Bioinspired All-Fibrous Directional Moisture-Wicking Electronic Skins for Biomechanical Energy Harvesting and All-Range Health Sensing
Corresponding Author: Jinlian Hu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 60
Abstract
Electronic skins can monitor minute physiological signal variations in the human skins and represent the body’s state, showing an emerging trend for alternative medical diagnostics and human–machine interfaces. In this study, we designed a bioinspired directional moisture-wicking electronic skin (DMWES) based on the construction of heterogeneous fibrous membranes and the conductive MXene/CNTs electrospraying layer. Unidirectional moisture transfer was successfully realized by surface energy gradient and push–pull effect via the design of distinct hydrophobic-hydrophilic difference, which can spontaneously absorb sweat from the skin. The DMWES membrane showed excellent comprehensive pressure sensing performance, high sensitivity (maximum sensitivity of 548.09 kPa−1), wide linear range, rapid response and recovery time. In addition, the single-electrode triboelectric nanogenerator based on the DMWES can deliver a high areal power density of 21.6 µW m−2 and good cycling stability in high pressure energy harvesting. Moreover, the superior pressure sensing and triboelectric performance enabled the DMWES for all-range healthcare sensing, including accurate pulse monitoring, voice recognition, and gait recognition. This work will help to boost the development of the next-generation breathable electronic skins in the applications of AI, human–machine interaction, and soft robots.
Highlights:
1 Bioinspired directional moisture-wicking electronic skin (DMWES) was successfully realized by surface energy gradient and push–pull effect via the design of distinct hydrophobic-hydrophilic difference.
2 The DMWES membrane showed excellent comprehensive pressure sensing performance with high sensitivity and good single-electrode triboelectric nanogenerator performance
3 The superior pressure sensing and triboelectric performance enabled the DMWES for all-range healthcare sensing, including accurate pulse monitoring, voice recognition, and gait recognition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Chen, X. Xiao, X. Zhao, T. Tat, M. Bick et al., Electronic textiles for wearable point-of-care systems. Chem. Rev. 122(3), 3259–3291 (2022). https://doi.org/10.1021/acs.chemrev.1c00502
- Z. Wen, M.-H. Yeh, H. Guo, J. Wang, Y. Zi et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2(10), e1600097 (2016). https://doi.org/10.1126/sciadv.1600097
- X. Lin, F. Li, Y. Bing, T. Fei, S. Liu et al., Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication. Nano-Micro Lett. 13, 200 (2021). https://doi.org/10.1007/s40820-021-00701-8
- C. Zhi, S. Shi, Y. Si, B. Fei, H. Huang et al., Recent progress of wearable piezoelectric pressure sensors based on nanofibers, yarns, and their fabrics via electrospinning. Adv. Mater. Technol. (2022). https://doi.org/10.1002/admt.202201161
- Y. Yang, T. Cui, D. Li, S. Ji, Z. Chen et al., Breathable electronic skins for daily physiological signal monitoring. Nano-Micro Lett. 14, 161 (2022). https://doi.org/10.1007/s40820-022-00911-8
- M. Zhu, Y. Wang, M. Lou, J. Yu, Z. Li et al., Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing. Nano Energy 81, 105669 (2021). https://doi.org/10.1016/j.nanoen.2020.105669
- Y. Khan, M. Garg, Q. Gui, M. Schadt, A. Gaikwad et al., Flexible hybrid electronics: direct interfacing of soft and hard electronics for wearable health monitoring. Adv. Funct. Mater. 26(47), 8764–8775 (2016). https://doi.org/10.1002/adfm.201603763
- M. Zhu, J. Li, J. Yu, Z. Li, B. Ding, Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew. Chem. Int. Ed. 61(22), e202200226 (2022). https://doi.org/10.1002/anie.202200226
- W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang et al., Bioinspired MXene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 14, 119 (2022). https://doi.org/10.1007/s40820-022-00838-0
- C. Bai, Z. Wang, S. Yang, X. Cui, X. Li et al., Wearable electronics based on the gel thermogalvanic electrolyte for self-powered human health monitoring. ACS Appl. Mater. Interfaces 13(31), 37316–37322 (2021). https://doi.org/10.1021/acsami.1c12443
- R. Wu, S. Seo, L. Ma, J. Bae, T. Kim, Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network. Nano-Micro Lett. 14(1), 139 (2022). https://doi.org/10.1007/s40820-022-00887-5
- J. Cai, M. Du, Z. Li, Flexible temperature sensors constructed with fiber materials. Adv. Mater. Technol. 7(7), 2101182 (2022). https://doi.org/10.1002/admt.202101182
- S. Cai, C. Xu, D. Jiang, M. Yuan, Q. Zhang et al., Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy 93, 106904 (2022). https://doi.org/10.1016/j.nanoen.2021.106904
- S. Shi, Y. Si, Y. Han, T. Wu, M.I. Iqbal et al., Recent progress in protective membranes fabricated via electrospinning: Advanced materials, biomimetic structures, and functional applications. Adv. Mater. 34(17), 2107938 (2022). https://doi.org/10.1002/adma.202107938
- Y. Li, J. Zhu, H. Cheng, G. Li, H. Cho et al., Developments of advanced electrospinning techniques: A critical review. Adv. Mater. Technol. 6(11), 2100410 (2021). https://doi.org/10.1002/admt.202100410
- M. Zhu, J. Yu, Z. Li, B. Ding, Self-healing fibrous membranes. Angew. Chem. Int. Ed. 61(41), e202208949 (2022). https://doi.org/10.1002/anie.202208949
- J. Sheng, Y. Xu, J. Yu, B. Ding, Robust fluorine-free superhydrophobic amino-silicone oil/SiO2 modification of electrospun polyacrylonitrile membranes for waterproof-breathable application. ACS Appl. Mater. Interfaces 9(17), 15139–15147 (2017). https://doi.org/10.1021/acsami.7b02594
- K. Dong, X. Peng, Z.L. Wang, Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32(5), 1902549 (2020). https://doi.org/10.1002/adma.201902549
- Z. Li, M. Zhu, J. Shen, Q. Qiu, J. Yu et al., All-fiber structured electronic skin with high elasticity and breathability. Adv. Funct. Mater. 30(6), 1908411 (2020). https://doi.org/10.1002/adfm.201908411
- X. Peng, K. Dong, C. Ye, Y. Jiang, S. Zhai et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6(26), eaba9624 (2020). https://doi.org/10.1126/sciadv.aba9624
- J. Dong, Y. Peng, X. Nie, L. Li, C. Zhang et al., Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode. Adv. Funct. Mater. 32(48), 2209762 (2022). https://doi.org/10.1002/adfm.202209762
- Y. Jiang, K. Dong, X. Li, J. An, D. Wu et al., Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors. Adv. Funct. Mater. 31(1), 2005584 (2021). https://doi.org/10.1002/adfm.202005584
- W. Guo, C. Tan, K. Shi, J. Li, X.-X. Wang et al., Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale 10(37), 17751–17760 (2018). https://doi.org/10.1039/C8NR05292A
- Y. Zou, V. Raveendran, J. Chen, Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 77, 105303 (2020). https://doi.org/10.1016/j.nanoen.2020.105303
- M. Zhu, M. Lou, I. Abdalla, J. Yu, Z. Li et al., Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. Nano Energy 69, 104429 (2020). https://doi.org/10.1016/j.nanoen.2019.104429
- D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13(1), 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
- S. Zhang, T. Tu, T. Li, Y. Cai, Z. Wang et al., 3D MXene/PEDOT:PSS composite aerogel with a controllable patterning property for highly sensitive wearable physical monitoring and robotic tactile sensing. ACS Appl. Mater. Interfaces 14(20), 23877–23887 (2022). https://doi.org/10.1021/acsami.2c03350
- Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
- Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 19(2), 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
- Y. Gao, C. Yan, H. Huang, T. Yang, G. Tian et al., Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 30(11), 1909603 (2020). https://doi.org/10.1002/adfm.201909603
- X. Li, X. Li, T. Liu, Y. Lu, C. Shang et al., Wearable, washable, and highly sensitive piezoresistive pressure sensor based on a 3D sponge network for real-time monitoring human body activities. ACS Appl. Mater. Interfaces 13(39), 46848–46857 (2021). https://doi.org/10.1021/acsami.1c09975
- L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14(8), 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
- Z. Wu, L. Wei, S. Tang, Y. Xiong, X. Qin et al., Recent progress in Ti3C2Tx MXene-based flexible pressure sensors. ACS Nano 15(12), 18880–18894 (2021). https://doi.org/10.1021/acsnano.1c08239
- Q. Yu, C. Su, S. Bi, Y. Huang, J. Li et al., Ti3C2Tx@nonwoven fabric composite: Promising MXene-coated fabric for wearable piezoresistive pressure sensors. ACS Appl. Mater. Interfaces 14(7), 9632–9643 (2022). https://doi.org/10.1021/acsami.2c00980
- T. Su, N. Liu, D. Lei, L. Wang, Z. Ren et al., Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism. ACS Nano 16(5), 8461–8471 (2022). https://doi.org/10.1021/acsnano.2c03155
- Y. Sun, Z. Guo, Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. Nanoscale Horiz. 4(1), 52–76 (2019). https://doi.org/10.1039/C8NH00223A
- X. Lan, H. Wang, Y. Liu, X. Chen, J. Xiong et al., Biodegradable trilayered micro/nano-fibrous membranes with efficient filtration, directional moisture transport and antibacterial properties. Chem. Eng. J. 447, 137518 (2022). https://doi.org/10.1016/j.cej.2022.137518
- S. Li, P. Xiao, W. Zhou, Y. Liang, S.-W. Kuo et al., Bioinspired nanostructured superwetting thin-films in a self-supported form enabled “miniature umbrella” for weather monitoring and water rescue. Nano-Micro Lett. 14(1), 32 (2021). https://doi.org/10.1007/s40820-021-00775-4
- R. Shi, Y. Tian, L. Wang, Bioinspired fibers with controlled wettability: from spinning to application. ACS Nano 15(5), 7907–7930 (2021). https://doi.org/10.1021/acsnano.0c08898
- X. Xiao, S. Li, X. Zhu, X. Xiao, C. Zhang et al., Bioinspired two-dimensional structure with asymmetric wettability barriers for unidirectional and long-distance gas bubble delivery underwater. Nano Lett. 21(5), 2117–2123 (2021). https://doi.org/10.1021/acs.nanolett.0c04814
- E. Xu, P. Li, J. Quan, H. Zhu, L. Wang et al., Dimensional gradient structure of CoSe2@CNTs-MXene anode assisted by ether for high-capacity, stable sodium storage. Nano-Micro Lett. 13(1), 40 (2021). https://doi.org/10.1007/s40820-020-00562-7
- N. Wang, Y. Feng, Y. Zheng, L. Zhang, M. Feng et al., New hydrogen bonding enhanced polyvinyl alcohol based self-charged medical mask with superior charge retention and moisture resistance performances. Adv. Funct. Mater. 31(14), 2009172 (2021). https://doi.org/10.1002/adfm.202009172
- X. Meng, Y. Sun, M. Yu, Z. Wang, J. Qiu, Hydrogen-bonding crosslinking MXene to highly robust and ultralight aerogels for strengthening lithium metal anode. Small Sci. 1(9), 2100021 (2021). https://doi.org/10.1002/smsc.202100021
- S. Sharma, A. Chhetry, S. Zhang, H. Yoon, C. Park et al., Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range. ACS Nano 15(3), 4380–4393 (2021). https://doi.org/10.1021/acsnano.0c07847
- S.M.S. Rana, M.T. Rahman, M. Salauddin, S. Sharma, P. Maharjan et al., Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances. ACS Appl. Mater. Interfaces 13(4), 4955–4967 (2021). https://doi.org/10.1021/acsami.0c17512
- Y. Zhao, H. Wang, H. Zhou, T. Lin, Directional fluid transport in thin porous materials and its functional applications. Small 13(4), 1601070 (2017). https://doi.org/10.1002/smll.201601070
- Y. Si, S. Shi, Z. Dong, H. Wu, F. Sun et al., Bioinspired stable single-layer Janus fabric with directional water/moisture transport property for integrated personal cooling management. Adv. Fiber Mater. (2022). https://doi.org/10.1007/s42765-022-00200-4
- X. Fu, L. Wang, L. Zhao, Z. Yuan, Y. Zhang et al., Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv. Funct. Mater. 31(17), 2010533 (2021). https://doi.org/10.1002/adfm.202010533
- Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
- J. Yan, Y. Ma, G. Jia, S. Zhao, Y. Yue et al., Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem. Eng. J. 431(4), 133458 (2022). https://doi.org/10.1016/j.cej.2021.133458
- L. Li, Y. Cheng, H. Cao, Z. Liang, Z. Liu et al., MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy 95, 106986 (2022). https://doi.org/10.1016/j.nanoen.2022.106986
- X. Zheng, Q. Hu, Z. Wang, W. Nie, P. Wang et al., Roll-to-roll layer-by-layer assembly bark-shaped carbon nanotube/Ti3C2Tx MXene textiles for wearable electronics. J. Colloid Interface Sci. 602, 680–688 (2021). https://doi.org/10.1016/j.jcis.2021.06.043
- J. Chen, J. Zhang, J. Hu, N. Luo, F. Sun et al., Ultrafast-response/recovery flexible piezoresistive sensors with DNA-like double helix yarns for epidermal pulse monitoring. Adv. Mater. 34(2), 2104313 (2022). https://doi.org/10.1002/adma.202104313
- D.-M. Drotlef, M. Amjadi, M. Yunusa, M. Sitti, Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 29(28), 1701353 (2017). https://doi.org/10.1002/adma.201701353
- L. Song, E. Xu, Y. Yu, J. Jie, Y. Xia et al., High-barrier-height Ti3C2Tx/Si microstructure schottky junction-based self-powered photodetectors for photoplethysmographic monitoring. Adv. Mater. Technol. 7(12), 2200555 (2022). https://doi.org/10.1002/admt.202200555
- Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
References
G. Chen, X. Xiao, X. Zhao, T. Tat, M. Bick et al., Electronic textiles for wearable point-of-care systems. Chem. Rev. 122(3), 3259–3291 (2022). https://doi.org/10.1021/acs.chemrev.1c00502
Z. Wen, M.-H. Yeh, H. Guo, J. Wang, Y. Zi et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2(10), e1600097 (2016). https://doi.org/10.1126/sciadv.1600097
X. Lin, F. Li, Y. Bing, T. Fei, S. Liu et al., Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication. Nano-Micro Lett. 13, 200 (2021). https://doi.org/10.1007/s40820-021-00701-8
C. Zhi, S. Shi, Y. Si, B. Fei, H. Huang et al., Recent progress of wearable piezoelectric pressure sensors based on nanofibers, yarns, and their fabrics via electrospinning. Adv. Mater. Technol. (2022). https://doi.org/10.1002/admt.202201161
Y. Yang, T. Cui, D. Li, S. Ji, Z. Chen et al., Breathable electronic skins for daily physiological signal monitoring. Nano-Micro Lett. 14, 161 (2022). https://doi.org/10.1007/s40820-022-00911-8
M. Zhu, Y. Wang, M. Lou, J. Yu, Z. Li et al., Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing. Nano Energy 81, 105669 (2021). https://doi.org/10.1016/j.nanoen.2020.105669
Y. Khan, M. Garg, Q. Gui, M. Schadt, A. Gaikwad et al., Flexible hybrid electronics: direct interfacing of soft and hard electronics for wearable health monitoring. Adv. Funct. Mater. 26(47), 8764–8775 (2016). https://doi.org/10.1002/adfm.201603763
M. Zhu, J. Li, J. Yu, Z. Li, B. Ding, Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew. Chem. Int. Ed. 61(22), e202200226 (2022). https://doi.org/10.1002/anie.202200226
W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang et al., Bioinspired MXene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 14, 119 (2022). https://doi.org/10.1007/s40820-022-00838-0
C. Bai, Z. Wang, S. Yang, X. Cui, X. Li et al., Wearable electronics based on the gel thermogalvanic electrolyte for self-powered human health monitoring. ACS Appl. Mater. Interfaces 13(31), 37316–37322 (2021). https://doi.org/10.1021/acsami.1c12443
R. Wu, S. Seo, L. Ma, J. Bae, T. Kim, Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network. Nano-Micro Lett. 14(1), 139 (2022). https://doi.org/10.1007/s40820-022-00887-5
J. Cai, M. Du, Z. Li, Flexible temperature sensors constructed with fiber materials. Adv. Mater. Technol. 7(7), 2101182 (2022). https://doi.org/10.1002/admt.202101182
S. Cai, C. Xu, D. Jiang, M. Yuan, Q. Zhang et al., Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy 93, 106904 (2022). https://doi.org/10.1016/j.nanoen.2021.106904
S. Shi, Y. Si, Y. Han, T. Wu, M.I. Iqbal et al., Recent progress in protective membranes fabricated via electrospinning: Advanced materials, biomimetic structures, and functional applications. Adv. Mater. 34(17), 2107938 (2022). https://doi.org/10.1002/adma.202107938
Y. Li, J. Zhu, H. Cheng, G. Li, H. Cho et al., Developments of advanced electrospinning techniques: A critical review. Adv. Mater. Technol. 6(11), 2100410 (2021). https://doi.org/10.1002/admt.202100410
M. Zhu, J. Yu, Z. Li, B. Ding, Self-healing fibrous membranes. Angew. Chem. Int. Ed. 61(41), e202208949 (2022). https://doi.org/10.1002/anie.202208949
J. Sheng, Y. Xu, J. Yu, B. Ding, Robust fluorine-free superhydrophobic amino-silicone oil/SiO2 modification of electrospun polyacrylonitrile membranes for waterproof-breathable application. ACS Appl. Mater. Interfaces 9(17), 15139–15147 (2017). https://doi.org/10.1021/acsami.7b02594
K. Dong, X. Peng, Z.L. Wang, Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32(5), 1902549 (2020). https://doi.org/10.1002/adma.201902549
Z. Li, M. Zhu, J. Shen, Q. Qiu, J. Yu et al., All-fiber structured electronic skin with high elasticity and breathability. Adv. Funct. Mater. 30(6), 1908411 (2020). https://doi.org/10.1002/adfm.201908411
X. Peng, K. Dong, C. Ye, Y. Jiang, S. Zhai et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6(26), eaba9624 (2020). https://doi.org/10.1126/sciadv.aba9624
J. Dong, Y. Peng, X. Nie, L. Li, C. Zhang et al., Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode. Adv. Funct. Mater. 32(48), 2209762 (2022). https://doi.org/10.1002/adfm.202209762
Y. Jiang, K. Dong, X. Li, J. An, D. Wu et al., Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors. Adv. Funct. Mater. 31(1), 2005584 (2021). https://doi.org/10.1002/adfm.202005584
W. Guo, C. Tan, K. Shi, J. Li, X.-X. Wang et al., Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale 10(37), 17751–17760 (2018). https://doi.org/10.1039/C8NR05292A
Y. Zou, V. Raveendran, J. Chen, Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 77, 105303 (2020). https://doi.org/10.1016/j.nanoen.2020.105303
M. Zhu, M. Lou, I. Abdalla, J. Yu, Z. Li et al., Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. Nano Energy 69, 104429 (2020). https://doi.org/10.1016/j.nanoen.2019.104429
D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13(1), 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
S. Zhang, T. Tu, T. Li, Y. Cai, Z. Wang et al., 3D MXene/PEDOT:PSS composite aerogel with a controllable patterning property for highly sensitive wearable physical monitoring and robotic tactile sensing. ACS Appl. Mater. Interfaces 14(20), 23877–23887 (2022). https://doi.org/10.1021/acsami.2c03350
Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 19(2), 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
Y. Gao, C. Yan, H. Huang, T. Yang, G. Tian et al., Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 30(11), 1909603 (2020). https://doi.org/10.1002/adfm.201909603
X. Li, X. Li, T. Liu, Y. Lu, C. Shang et al., Wearable, washable, and highly sensitive piezoresistive pressure sensor based on a 3D sponge network for real-time monitoring human body activities. ACS Appl. Mater. Interfaces 13(39), 46848–46857 (2021). https://doi.org/10.1021/acsami.1c09975
L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14(8), 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
Z. Wu, L. Wei, S. Tang, Y. Xiong, X. Qin et al., Recent progress in Ti3C2Tx MXene-based flexible pressure sensors. ACS Nano 15(12), 18880–18894 (2021). https://doi.org/10.1021/acsnano.1c08239
Q. Yu, C. Su, S. Bi, Y. Huang, J. Li et al., Ti3C2Tx@nonwoven fabric composite: Promising MXene-coated fabric for wearable piezoresistive pressure sensors. ACS Appl. Mater. Interfaces 14(7), 9632–9643 (2022). https://doi.org/10.1021/acsami.2c00980
T. Su, N. Liu, D. Lei, L. Wang, Z. Ren et al., Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism. ACS Nano 16(5), 8461–8471 (2022). https://doi.org/10.1021/acsnano.2c03155
Y. Sun, Z. Guo, Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. Nanoscale Horiz. 4(1), 52–76 (2019). https://doi.org/10.1039/C8NH00223A
X. Lan, H. Wang, Y. Liu, X. Chen, J. Xiong et al., Biodegradable trilayered micro/nano-fibrous membranes with efficient filtration, directional moisture transport and antibacterial properties. Chem. Eng. J. 447, 137518 (2022). https://doi.org/10.1016/j.cej.2022.137518
S. Li, P. Xiao, W. Zhou, Y. Liang, S.-W. Kuo et al., Bioinspired nanostructured superwetting thin-films in a self-supported form enabled “miniature umbrella” for weather monitoring and water rescue. Nano-Micro Lett. 14(1), 32 (2021). https://doi.org/10.1007/s40820-021-00775-4
R. Shi, Y. Tian, L. Wang, Bioinspired fibers with controlled wettability: from spinning to application. ACS Nano 15(5), 7907–7930 (2021). https://doi.org/10.1021/acsnano.0c08898
X. Xiao, S. Li, X. Zhu, X. Xiao, C. Zhang et al., Bioinspired two-dimensional structure with asymmetric wettability barriers for unidirectional and long-distance gas bubble delivery underwater. Nano Lett. 21(5), 2117–2123 (2021). https://doi.org/10.1021/acs.nanolett.0c04814
E. Xu, P. Li, J. Quan, H. Zhu, L. Wang et al., Dimensional gradient structure of CoSe2@CNTs-MXene anode assisted by ether for high-capacity, stable sodium storage. Nano-Micro Lett. 13(1), 40 (2021). https://doi.org/10.1007/s40820-020-00562-7
N. Wang, Y. Feng, Y. Zheng, L. Zhang, M. Feng et al., New hydrogen bonding enhanced polyvinyl alcohol based self-charged medical mask with superior charge retention and moisture resistance performances. Adv. Funct. Mater. 31(14), 2009172 (2021). https://doi.org/10.1002/adfm.202009172
X. Meng, Y. Sun, M. Yu, Z. Wang, J. Qiu, Hydrogen-bonding crosslinking MXene to highly robust and ultralight aerogels for strengthening lithium metal anode. Small Sci. 1(9), 2100021 (2021). https://doi.org/10.1002/smsc.202100021
S. Sharma, A. Chhetry, S. Zhang, H. Yoon, C. Park et al., Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range. ACS Nano 15(3), 4380–4393 (2021). https://doi.org/10.1021/acsnano.0c07847
S.M.S. Rana, M.T. Rahman, M. Salauddin, S. Sharma, P. Maharjan et al., Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances. ACS Appl. Mater. Interfaces 13(4), 4955–4967 (2021). https://doi.org/10.1021/acsami.0c17512
Y. Zhao, H. Wang, H. Zhou, T. Lin, Directional fluid transport in thin porous materials and its functional applications. Small 13(4), 1601070 (2017). https://doi.org/10.1002/smll.201601070
Y. Si, S. Shi, Z. Dong, H. Wu, F. Sun et al., Bioinspired stable single-layer Janus fabric with directional water/moisture transport property for integrated personal cooling management. Adv. Fiber Mater. (2022). https://doi.org/10.1007/s42765-022-00200-4
X. Fu, L. Wang, L. Zhao, Z. Yuan, Y. Zhang et al., Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv. Funct. Mater. 31(17), 2010533 (2021). https://doi.org/10.1002/adfm.202010533
Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
J. Yan, Y. Ma, G. Jia, S. Zhao, Y. Yue et al., Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem. Eng. J. 431(4), 133458 (2022). https://doi.org/10.1016/j.cej.2021.133458
L. Li, Y. Cheng, H. Cao, Z. Liang, Z. Liu et al., MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy 95, 106986 (2022). https://doi.org/10.1016/j.nanoen.2022.106986
X. Zheng, Q. Hu, Z. Wang, W. Nie, P. Wang et al., Roll-to-roll layer-by-layer assembly bark-shaped carbon nanotube/Ti3C2Tx MXene textiles for wearable electronics. J. Colloid Interface Sci. 602, 680–688 (2021). https://doi.org/10.1016/j.jcis.2021.06.043
J. Chen, J. Zhang, J. Hu, N. Luo, F. Sun et al., Ultrafast-response/recovery flexible piezoresistive sensors with DNA-like double helix yarns for epidermal pulse monitoring. Adv. Mater. 34(2), 2104313 (2022). https://doi.org/10.1002/adma.202104313
D.-M. Drotlef, M. Amjadi, M. Yunusa, M. Sitti, Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 29(28), 1701353 (2017). https://doi.org/10.1002/adma.201701353
L. Song, E. Xu, Y. Yu, J. Jie, Y. Xia et al., High-barrier-height Ti3C2Tx/Si microstructure schottky junction-based self-powered photodetectors for photoplethysmographic monitoring. Adv. Mater. Technol. 7(12), 2200555 (2022). https://doi.org/10.1002/admt.202200555
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8