Bioinspired Ultrasensitive Flexible Strain Sensors for Real-Time Wireless Detection of Liquid Leakage
Corresponding Author: Jinlian Hu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 68
Abstract
Liquid leakage of pipeline networks not only results in considerable resource wastage but also leads to environmental pollution and ecological imbalance. In response to this global issue, a bioinspired superhydrophobic thermoplastic polyurethane/carbon nanotubes/graphene nanosheets flexible strain sensor (TCGS) has been developed using a combination of micro-extrusion compression molding and surface modification for real-time wireless detection of liquid leakage. The TCGS utilizes the synergistic effects of Archimedean spiral crack arrays and micropores, which are inspired by the remarkable sensory capabilities of scorpions. This design achieves a sensitivity of 218.13 at a strain of 2%, which is an increase of 4300%. Additionally, it demonstrates exceptional durability by withstanding over 5000 usage cycles. The robust superhydrophobicity of the TCGS significantly enhances sensitivity and stability in detecting small-scale liquid leakage, enabling precise monitoring of liquid leakage across a wide range of sizes, velocities, and compositions while issuing prompt alerts. This provides critical early warnings for both industrial pipelines and potential liquid leakage scenarios in everyday life. The development and utilization of bioinspired ultrasensitive flexible strain sensors offer an innovative and effective solution for the early wireless detection of liquid leakage.
Highlights:
1 Micro-extrusion compression molding and surface modification were proposed for the mass fabrication of a superhydrophobic thermoplastic polyurethane sensor (TCGS).
2 Inspired by scorpions, TCGS features Archimedean spiral crack arrays and micropores, achieving 218.13 sensitivity at 2% strain, a 4300% increase, and over 5000 usage cycles of durability.
3 The robust superhydrophobicity of TCGS improves sensitivity and stability for detecting small-scale liquid leakage, allowing precise monitoring across various sizes and compositions while providing early warnings in various scenarios.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Abdulshaheed, F. Mustapha, A. Ghavamian, A pressure-based method for monitoring leaks in a pipe distribution system: a review. Renew. Sustain. Energy Rev. 69, 902–911 (2017). https://doi.org/10.1016/j.rser.2016.08.024
- M. Fahimipirehgalin, E. Trunzer, M. Odenweller, B. Vogel-Heuser, Automatic visual leakage detection and localization from pipelines in chemical process plants using machine vision techniques. Engineering 7, 758–776 (2021). https://doi.org/10.1016/j.eng.2020.08.026
- C. Liu, Y. Li, M. Xu, An integrated detection and location model for leakages in liquid pipelines. J. Petrol. Sci. Eng. 175, 852–867 (2019). https://doi.org/10.1016/j.petrol.2018.12.078
- C. Lyu, Y. Liu, X. Wang, Y. Chen, J. Jin et al., Visual early leakage detection for industrial surveillance environments. IEEE Trans. Ind. Inform. 18, 3670–3680 (2022). https://doi.org/10.1109/TII.2021.3120027
- W. Zhang, P. Wang, K. Sun, C. Wang, D. Diao, Intelligently detecting and identifying liquids leakage combining triboelectric nanogenerator based self-powered sensor with machine learning. Nano Energy 56, 277–285 (2019). https://doi.org/10.1016/j.nanoen.2018.11.058
- H. Fan, S. Tariq, T. Zayed, Acoustic leak detection approaches for water pipelines. Autom. Constr. 138, 104226 (2022). https://doi.org/10.1016/j.autcon.2022.104226
- R. Liu, T. Zayed, R. Xiao, Advanced acoustic leak detection in water distribution networks using integrated generative model. Water Res. 254, 121434 (2024). https://doi.org/10.1016/j.watres.2024.121434
- H. Wu, H.-F. Duan, W.W.L. Lai, K. Zhu, X. Cheng et al., Leveraging optical communication fiber and AI for distributed water pipe leak detection. IEEE Commun. Mag. 62, 126–132 (2024). https://doi.org/10.1109/MCOM.003.2200643
- J. Xie, Y. Zhang, Z. He, P. Liu, Y. Qin et al., Automated leakage detection method of pipeline networks under complicated backgrounds by combining infrared thermography and Faster R-CNN technique. Process. Saf. Environ. Prot. 174, 39–52 (2023). https://doi.org/10.1016/j.psep.2023.04.006
- A. Aljurbua, K. Sarabandi, Detection and localization of pipeline leaks using 3-D bistatic subsurface imaging radars. IEEE Trans. Geosci. Remote Sens. 60, 5220211 (2022). https://doi.org/10.1109/TGRS.2022.3140931
- S. Wakabayashi, T. Arie, S. Akita, K. Nakajima, K. Takei, A multitasking flexible sensor via reservoir computing. Adv. Mater. 34, e2201663 (2022). https://doi.org/10.1002/adma.202201663
- Y. Ni, X. Zang, J. Chen, T. Zhu, Y. Yang et al., Flexible MXene-based hydrogel enables wearable human–computer interaction for intelligent underwater communication and sensing rescue. Adv. Funct. Mater. 33, 2301127 (2023). https://doi.org/10.1002/adfm.202301127
- S. Li, P. Xiao, W. Zhou, Y. Liang, S.-W. Kuo et al., Bioinspired nanostructured superwetting thin-films in a self-supported form enabled “miniature umbrella” for weather monitoring and water rescue. Nano-Micro Lett. 14, 32 (2021). https://doi.org/10.1007/s40820-021-00775-4
- T. Zhu, Y. Ni, K. Zhao, J. Huang, Y. Cheng et al., A breathable knitted fabric-based smart system with enhanced superhydrophobicity for drowning alarming. ACS Nano 16, 18018–18026 (2022). https://doi.org/10.1021/acsnano.2c08325
- X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13, 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
- Q.-W. Yuan, H.-W. Jiang, T.-Y. Gao, S.-H. Zhang, S.-H. Jia et al., Efficient fabrication of highly stretchable and ultrasensitive thermoplastic polyurethane/carbon nanotube foam with anisotropic pore structures for human motion monitoring. J. Mater. Chem. A 11, 7447–7456 (2023). https://doi.org/10.1039/D3TA00364G
- Y. He, M. Zhou, M.H.H. Mahmoud, X. Lu, G. He et al., Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit. Adv. Compos. Hybrid Mater. 5, 1939–1950 (2022). https://doi.org/10.1007/s42114-022-00525-z
- C. Pang, G.Y. Lee, T.I. Kim, S.M. Kim, H.N. Kim et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795–801 (2012). https://doi.org/10.1038/nmat3380
- H. Liu, C. Du, L. Liao, H. Zhang, H. Zhou et al., Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity. Nat. Commun. 13, 3420 (2022). https://doi.org/10.1038/s41467-022-31051-7
- M. Hu, Y. Gao, Y. Jiang, H. Zeng, S. Zeng et al., High-performance strain sensors based on bilayer carbon black/PDMS hybrids. Adv. Compos. Hybrid Mater. 4, 514–520 (2021). https://doi.org/10.1007/s42114-021-00226-z
- H. Yoon, K. Lee, H. Shin, S. Jeong, Y.J. Lee et al., In situ co-transformation of reduced graphene oxide embedded in laser-induced graphene and full-range on-body strain sensor. Adv. Funct. Mater. 33, 2300322 (2023). https://doi.org/10.1002/adfm.202300322
- H. Liu, H. Zhang, W. Han, H. Lin, R. Li et al., 3D printed flexible strain sensors: from printing to devices and signals. Adv. Mater. 33, e2004782 (2021). https://doi.org/10.1002/adma.202004782
- D. Wu, S. Wu, P. Narongdej, S. Duan, C. Chen et al., Fast and facile liquid metal printing via projection lithography for highly stretchable electronic circuits. Adv. Mater. 36, e2307632 (2024). https://doi.org/10.1002/adma.202307632
- X. Huang, L. Liu, Y.H. Lin, R. Feng, Y. Shen et al., High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures. Sci. Adv. 9, eadh9799 (2023). https://doi.org/10.1126/sciadv.adh9799
- Q. He, Y. Zeng, L. Jiang, Z. Wang, G. Lu et al., Growing recyclable and healable piezoelectric composites in 3D printed bioinspired structure for protective wearable sensor. Nat. Commun. 14, 6477 (2023). https://doi.org/10.1038/s41467-023-41740-6
- H. Yang, S. Ding, J. Wang, S. Sun, R. Swaminathan et al., Computational design of ultra-robust strain sensors for soft robot perception and autonomy. Nat. Commun. 15, 1636 (2024). https://doi.org/10.1038/s41467-024-45786-y
- L. Yin, M. Cao, K.N. Kim, M. Lin, J.-M. Moon et al., A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5, 694–705 (2022). https://doi.org/10.1038/s41928-022-00843-6
- K. Nan, S. Babaee, W.W. Chan, J.L.P. Kuosmanen, V.R. Feig et al., Low-cost gastrointestinal manometry via silicone-liquid-metal pressure transducers resembling a quipu. Nat. Biomed. Eng. 6, 1092–1104 (2022). https://doi.org/10.1038/s41551-022-00859-5
- C. Xu, Y. Song, J.R. Sempionatto, S.A. Solomon, Y. Yu et al., A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. 7, 168–179 (2024). https://doi.org/10.1038/s41928-023-01116-6
- J. Gao, Y. Fan, Q. Zhang, L. Luo, X. Hu et al., Ultra-robust and extensible fibrous mechanical sensors for wearable smart healthcare. Adv. Mater. 34, 2107511 (2022). https://doi.org/10.1002/adma.202107511
- W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023). https://doi.org/10.1126/science.ade0086
- L. Li, Y. Bai, L. Li, S. Wang, T. Zhang, A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv. Mater. 29, 1702517 (2017). https://doi.org/10.1002/adma.201702517
- W. Gu, W. Li, Y. Zhang, Y. Xia, Q. Wang et al., Ultra-durable superhydrophobic cellular coatings. Nat. Commun. 14, 5953 (2023). https://doi.org/10.1038/s41467-023-41675-y
- D. Wang, Q. Sun, M.J. Hokkanen, C. Zhang, F.-Y. Lin et al., Design of robust superhydrophobic surfaces. Nature 582, 55–59 (2020). https://doi.org/10.1038/s41586-020-2331-8
- S. Wang, S. Li, H. Wang, H. Lu, M. Zhu et al., Highly adhesive epidermal sensors with superior water-interference-resistance for aquatic applications. Adv. Funct. Mater. 33, 2302687 (2023). https://doi.org/10.1002/adfm.202302687
- Y. Guo, H. Guo, Y. Han, X. Chen, J. Liu et al., Multifunctional hydrogel sensor with curved macro cracks: a strategy for high sensitivity and wide detection range. Adv. Funct. Mater. 33, 2306820 (2023). https://doi.org/10.1002/adfm.202306820
- X. Xu, Z. Wang, M. Li, Y. Su, Q. Zhang et al., Reconstructed hierarchically structured keratin fibers with shape-memory features based on reversible secondary-structure transformation. Adv. Mater. 35, e2304725 (2023). https://doi.org/10.1002/adma.202304725
- Y. Shen, W. Yang, F. Hu, X. Zheng, Y. Zheng et al., Ultrasensitive wearable strain sensor for promising application in cardiac rehabilitation. Adv. Compos. Hybrid Mater. 6, 21 (2022). https://doi.org/10.1007/s42114-022-00610-3
- X. Shi, L. Zhu, H. Yu, Z. Tang, S. Lu et al., Interfacial click chemistry enabled strong adhesion toward ultra-durable crack-based flexible strain sensors. Adv. Funct. Mater. 33, 2301036 (2023). https://doi.org/10.1002/adfm.202301036
- J. Li, S. Li, Y. Su, Stretchable strain sensors based on deterministic-contact-resistance braided structures with high performance and capability of continuous production. Adv. Funct. Mater. 32, 2208216 (2022). https://doi.org/10.1002/adfm.202208216
- R. Qin, J. Nong, K. Wang, Y. Liu, S. Zhou et al., Recent advances in flexible pressure sensors based on MXene materials. Adv. Mater. 36, 2312761 (2024). https://doi.org/10.1002/adma.202312761
- H. Wang, S. Li, Y. Wang, H. Wang, X. Shen et al., Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 32, e1908214 (2020). https://doi.org/10.1002/adma.201908214
- Y. Bu, T. Shen, W. Yang, S. Yang, Y. Zhao et al., Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin. Sci. Bull. 66, 1849–1857 (2021). https://doi.org/10.1016/j.scib.2021.04.041
- X. Cheng, J. Cai, J. Xu, D. Gong, High-performance strain sensors based on Au/graphene composite films with hierarchical cracks for wide linear-range motion monitoring. ACS Appl. Mater. Interfaces 14, 39230–39239 (2022). https://doi.org/10.1021/acsami.2c10226
- H. Zhang, D. Liu, J.-H. Lee, H. Chen, E. Kim et al., Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors. Nano-Micro Lett. 13, 122 (2021). https://doi.org/10.1007/s40820-021-00615-5
- B. Park, J. Kim, D. Kang, C. Jeong, K.S. Kim et al., Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Adv. Mater. 28, 8130–8137 (2016). https://doi.org/10.1002/adma.201602425
- L. Duan, D.R. D’Hooge, L. Cardon, Recent progress on flexible and stretchable piezoresistive strain sensors: from design to application. Prog. Mater. Sci. 114, 100617 (2020). https://doi.org/10.1016/j.pmatsci.2019.100617
- Y. Hou, L. Wang, R. Sun, Y. Zhang, M. Gu et al., Crack-across-pore enabled high-performance flexible pressure sensors for deep neural network enhanced sensing and human action recognition. ACS Nano 16, 8358–8369 (2022). https://doi.org/10.1021/acsnano.2c02609
- N. Bai, Y. Xue, S. Chen, L. Shi, J. Shi et al., A robotic sensory system with high spatiotemporal resolution for texture recognition. Nat. Commun. 14, 7121 (2023). https://doi.org/10.1038/s41467-023-42722-4
- D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). https://doi.org/10.1038/nature14002
- L. Dong, M. Ren, Y. Wang, G. Wang, S. Zhang et al., Artificial neuromuscular fibers by multilayered coaxial integration with dynamic adaption. Sci. Adv. 8, eabq7703 (2022). https://doi.org/10.1126/sciadv.abq7703
- Y. Zhao, F. Liu, N. Xie, Y. Wang, M. Liu et al., Achieving ultrasensitivity and long-term durability simultaneously for microcantilevers inspired by a scorpion’s circular tip slits. ACS Nano 16, 18048–18057 (2022). https://doi.org/10.1021/acsnano.2c04251
- A. Tripathy, M.J. Nine, D. Losic, F.S. Silva, Nature inspired emerging sensing technology: recent progress and perspectives. Mater. Sci. Eng. R. Rep. 146, 100647 (2021). https://doi.org/10.1016/j.mser.2021.100647
- P. Brownell, R.D. Farley, Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis. J. Comp. Physiol. 131, 23–30 (1979). https://doi.org/10.1007/BF00613080
- P. Brownell, R.D. Farley, Orientation to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis: mechanism of target localization. J. Comp. Physiol. 131, 31–38 (1979). https://doi.org/10.1007/BF00613081
- T. Wu, W. Xu, X. Li, Y. Du, M. Sheng et al., Bioinspired micro/nanostructured polyethylene/poly(ethylene oxide)/graphene films with robust superhydrophobicity and excellent antireflectivity for solar-thermal power generation, thermal management, and afterheat utilization. ACS Nano 16, 16624–16635 (2022). https://doi.org/10.1021/acsnano.2c06065
- C. Zhang, H. Xie, Y. Du, X. Li, W. Zhou et al., Shelter forest inspired superhydrophobic flame-retardant composite with root-soil interlocked micro/nanostructure enhanced mechanical, physical, and chemical durability. Adv. Funct. Mater. 33, 2213398 (2023). https://doi.org/10.1002/adfm.202213398
- L. Liu, S. Niu, J. Zhang, Z. Mu, J. Li et al., Bioinspired, omnidirectional, and hypersensitive flexible strain sensors. Adv. Mater. 34, e2200823 (2022). https://doi.org/10.1002/adma.202200823
- K. Qian, J. Zhou, M. Miao, H. Wu, S. Thaiboonrod et al., Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by kevlar polyanion for piezoresistive sensing and electromagnetic interference shielding. Nano-Micro Lett. 15, 88 (2023). https://doi.org/10.1007/s40820-023-01062-0
- G. Yang, L. Zhou, M. Wang, T. Xiang, D. Pan et al., Polymer composites designed with 3D fibrous CNT “tracks” achieving excellent thermal conductivity and electromagnetic interference shielding efficiency. Nano Res. 16, 11411–11421 (2023). https://doi.org/10.1007/s12274-023-5884-7
- A. Kozbial, F. Zhou, H. Liu, L. Li, Are graphitic surfaces hydrophobic? Acc. Chem. Res. 49, 2765–2773 (2016). https://doi.org/10.1021/acs.accounts.6b00447
- Z. Hu, F. Chu, H. Shan, X. Wu, Z. Dong et al., Understanding and utilizing droplet impact on superhydrophobic surfaces: phenomena, mechanisms, regulations, applications, and beyond. Adv. Mater. 36, e2310177 (2024). https://doi.org/10.1002/adma.202310177
- X. Huang, X. Dong, J. Li, J. Liu, Droplet impact induced large deflection of a cantilever. Phys. Fluids 31, 062106 (2019). https://doi.org/10.1063/1.5099344
References
A. Abdulshaheed, F. Mustapha, A. Ghavamian, A pressure-based method for monitoring leaks in a pipe distribution system: a review. Renew. Sustain. Energy Rev. 69, 902–911 (2017). https://doi.org/10.1016/j.rser.2016.08.024
M. Fahimipirehgalin, E. Trunzer, M. Odenweller, B. Vogel-Heuser, Automatic visual leakage detection and localization from pipelines in chemical process plants using machine vision techniques. Engineering 7, 758–776 (2021). https://doi.org/10.1016/j.eng.2020.08.026
C. Liu, Y. Li, M. Xu, An integrated detection and location model for leakages in liquid pipelines. J. Petrol. Sci. Eng. 175, 852–867 (2019). https://doi.org/10.1016/j.petrol.2018.12.078
C. Lyu, Y. Liu, X. Wang, Y. Chen, J. Jin et al., Visual early leakage detection for industrial surveillance environments. IEEE Trans. Ind. Inform. 18, 3670–3680 (2022). https://doi.org/10.1109/TII.2021.3120027
W. Zhang, P. Wang, K. Sun, C. Wang, D. Diao, Intelligently detecting and identifying liquids leakage combining triboelectric nanogenerator based self-powered sensor with machine learning. Nano Energy 56, 277–285 (2019). https://doi.org/10.1016/j.nanoen.2018.11.058
H. Fan, S. Tariq, T. Zayed, Acoustic leak detection approaches for water pipelines. Autom. Constr. 138, 104226 (2022). https://doi.org/10.1016/j.autcon.2022.104226
R. Liu, T. Zayed, R. Xiao, Advanced acoustic leak detection in water distribution networks using integrated generative model. Water Res. 254, 121434 (2024). https://doi.org/10.1016/j.watres.2024.121434
H. Wu, H.-F. Duan, W.W.L. Lai, K. Zhu, X. Cheng et al., Leveraging optical communication fiber and AI for distributed water pipe leak detection. IEEE Commun. Mag. 62, 126–132 (2024). https://doi.org/10.1109/MCOM.003.2200643
J. Xie, Y. Zhang, Z. He, P. Liu, Y. Qin et al., Automated leakage detection method of pipeline networks under complicated backgrounds by combining infrared thermography and Faster R-CNN technique. Process. Saf. Environ. Prot. 174, 39–52 (2023). https://doi.org/10.1016/j.psep.2023.04.006
A. Aljurbua, K. Sarabandi, Detection and localization of pipeline leaks using 3-D bistatic subsurface imaging radars. IEEE Trans. Geosci. Remote Sens. 60, 5220211 (2022). https://doi.org/10.1109/TGRS.2022.3140931
S. Wakabayashi, T. Arie, S. Akita, K. Nakajima, K. Takei, A multitasking flexible sensor via reservoir computing. Adv. Mater. 34, e2201663 (2022). https://doi.org/10.1002/adma.202201663
Y. Ni, X. Zang, J. Chen, T. Zhu, Y. Yang et al., Flexible MXene-based hydrogel enables wearable human–computer interaction for intelligent underwater communication and sensing rescue. Adv. Funct. Mater. 33, 2301127 (2023). https://doi.org/10.1002/adfm.202301127
S. Li, P. Xiao, W. Zhou, Y. Liang, S.-W. Kuo et al., Bioinspired nanostructured superwetting thin-films in a self-supported form enabled “miniature umbrella” for weather monitoring and water rescue. Nano-Micro Lett. 14, 32 (2021). https://doi.org/10.1007/s40820-021-00775-4
T. Zhu, Y. Ni, K. Zhao, J. Huang, Y. Cheng et al., A breathable knitted fabric-based smart system with enhanced superhydrophobicity for drowning alarming. ACS Nano 16, 18018–18026 (2022). https://doi.org/10.1021/acsnano.2c08325
X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13, 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
Q.-W. Yuan, H.-W. Jiang, T.-Y. Gao, S.-H. Zhang, S.-H. Jia et al., Efficient fabrication of highly stretchable and ultrasensitive thermoplastic polyurethane/carbon nanotube foam with anisotropic pore structures for human motion monitoring. J. Mater. Chem. A 11, 7447–7456 (2023). https://doi.org/10.1039/D3TA00364G
Y. He, M. Zhou, M.H.H. Mahmoud, X. Lu, G. He et al., Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit. Adv. Compos. Hybrid Mater. 5, 1939–1950 (2022). https://doi.org/10.1007/s42114-022-00525-z
C. Pang, G.Y. Lee, T.I. Kim, S.M. Kim, H.N. Kim et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795–801 (2012). https://doi.org/10.1038/nmat3380
H. Liu, C. Du, L. Liao, H. Zhang, H. Zhou et al., Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity. Nat. Commun. 13, 3420 (2022). https://doi.org/10.1038/s41467-022-31051-7
M. Hu, Y. Gao, Y. Jiang, H. Zeng, S. Zeng et al., High-performance strain sensors based on bilayer carbon black/PDMS hybrids. Adv. Compos. Hybrid Mater. 4, 514–520 (2021). https://doi.org/10.1007/s42114-021-00226-z
H. Yoon, K. Lee, H. Shin, S. Jeong, Y.J. Lee et al., In situ co-transformation of reduced graphene oxide embedded in laser-induced graphene and full-range on-body strain sensor. Adv. Funct. Mater. 33, 2300322 (2023). https://doi.org/10.1002/adfm.202300322
H. Liu, H. Zhang, W. Han, H. Lin, R. Li et al., 3D printed flexible strain sensors: from printing to devices and signals. Adv. Mater. 33, e2004782 (2021). https://doi.org/10.1002/adma.202004782
D. Wu, S. Wu, P. Narongdej, S. Duan, C. Chen et al., Fast and facile liquid metal printing via projection lithography for highly stretchable electronic circuits. Adv. Mater. 36, e2307632 (2024). https://doi.org/10.1002/adma.202307632
X. Huang, L. Liu, Y.H. Lin, R. Feng, Y. Shen et al., High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures. Sci. Adv. 9, eadh9799 (2023). https://doi.org/10.1126/sciadv.adh9799
Q. He, Y. Zeng, L. Jiang, Z. Wang, G. Lu et al., Growing recyclable and healable piezoelectric composites in 3D printed bioinspired structure for protective wearable sensor. Nat. Commun. 14, 6477 (2023). https://doi.org/10.1038/s41467-023-41740-6
H. Yang, S. Ding, J. Wang, S. Sun, R. Swaminathan et al., Computational design of ultra-robust strain sensors for soft robot perception and autonomy. Nat. Commun. 15, 1636 (2024). https://doi.org/10.1038/s41467-024-45786-y
L. Yin, M. Cao, K.N. Kim, M. Lin, J.-M. Moon et al., A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5, 694–705 (2022). https://doi.org/10.1038/s41928-022-00843-6
K. Nan, S. Babaee, W.W. Chan, J.L.P. Kuosmanen, V.R. Feig et al., Low-cost gastrointestinal manometry via silicone-liquid-metal pressure transducers resembling a quipu. Nat. Biomed. Eng. 6, 1092–1104 (2022). https://doi.org/10.1038/s41551-022-00859-5
C. Xu, Y. Song, J.R. Sempionatto, S.A. Solomon, Y. Yu et al., A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. 7, 168–179 (2024). https://doi.org/10.1038/s41928-023-01116-6
J. Gao, Y. Fan, Q. Zhang, L. Luo, X. Hu et al., Ultra-robust and extensible fibrous mechanical sensors for wearable smart healthcare. Adv. Mater. 34, 2107511 (2022). https://doi.org/10.1002/adma.202107511
W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023). https://doi.org/10.1126/science.ade0086
L. Li, Y. Bai, L. Li, S. Wang, T. Zhang, A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv. Mater. 29, 1702517 (2017). https://doi.org/10.1002/adma.201702517
W. Gu, W. Li, Y. Zhang, Y. Xia, Q. Wang et al., Ultra-durable superhydrophobic cellular coatings. Nat. Commun. 14, 5953 (2023). https://doi.org/10.1038/s41467-023-41675-y
D. Wang, Q. Sun, M.J. Hokkanen, C. Zhang, F.-Y. Lin et al., Design of robust superhydrophobic surfaces. Nature 582, 55–59 (2020). https://doi.org/10.1038/s41586-020-2331-8
S. Wang, S. Li, H. Wang, H. Lu, M. Zhu et al., Highly adhesive epidermal sensors with superior water-interference-resistance for aquatic applications. Adv. Funct. Mater. 33, 2302687 (2023). https://doi.org/10.1002/adfm.202302687
Y. Guo, H. Guo, Y. Han, X. Chen, J. Liu et al., Multifunctional hydrogel sensor with curved macro cracks: a strategy for high sensitivity and wide detection range. Adv. Funct. Mater. 33, 2306820 (2023). https://doi.org/10.1002/adfm.202306820
X. Xu, Z. Wang, M. Li, Y. Su, Q. Zhang et al., Reconstructed hierarchically structured keratin fibers with shape-memory features based on reversible secondary-structure transformation. Adv. Mater. 35, e2304725 (2023). https://doi.org/10.1002/adma.202304725
Y. Shen, W. Yang, F. Hu, X. Zheng, Y. Zheng et al., Ultrasensitive wearable strain sensor for promising application in cardiac rehabilitation. Adv. Compos. Hybrid Mater. 6, 21 (2022). https://doi.org/10.1007/s42114-022-00610-3
X. Shi, L. Zhu, H. Yu, Z. Tang, S. Lu et al., Interfacial click chemistry enabled strong adhesion toward ultra-durable crack-based flexible strain sensors. Adv. Funct. Mater. 33, 2301036 (2023). https://doi.org/10.1002/adfm.202301036
J. Li, S. Li, Y. Su, Stretchable strain sensors based on deterministic-contact-resistance braided structures with high performance and capability of continuous production. Adv. Funct. Mater. 32, 2208216 (2022). https://doi.org/10.1002/adfm.202208216
R. Qin, J. Nong, K. Wang, Y. Liu, S. Zhou et al., Recent advances in flexible pressure sensors based on MXene materials. Adv. Mater. 36, 2312761 (2024). https://doi.org/10.1002/adma.202312761
H. Wang, S. Li, Y. Wang, H. Wang, X. Shen et al., Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 32, e1908214 (2020). https://doi.org/10.1002/adma.201908214
Y. Bu, T. Shen, W. Yang, S. Yang, Y. Zhao et al., Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin. Sci. Bull. 66, 1849–1857 (2021). https://doi.org/10.1016/j.scib.2021.04.041
X. Cheng, J. Cai, J. Xu, D. Gong, High-performance strain sensors based on Au/graphene composite films with hierarchical cracks for wide linear-range motion monitoring. ACS Appl. Mater. Interfaces 14, 39230–39239 (2022). https://doi.org/10.1021/acsami.2c10226
H. Zhang, D. Liu, J.-H. Lee, H. Chen, E. Kim et al., Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors. Nano-Micro Lett. 13, 122 (2021). https://doi.org/10.1007/s40820-021-00615-5
B. Park, J. Kim, D. Kang, C. Jeong, K.S. Kim et al., Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Adv. Mater. 28, 8130–8137 (2016). https://doi.org/10.1002/adma.201602425
L. Duan, D.R. D’Hooge, L. Cardon, Recent progress on flexible and stretchable piezoresistive strain sensors: from design to application. Prog. Mater. Sci. 114, 100617 (2020). https://doi.org/10.1016/j.pmatsci.2019.100617
Y. Hou, L. Wang, R. Sun, Y. Zhang, M. Gu et al., Crack-across-pore enabled high-performance flexible pressure sensors for deep neural network enhanced sensing and human action recognition. ACS Nano 16, 8358–8369 (2022). https://doi.org/10.1021/acsnano.2c02609
N. Bai, Y. Xue, S. Chen, L. Shi, J. Shi et al., A robotic sensory system with high spatiotemporal resolution for texture recognition. Nat. Commun. 14, 7121 (2023). https://doi.org/10.1038/s41467-023-42722-4
D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). https://doi.org/10.1038/nature14002
L. Dong, M. Ren, Y. Wang, G. Wang, S. Zhang et al., Artificial neuromuscular fibers by multilayered coaxial integration with dynamic adaption. Sci. Adv. 8, eabq7703 (2022). https://doi.org/10.1126/sciadv.abq7703
Y. Zhao, F. Liu, N. Xie, Y. Wang, M. Liu et al., Achieving ultrasensitivity and long-term durability simultaneously for microcantilevers inspired by a scorpion’s circular tip slits. ACS Nano 16, 18048–18057 (2022). https://doi.org/10.1021/acsnano.2c04251
A. Tripathy, M.J. Nine, D. Losic, F.S. Silva, Nature inspired emerging sensing technology: recent progress and perspectives. Mater. Sci. Eng. R. Rep. 146, 100647 (2021). https://doi.org/10.1016/j.mser.2021.100647
P. Brownell, R.D. Farley, Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis. J. Comp. Physiol. 131, 23–30 (1979). https://doi.org/10.1007/BF00613080
P. Brownell, R.D. Farley, Orientation to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis: mechanism of target localization. J. Comp. Physiol. 131, 31–38 (1979). https://doi.org/10.1007/BF00613081
T. Wu, W. Xu, X. Li, Y. Du, M. Sheng et al., Bioinspired micro/nanostructured polyethylene/poly(ethylene oxide)/graphene films with robust superhydrophobicity and excellent antireflectivity for solar-thermal power generation, thermal management, and afterheat utilization. ACS Nano 16, 16624–16635 (2022). https://doi.org/10.1021/acsnano.2c06065
C. Zhang, H. Xie, Y. Du, X. Li, W. Zhou et al., Shelter forest inspired superhydrophobic flame-retardant composite with root-soil interlocked micro/nanostructure enhanced mechanical, physical, and chemical durability. Adv. Funct. Mater. 33, 2213398 (2023). https://doi.org/10.1002/adfm.202213398
L. Liu, S. Niu, J. Zhang, Z. Mu, J. Li et al., Bioinspired, omnidirectional, and hypersensitive flexible strain sensors. Adv. Mater. 34, e2200823 (2022). https://doi.org/10.1002/adma.202200823
K. Qian, J. Zhou, M. Miao, H. Wu, S. Thaiboonrod et al., Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by kevlar polyanion for piezoresistive sensing and electromagnetic interference shielding. Nano-Micro Lett. 15, 88 (2023). https://doi.org/10.1007/s40820-023-01062-0
G. Yang, L. Zhou, M. Wang, T. Xiang, D. Pan et al., Polymer composites designed with 3D fibrous CNT “tracks” achieving excellent thermal conductivity and electromagnetic interference shielding efficiency. Nano Res. 16, 11411–11421 (2023). https://doi.org/10.1007/s12274-023-5884-7
A. Kozbial, F. Zhou, H. Liu, L. Li, Are graphitic surfaces hydrophobic? Acc. Chem. Res. 49, 2765–2773 (2016). https://doi.org/10.1021/acs.accounts.6b00447
Z. Hu, F. Chu, H. Shan, X. Wu, Z. Dong et al., Understanding and utilizing droplet impact on superhydrophobic surfaces: phenomena, mechanisms, regulations, applications, and beyond. Adv. Mater. 36, e2310177 (2024). https://doi.org/10.1002/adma.202310177
X. Huang, X. Dong, J. Li, J. Liu, Droplet impact induced large deflection of a cantilever. Phys. Fluids 31, 062106 (2019). https://doi.org/10.1063/1.5099344