim. Acta 206, 184–191 (2016). https://doi.org/10.1016/j.electacta.2016.04.160
Y. Liu, M.Q. Zhu, D. Chen, Sheet-like MoSe2/C composites with enhanced li-ion storage properties. J. Mater. Chem. A 3(22), 11857–11862 (2015). https://doi.org/10.1039/c5ta02100f
X.Y. Yu, H. Hu, Y. Wang, H. Chen, X.W. Lou, Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem. Int. Edit. 54(25), 7395–7398 (2015). https://doi.org/10.1002/anie.201502117
L. Zhang, G. Zhang, H.B. Wu, L. Yu, X.W. Lou, Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Adv. Mater. 25(18), 2589–2593 (2013). https://doi.org/10.1002/adma.201300105
H. Xia, J. Zhang, Z. Chen, Q. Xu, 1D Cu(OH)2 nanorod/2D SnO2 nanosheets core/shell structured array: covering with graphene layer leads to excellent performances on lithium-ion battery. Appl. Surf. Sci. 440, 91–98 (2018). https://doi.org/10.1016/j.apsusc.2017.12.263
T. Xiang, S. Tao, W. Xu, Q. Fang, C. Wu et al., Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: binder-free and high-performance li-ion anode. ACS Nano 11(6), 6483–6491 (2017). https://doi.org/10.1021/acsnano.7b03329
Q. Lian, G. Zhou, X. Zeng, C. Wu, Y. Wei, C. Cui, W. Wei, L. Chen, C. Li, Carbon coated SnS/SnO2 heterostructures wrapping on cnfs as an improved-performance anode for li-ion batteries: lithiation-induced structural optimization upon cycling. ACS Appl. Mater. Interfaces 8(44), 30256–30263 (2016). https://doi.org/10.1021/acsami.6b10391
S. Wang, B.Y. Guan, L. Yu, X.W.D. Lou, Rational design of three-layered TiO2 @Carbon@MoS2 hierarchical nanotubes for enhanced lithium storage. Adv. Mater. 29(37), 1702724 (2017). https://doi.org/10.1002/adma.201702724
F.F. Lu, C.B. Xu, F.C. Meng, T. Xia, R.H. Wang, J.P. Wang, Two-step synthesis of hierarchical dual few-layered Fe3O4/MoS2 nanosheets and their synergistic effects on lithium-storage performance. Adv. Mater. Interfaces 4(22), 1700639 (2017). https://doi.org/10.1002/admi.201700639
L. Xue, S.V. Savilov, V.V. Lunin, H. Xia, Self-standing porous LiCoO2 nanosheet arrays as 3d cathodes for flexible Li-Ion batteries. Adv. Funct. Mater. 28(7), 1705836 (2018). https://doi.org/10.1002/adfm.201705836
R. Jia, J. Yue, Q. Xia, J. Xu, X. Zhu, S. Sun, T. Zhai, H. Xia, Carbon shelled porous SnO2 nanosheet arrays as advanced anodes for lithium-ion batteries. Energy Storage Mater. 13, 303–311 (2018). https://doi.org/10.1016/j.ensm.2018.02.009
X. Hu, Y. Li, G. Zeng, J. Jia, H. Zhan, Z. Wen, Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage. ACS Nano 12(2), 1592–1602 (2018). https://doi.org/10.1021/acsnano.7b08161
H.L. Pan, Y.S. Hu, L.Q. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6(8), 2338–2360 (2013). https://doi.org/10.1039/c3ee40847g
L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J.B. Goodenough, A superior low-cost cathode for a na-ion battery. Angew. Chem. Int. Edit. 52(7), 1964–1967 (2013). https://doi.org/10.1002/anie.201206854
Y.Z. Jiang, M.J. Hu, D. Zhang, T.Z. Yuan, W.P. Sun, B. Xu, M. Yan, Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 5, 60–66 (2014). https://doi.org/10.1016/j.nanoen.2014.02.002
C. Wu, X. Tong, Y. Ai, D.-S. Liu, P. Yu, J. Wu, Z.M. Wang, A review: enhanced anodes of Li/Na-Ion batteries based on yolk–shell structured nanomaterials. Nano-Micro Lett. 10(3), 40 (2018). https://doi.org/10.1007/s40820-018-0194-4
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014). https://doi.org/10.1021/cr500192f
M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015). https://doi.org/10.1039/c4ee03192j
K. Kubota, S. Komaba, Review-practical issues and future perspective for Na-ion batteries. J. Electrochem. Soc. 162(14), A2538–A2550 (2015). https://doi.org/10.1149/2.0151514jes
X. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27(36), 5343–5364 (2015). https://doi.org/10.1002/adma.201501527
C. Fang, Y.H. Huang, W.X. Zhang, J.T. Han, Z. Deng, Y.L. Cao, H.X. Yang, Routes to high energy cathodes of sodium-ion batteries. Adv. Energy Mater. 6(5), 1501727 (2016). https://doi.org/10.1002/aenm.201501727
H.S. Hou, X.Q. Qiu, W.F. Wei, Y. Zhang, X.B. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7(24), 1602898 (2017). https://doi.org/10.1002/aenm.201602898
D. Chao, C.-H.M. Lai, P. Liang, Q. Wei, Y.-S. Wang et al., Sodium vanadium fluorophosphates (NVOPF) array cathode designed for high-rate full sodium ion storage device. Adv. Energy Mater. 8(16), 1800058 (2018). https://doi.org/10.1002/aenm.201800058
N. Ortiz-Vitoriano, N.E. Drewett, E. Gonzalo, T. Rojo, High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ. Sci. 10(5), 1051–1074 (2017). https://doi.org/10.1039/c7ee00566k
Q. Zhao, Y. Lu, J. Chen, Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 7(8), 1601792 (2017). https://doi.org/10.1002/aenm.201601792
F. Li, Z. Zhou, Micro/nanostructured materials for sodium ion batteries and capacitors. Small 14(6), 1702961 (2018). https://doi.org/10.1002/smll.201702961
X. Wang, X. Li, Q. Li, H. Li, J. Xu et al., Improved electrochemical performance based on nanostructured SnS2@CoS2–rGO composite anode for sodium-ion batteries. Nano-Micro Lett. 10(3), 46 (2018). https://doi.org/10.1007/s40820-018-0200-x
P.K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Edit. 57(1), 102–120 (2018). https://doi.org/10.1002/anie.201703772
J.F. Mao, T.F. Zhou, Y. Zheng, H. Gao, H.K. Liu, Z.P. Guo, Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A 6(8), 3284–3303 (2018). https://doi.org/10.1039/c7ta10500b
P.F. Wang, Y. You, Y.X. Yin, Y.G. Guo, Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv. Energy Mater. 8(8), 1701912 (2018). https://doi.org/10.1002/aenm.201701912
D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu et al., Array of nanosheets render ultrafast and high-capacity na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
Q. Guo, Y. Ma, T. Chen, Q. Xia, M. Yang, H. Xia, Y. Yu, Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano 11(12), 12658–12667 (2017). https://doi.org/10.1021/acsnano.7b07132
C. Xu, Y. Xu, C. Tang, Q. Wei, J. Meng et al., Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy 28, 224–231 (2016). https://doi.org/10.1016/j.nanoen.2016.08.026
J. Zhou, L. Wang, M. Yang, J. Wu, F. Chen et al., Hierarchical VS2 nanosheet assemblies: a universal host material for the reversible storage of alkali metal ions. Adv. Mater. 29(35), 1702061 (2017). https://doi.org/10.1002/adma.201702061
X. Zhao, W. Cai, Y. Yang, X. Song, Z. Neale, H.-E. Wang, J. Sui, G. Cao, MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy 47, 224–234 (2018). https://doi.org/10.1016/j.nanoen.2018.03.002
X.Q. Xie, T. Makaryan, M.Q. Zhao, K.L. Van Aken, Y. Gogotsi, G.X. Wang, MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 6(5), 1502161 (2016). https://doi.org/10.1002/aenm.201502161
D. Yu, Q. Pang, Y. Gao, Y. Wei, C. Wang, G. Chen, F. Du, Hierarchical flower-like VS2 nanosheets—a high rate-capacity and stable anode material for sodium-ion battery. Energy Storage Mater. 11, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.09.002
D. Xie, X.H. Xia, Y. Zhong, Y.D. Wang, D.H. Wang, X.L. Wang, J.P. Tu, Exploring advanced sandwiched arrays by vertical graphene and N-doped carbon for enhanced sodium storage. Adv. Energy Mater. 7(3), 1601804 (2017). https://doi.org/10.1002/aenm.201601804
P. He, Y. Fang, X.Y. Yu, X.W.D. Lou, Hierarchical nanotubes constructed by carbon-coated ultrathin sns nanosheets for fast capacitive sodium storage. Angew. Chem. Int. Edit. 56(40), 12202–12205 (2017). https://doi.org/10.1002/anie.201706652
D. Sun, D. Ye, P. Liu, Y. Tang, J. Guo, L. Wang, H. Wang, MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater. 8(10), 1702383 (2018). https://doi.org/10.1002/aenm.201702383
X.M. Geng, Y.C. Jiao, Y. Han, A. Mukhopadhyay, L. Yang, H.L. Zhu, Freestanding metallic 1T MoS2 with dual ion diffusion paths as high rate anode for sodium-ion batteries. Adv. Funct. Mater. 27(40), 1702998 (2017). https://doi.org/10.1002/adfm.201702998
E. Yang, H. Ji, Y. Jung, Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes. J. Phys. Chem. C 119(47), 26374–26380 (2015). https://doi.org/10.1021/acs.jpcc.5b09935
Y. Pang, S. Zhang, L. Liu, J. Liang, Z. Sun, Y. Wang, C. Xiao, D. Ding, S. Ding, Few-layer MoS2 anchored at nitrogen-doped carbon ribbons for sodium-ion battery anodes with high rate performance. J. Mater. Chem. A 5(34), 17963–17972 (2017). https://doi.org/10.1039/c7ta05780f
D.P. Leonard, Z. Wei, G. Chen, F. Du, X. Ji, Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3(2), 373–374 (2018). https://doi.org/10.1021/acsenergylett.8b00009
B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. 29(19), 1700519 (2017). https://doi.org/10.1002/adma.201700519
J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou, Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4(10), 1700146 (2017). https://doi.org/10.1002/advs.201700146
M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S. Guo, H. Yang, sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8(19), 1800171 (2018). https://doi.org/10.1002/aenm.201800171
Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016). https://doi.org/10.1002/aenm.201501874
H. Kim, J.C. Kim, M. Bianchini, D.-H. Seo, J. Rodriguez-Garcia, G. Ceder, Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8(9), 1702384 (2018). https://doi.org/10.1002/aenm.201702384
J.C. Pramudita, D. Sehrawat, D. Goonetilleke, N. Sharma, An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 7(24), 1602911 (2017). https://doi.org/10.1002/aenm.201602911
W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang, S. Guo, Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648 (2018). https://doi.org/10.1002/aenm.201701648
L. Deng, X. Niu, G. Ma, Z. Yang, L. Zeng, Y. Zhu, L. Guo, Layered potassium vanadate K0.5V2O5 as a cathode material for nonaqueous potassium ion batteries. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201800670
M. Morant-Giner, R. Sanchis-Gual, J. Romero, A. Alberola, L. García-Cruz et al., Prussian blue@MoS2 layer composites as highly efficient cathodes for sodium- and potassium-ion batteries. Adv. Funct. Mater. 28(27), 1706125 (2018). https://doi.org/10.1002/adfm.201706125
M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, H. Nakai, Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 164(2), A54–A60 (2016). https://doi.org/10.1149/2.0211702jes
C. Yang, J. Feng, F. Lv, J. Zhou, C. Lin et al., Metallic graphene-like Vse2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism. Adv. Mater. 30(27), 1800036 (2018). https://doi.org/10.1002/adma.201800036
K. Xie, K. Yuan, X. Li, W. Lu, C. Shen, C. Liang, R. Vajtai, P. Ajayan, B. Wei, Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene. Small 13(42), 1701471 (2017). https://doi.org/10.1002/smll.201701471
P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang et al., Alkalized Ti3C2 mxene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
M. Naguib, R.A. Adams, Y. Zhao, D. Zemlyanov, A. Varma, J. Nanda, V.G. Pol, Electrochemical performance of mxenes as K-ion battery anodes. Chem. Commun. 53(51), 6883–6886 (2017). https://doi.org/10.1039/c7cc02026k
J. Zhao, X. Zou, Y. Zhu, Y. Xu, C. Wang, Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 26(44), 8103–8110 (2016). https://doi.org/10.1002/adfm.201602248
Z. Chen, D. Yin, M. Zhang, Sandwich-like MoS2 @SnO2 @C with high capacity and stability for sodium/potassium ion batteries. Small 14(17), 1703818 (2018). https://doi.org/10.1002/smll.201703818
W. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen et al., Potassium ion batteries with graphitic materials. Nano Lett. 15(11), 7671–7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667
V. Lakshmi, Y. Chen, A.A. Mikhaylov, A.G. Medvedev, I. Sultana, M.M. Rahman, O. Lev, P.V. Prikhodchenko, A.M. Glushenkov, Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 53(59), 8272–8275 (2017). https://doi.org/10.1039/c7cc03998k
K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu, F. Li, J. Chen, A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Edit. 57(17), 4687–4691 (2018). https://doi.org/10.1002/anie.201801389
I. Sultana, M.M. Rahman, Y. Chen, A.M. Glushenkov, Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv. Funct. Mater. 28(5), 1703857 (2018). https://doi.org/10.1002/adfm.201703857
N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30(5), 1705580 (2018). https://doi.org/10.1002/adma.201705580
Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang, P.M. Voyles, G. Chen, Y. Wei, X. Wang, H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8(19), 1800144 (2018). https://doi.org/10.1002/aenm.201800144
L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
D. Chao, C.R. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30, 1803181 (2018). https://doi.org/10.1002/adma.201803181
C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Edit. 57(15), 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
C. Zhu, G. Fang, J. Zhou, J. Guo, Z. Wang, C. Wang, J. Li, Y. Tang, S. Liang, Binder-free stainless steel@Mn3O4 nanoflower composite: a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. J. Mater. Chem. A 6(20), 9677–9683 (2018). https://doi.org/10.1039/c8ta01198b
Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie, X. Lu, Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. (2018). https://doi.org/10.1002/adma.201802396
P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7(11), 1601920 (2017). https://doi.org/10.1002/aenm.201601920