Interface Engineering of Titanium Nitride Nanotube Composites for Excellent Microwave Absorption at Elevated Temperature
Corresponding Author: Chunhong Gong
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 168
Abstract
Currently, the microwave absorbers usually suffer dreadful electromagnetic wave absorption (EMWA) performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss. Consequently, the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority. Herein, due to the high melting point, good electrical conductivity, excellent environmental stability, EM coupling effect, and abundant interfaces of titanium nitride (TiN) nanotubes, they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process. Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane (PDMS), enhanced polarization loss relaxations were created, which could not only improve the depletion efficiency of EMWA, but also contribute to the optimized impedance matching at elevated temperature. Therefore, the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature (298–573 K), while achieved an effective absorption bandwidth (EAB) value of 3.23 GHz and a minimum reflection loss (RLmin) value of − 44.15 dB at 423 K. This study not only clarifies the relationship between dielectric loss capacity (conduction loss and polarization loss) and temperature, but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.
Highlights:
1 The boosted heterogeneous interfaces in titanium nitride (TiN) nanotube/polydimethylsiloxane (PDMS) composite contributed to strong polarization loss relaxation ability.
2 The TiN nanotubes/PDMS composite possessed both good impedance matching behavior and strong dielectric loss ability in wide temperature spectrum.
3 The TiN nanotubes/PDMS composite exhibited excellent EMWA performances (effective absorption bandwidth value of 3.23 GHz and minimum reflection loss value of − 44.15 dB) at the varied temperature from 298 to 573 K.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29, 1901236 (2019). https://doi.org/10.1002/adfm.201901236
- J. Zhao, Z. Gu, Q. Zhang, Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res. (2023). https://doi.org/10.1007/s12274-023-6090-3
- Z. Jiang, Y. Gao, Z. Pan, M. Zhang, J. Guo et al., Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 174, 195–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.013
- J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2023). https://doi.org/10.1007/s40820-023-01246-8
- K. Gong, Y. Peng, A. Liu, S. Qi, H. Qiu, Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos. Part A Appl. Sci. Manuf. 176, 107857 (2024). https://doi.org/10.1016/j.compositesa.2023.107857
- Y. Zhang, J. Kong, J. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67, 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
- Z. Jiang, H. Si, Y. Li, D. Li, H. Chen et al., Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 15, 8546–8554 (2022). https://doi.org/10.1007/s12274-022-4674-y
- Y. Shi, D. Li, H. Si, Y. Duan, C. Gong et al., TiN/Fe2Ni2N/SiO2 composites for magnetic-dielectric balance to facilitate temperature-stable broadband microwave absorption. J. Alloys Compd. 918, 165603 (2022). https://doi.org/10.1016/j.jallcom.2022.165603
- Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
- M.-M. Lu, M.-S. Cao, Y.-H. Chen, W.-Q. Cao, J. Liu et al., Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 7, 19408–19415 (2015). https://doi.org/10.1021/acsami.5b05595
- L. Zhou, Y. Tian, P. Xu, H. Wei, Y. Li et al., Effect of the selective localization of carbon nanotubes and phase domain in immiscible blends on tunable microwave dielectric properties. Compos. Sci. Technol. 213, 108919 (2021). https://doi.org/10.1016/j.compscitech.2021.108919
- W.-Q. Cao, X.-X. Wang, J. Yuan, W.-Z. Wang, M.-S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015). https://doi.org/10.1039/C5TC02185E
- Q. Zhou, X. Yin, F. Ye, Z. Tang, R. Mo et al., High temperature electromagnetic wave absorption properties of SiCf/Si3N4 composite induced by different SiC fibers. Ceram. Int. 45, 6514–6522 (2019). https://doi.org/10.1016/j.ceramint.2018.12.142
- Y. Shi, D. Li, H. Si, Z. Jiang, M. Li et al., TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 130, 249–255 (2022). https://doi.org/10.1016/j.jmst.2022.04.050
- P. Liu, Y. Wang, G. Zhang, Y. Huang, R. Zhang et al., Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 32, 2202588 (2022). https://doi.org/10.1002/adfm.202202588
- D. Lan, Z. Zhao, Z. Gao, K. Kou, H. Wu, Novel magnetic silicate composite for lightweight and efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 92(33), 51–59 (2021). https://doi.org/10.1016/j.jmst.2021.03.029
- G. Wang, C. Li, D. Estevez, P. Xu, M. Peng et al., Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 15, 152 (2023). https://doi.org/10.1007/s40820-023-01123-4
- Z. Zhou, Q. Zhu, Y. Liu, Y. Zhang, Z. Jia et al., Construction of self-assembly based tunable absorber: Lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 15, 137 (2023). https://doi.org/10.1007/s40820-023-01108-3
- M.-S. Cao, X.-X. Wang, M. Zhang, W.-Q. Cao, X.-Y. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32, e1907156 (2020). https://doi.org/10.1002/adma.201907156
- H. Lv, Y. Guo, Z. Yang, T. Guo, H. Wu et al., Doping strategy to boost the electromagnetic wave attenuation ability of hollow carbon spheres at elevated temperatures. ACS Sustainable Chem. Eng. 6, 1539–1544 (2018). https://doi.org/10.1021/acssuschemeng.7b03857
- N. Gao, W.-P. Li, W.-S. Wang, D.-P. Liu, Y.-M. Cui et al., Balancing dielectric loss and magnetic loss in Fe-NiS2/NiS/PVDF composites toward strong microwave reflection loss. ACS Appl. Mater. Interfaces 12, 14416–14424 (2020). https://doi.org/10.1021/acsami.9b23379
- L. Song, F. Zhang, Y. Chen, L. Guan, Y. Zhu et al., Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption. Nano-Micro Lett. 14, 152 (2022). https://doi.org/10.1007/s40820-022-00905-6
- D. Zhang, T. Liu, J. Cheng, Q. Cao, G. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2–RGO heterostructures. Nano-Micro Lett. 11, 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
- H. Gu, J. Huang, N. Li, H. Yang, G. Chen et al., Reactive MnO2 template-assisted synthesis of double-shelled PPy hollow nanotubes to boost microwave absorption. J. Mater. Sci. Technol. 146, 145–153 (2023). https://doi.org/10.1016/j.jmst.2022.11.010
- Z. Hou, X. Yin, H. Xu, H. Wei, M. Li et al., Reduced graphene oxide/silicon nitride composite for cooperative electromagnetic absorption in wide temperature spectrum with excellent thermal stability. ACS Appl. Mater. Interfaces 11, 5364–5372 (2019). https://doi.org/10.1021/acsami.8b20023
- H. Xu, X. Yin, M. Li, F. Ye, M. Han et al., Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 132, 343–351 (2018). https://doi.org/10.1016/j.carbon.2018.02.040
- H.-Y. Wang, X.-B. Sun, S.-H. Yang, P.-Y. Zhao, X.-J. Zhang et al., 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y
- C. Li, L. Zhang, S. Zhang, Q. Yu, D. Li et al., Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum. Nano Res. (2023). https://doi.org/10.1007/s12274-023-6350-2
- C. Gong, C. Yan, J. Zhang, X. Cheng, H. Pan et al., Room-temperature ferromagnetism evolution in nanostructured titanium nitride superconductors—the influence of structural defects. J. Mater. Chem. 21, 15273–15278 (2011). https://doi.org/10.1039/C1JM12359A
- C. Gong, J. Zhang, C. Yan, X. Cheng, J. Zhang et al., Synthesis and microwave electromagnetic properties of nanosized titanium nitride. J. Mater. Chem. 22, 3370–3376 (2012). https://doi.org/10.1039/C1JM13509K
- S. Peng, L. Li, Y. Hu, M. Srinivasan, F. Cheng et al., Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 9, 1945–1954 (2015). https://doi.org/10.1021/nn506851x
- M. Einert, R. Ostermann, T. Weller, S. Zellmer, G. Garnweitner et al., Hollow α-Fe2O3 nanofibres for solar water oxidation: improving the photoelectrochemical performance by formation of α-Fe2O3/ITO-composite photoanodes. J. Mater. Chem. A 4, 18444–18456 (2016). https://doi.org/10.1039/C6TA06979G
- X. Li, W. You, R. Zhang, J. Fang, Q. Zeng et al., Synthesis of nonspherical hollow architecture with magnetic Fe core and Ni decorated tadpole-like shell as ultrabroad bandwidth microwave absorbers. Small 17, e2103351 (2021). https://doi.org/10.1002/smll.202103351
- C. Zhang, X. Li, Y. Shi, H. Wu, Y. Shen et al., Structure engineering of graphene nanocages toward high-performance microwave absorption applications. Adv. Opt. Mater. 10, 2101904 (2022). https://doi.org/10.1002/adom.202101904
- C. Xu, P. Liu, Z. Wu, H. Zhang, R. Zhang et al., Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption. Adv. Sci. 9, e2200804 (2022). https://doi.org/10.1002/advs.202200804
- J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F- regulation engineering. Adv. Funct. Mater. 32, 2110496 (2022). https://doi.org/10.1002/adfm.202110496
- Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32(34), 2204499 (2022). https://doi.org/10.1002/adfm.202204499
- J. Xiang, J. Li, X. Zhang, Q. Ye, J. Xu et al., Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanops as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A 2, 16905–16914 (2014). https://doi.org/10.1039/C4TA03732D
- H. Ding, Z. Sun, S. Tian, P. Wang, Z. Guo et al., Tailoring Ni3ZnC0.7/graphite heterostructure in N-rich laminated porous carbon nanosheets for highly efficient microwave absorption. Ceram. Int. 49, 31763–31772 (2023). https://doi.org/10.1016/j.ceramint.2023.07.131
- X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang et al., Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8, 6101–6109 (2016). https://doi.org/10.1021/acsami.6b00388
- X. Tian, Y. Wang, F. Peng, F. Huang, W. Tian et al., Defect-enhanced electromagnetic wave absorption property of hierarchical graphite capsules@helical carbon nanotube hybrid nanocomposites. ACS Appl. Mater. Interfaces 13, 28710–28720 (2021). https://doi.org/10.1021/acsami.1c06871
- H. Lv, C. Wu, J. Tang, H. Du, F. Qin et al., Two-dimensional SnO/SnO2 heterojunctions for electromagnetic wave absorption. Chem. Eng. J. 411, 128445 (2021). https://doi.org/10.1016/j.cej.2021.128445
- H. Wang, F. Meng, F. Huang, C. Jing, Y. Li et al., Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11, 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122
- H. Zhang, H. Liu, H. Wu, M. Yuan, J. Chen et al., Microwave absorbing property of gelcasting SiC-Si3N4 ceramics with hierarchical pore structures. J. Eur. Ceram. Soc. 42, 1249–1257 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.12.011
- T. Han, R.Y. Luo, G.Y. Cui, L.Y. Wang, Effect of SiC nanowires on the high-temperature microwave absorption properties of SiCf/SiC composites. J. Eur. Ceram. Soc. 39, 1743–1756 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.01.018
- H. Wang, D. Zhu, W. Zhou, F. Luo, High temperature electromagnetic and microwave absorbing properties of polyimide/multi-walled carbon nanotubes nancomposites. Chem. Phys. Lett. 633, 223–228 (2015). https://doi.org/10.1016/j.cplett.2015.05.048
- W. Zhou, R.-M. Yin, L. Long, H. Luo, W.-D. Hu et al., Enhanced high-temperature dielectric properties and microwave absorption of SiC nanofibers modified Si3N4 ceramics within the gigahertz range. Ceram. Int. 44, 12301–12307 (2018). https://doi.org/10.1016/j.ceramint.2018.04.017
- J. Liu, L. Zhang, H. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32, 2200544 (2022). https://doi.org/10.1002/adfm.202200544
- C. Wei, M. He, M. Li, X. Ma, W. Dang et al., Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 36, 101142 (2023). https://doi.org/10.1016/j.mtphys.2023.101142
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
- Y. Han, M. He, J. Hu, P. Liu, Z. Liu et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 16, 1773–1778 (2023). https://doi.org/10.1007/s12274-022-5111-y
- L. Cai, F. Pan, X. Zhu, Y. Dong, Y. Shi et al., Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for high-performance microwave absorbers. Chem. Eng. J. 434, 133865 (2022). https://doi.org/10.1016/j.cej.2021.133865
- J. Zhang, X. Qi, X. Gong, Q. Peng, Y. Chen et al., Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption. J. Mater. Sci. Technol. 128, 59–70 (2022). https://doi.org/10.1016/j.jmst.2022.04.017
- S. Tian, Z. Sun, H. Ding, Z. Guo, P. Wang et al., Coordination environment-mediated different heteroatomic configuration from doping strategy for enhancing microwave absorption. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202310475
- Y. Tian, D. Estevez, G. Wang, M. Peng, F. Qin, Macro-ordered porous carbon nanocomposites for efficient microwave absorption. Carbon 218, 118614 (2024). https://doi.org/10.1016/j.carbon.2023.118614
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202313544
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- J.M. Xu, L. Xia, J.H. Luo, S.R. Lu, X.X. Huang et al., High-performance electromagnetic wave absorbing CNT/SiCf composites: synthesis, tuning, and mechanism. ACS Appl. Mater. Interfaces 12, 20775–20784 (2020). https://doi.org/10.1021/acsami.9b19281
- X.C. Di, Y. Wang, Y.Q. Fu, X.M. Wu, P. Wang, Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber. Carbon 173, 174–184 (2021). https://doi.org/10.1016/j.carbon.2020.11.006
- X. Wang, J.-C. Shu, X.-M. He, M. Zhang, X.-X. Wang et al., Green approach to conductive PEDOT: PSS decorating magnetic-graphene to recover conductivity for highly efficient absorption. ACS Sustain. Chem. Eng. 6, 14017–14025 (2018). https://doi.org/10.1021/acssuschemeng.8b02534
- R. Xing, G. Xu, N. Qu, R. Zhou, J. Yang et al., 3D printing of liquid-metal-in-ceramic metamaterials for high-efficient microwave absorption. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202307499
- Z. Cheng, R. Wang, Y. Cao, Z. Cai, Z. Zhang et al., Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel. Adv. Funct. Mater. 32, 2205160 (2022). https://doi.org/10.1002/adfm.202205160
- C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
- Y. Tian, D. Zhi, T. Li, J. Li, J. Li et al., Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic attenuation. Chem. Eng. J. 464, 142644 (2023). https://doi.org/10.1016/j.cej.2023.142644
- H. Li, T. Zhang, J. Zhang, W. Zhang, H. Lu et al., Amorphism SiBON interface anchored rGO nanoplatelets composites with tunable electromagnetic properties for microwave absorption. Carbon 214, 118343 (2023). https://doi.org/10.1016/j.carbon.2023.118343
- Y. Tian, D. Estevez, H. Wei, M. Peng, L. Zhou et al., Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption. Chem. Eng. J. 421, 129781 (2021). https://doi.org/10.1016/j.cej.2021.129781
References
B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29, 1901236 (2019). https://doi.org/10.1002/adfm.201901236
J. Zhao, Z. Gu, Q. Zhang, Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res. (2023). https://doi.org/10.1007/s12274-023-6090-3
Z. Jiang, Y. Gao, Z. Pan, M. Zhang, J. Guo et al., Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 174, 195–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.013
J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2023). https://doi.org/10.1007/s40820-023-01246-8
K. Gong, Y. Peng, A. Liu, S. Qi, H. Qiu, Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos. Part A Appl. Sci. Manuf. 176, 107857 (2024). https://doi.org/10.1016/j.compositesa.2023.107857
Y. Zhang, J. Kong, J. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67, 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
Z. Jiang, H. Si, Y. Li, D. Li, H. Chen et al., Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 15, 8546–8554 (2022). https://doi.org/10.1007/s12274-022-4674-y
Y. Shi, D. Li, H. Si, Y. Duan, C. Gong et al., TiN/Fe2Ni2N/SiO2 composites for magnetic-dielectric balance to facilitate temperature-stable broadband microwave absorption. J. Alloys Compd. 918, 165603 (2022). https://doi.org/10.1016/j.jallcom.2022.165603
Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
M.-M. Lu, M.-S. Cao, Y.-H. Chen, W.-Q. Cao, J. Liu et al., Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 7, 19408–19415 (2015). https://doi.org/10.1021/acsami.5b05595
L. Zhou, Y. Tian, P. Xu, H. Wei, Y. Li et al., Effect of the selective localization of carbon nanotubes and phase domain in immiscible blends on tunable microwave dielectric properties. Compos. Sci. Technol. 213, 108919 (2021). https://doi.org/10.1016/j.compscitech.2021.108919
W.-Q. Cao, X.-X. Wang, J. Yuan, W.-Z. Wang, M.-S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015). https://doi.org/10.1039/C5TC02185E
Q. Zhou, X. Yin, F. Ye, Z. Tang, R. Mo et al., High temperature electromagnetic wave absorption properties of SiCf/Si3N4 composite induced by different SiC fibers. Ceram. Int. 45, 6514–6522 (2019). https://doi.org/10.1016/j.ceramint.2018.12.142
Y. Shi, D. Li, H. Si, Z. Jiang, M. Li et al., TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 130, 249–255 (2022). https://doi.org/10.1016/j.jmst.2022.04.050
P. Liu, Y. Wang, G. Zhang, Y. Huang, R. Zhang et al., Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 32, 2202588 (2022). https://doi.org/10.1002/adfm.202202588
D. Lan, Z. Zhao, Z. Gao, K. Kou, H. Wu, Novel magnetic silicate composite for lightweight and efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 92(33), 51–59 (2021). https://doi.org/10.1016/j.jmst.2021.03.029
G. Wang, C. Li, D. Estevez, P. Xu, M. Peng et al., Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 15, 152 (2023). https://doi.org/10.1007/s40820-023-01123-4
Z. Zhou, Q. Zhu, Y. Liu, Y. Zhang, Z. Jia et al., Construction of self-assembly based tunable absorber: Lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 15, 137 (2023). https://doi.org/10.1007/s40820-023-01108-3
M.-S. Cao, X.-X. Wang, M. Zhang, W.-Q. Cao, X.-Y. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32, e1907156 (2020). https://doi.org/10.1002/adma.201907156
H. Lv, Y. Guo, Z. Yang, T. Guo, H. Wu et al., Doping strategy to boost the electromagnetic wave attenuation ability of hollow carbon spheres at elevated temperatures. ACS Sustainable Chem. Eng. 6, 1539–1544 (2018). https://doi.org/10.1021/acssuschemeng.7b03857
N. Gao, W.-P. Li, W.-S. Wang, D.-P. Liu, Y.-M. Cui et al., Balancing dielectric loss and magnetic loss in Fe-NiS2/NiS/PVDF composites toward strong microwave reflection loss. ACS Appl. Mater. Interfaces 12, 14416–14424 (2020). https://doi.org/10.1021/acsami.9b23379
L. Song, F. Zhang, Y. Chen, L. Guan, Y. Zhu et al., Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption. Nano-Micro Lett. 14, 152 (2022). https://doi.org/10.1007/s40820-022-00905-6
D. Zhang, T. Liu, J. Cheng, Q. Cao, G. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2–RGO heterostructures. Nano-Micro Lett. 11, 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
H. Gu, J. Huang, N. Li, H. Yang, G. Chen et al., Reactive MnO2 template-assisted synthesis of double-shelled PPy hollow nanotubes to boost microwave absorption. J. Mater. Sci. Technol. 146, 145–153 (2023). https://doi.org/10.1016/j.jmst.2022.11.010
Z. Hou, X. Yin, H. Xu, H. Wei, M. Li et al., Reduced graphene oxide/silicon nitride composite for cooperative electromagnetic absorption in wide temperature spectrum with excellent thermal stability. ACS Appl. Mater. Interfaces 11, 5364–5372 (2019). https://doi.org/10.1021/acsami.8b20023
H. Xu, X. Yin, M. Li, F. Ye, M. Han et al., Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 132, 343–351 (2018). https://doi.org/10.1016/j.carbon.2018.02.040
H.-Y. Wang, X.-B. Sun, S.-H. Yang, P.-Y. Zhao, X.-J. Zhang et al., 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y
C. Li, L. Zhang, S. Zhang, Q. Yu, D. Li et al., Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum. Nano Res. (2023). https://doi.org/10.1007/s12274-023-6350-2
C. Gong, C. Yan, J. Zhang, X. Cheng, H. Pan et al., Room-temperature ferromagnetism evolution in nanostructured titanium nitride superconductors—the influence of structural defects. J. Mater. Chem. 21, 15273–15278 (2011). https://doi.org/10.1039/C1JM12359A
C. Gong, J. Zhang, C. Yan, X. Cheng, J. Zhang et al., Synthesis and microwave electromagnetic properties of nanosized titanium nitride. J. Mater. Chem. 22, 3370–3376 (2012). https://doi.org/10.1039/C1JM13509K
S. Peng, L. Li, Y. Hu, M. Srinivasan, F. Cheng et al., Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 9, 1945–1954 (2015). https://doi.org/10.1021/nn506851x
M. Einert, R. Ostermann, T. Weller, S. Zellmer, G. Garnweitner et al., Hollow α-Fe2O3 nanofibres for solar water oxidation: improving the photoelectrochemical performance by formation of α-Fe2O3/ITO-composite photoanodes. J. Mater. Chem. A 4, 18444–18456 (2016). https://doi.org/10.1039/C6TA06979G
X. Li, W. You, R. Zhang, J. Fang, Q. Zeng et al., Synthesis of nonspherical hollow architecture with magnetic Fe core and Ni decorated tadpole-like shell as ultrabroad bandwidth microwave absorbers. Small 17, e2103351 (2021). https://doi.org/10.1002/smll.202103351
C. Zhang, X. Li, Y. Shi, H. Wu, Y. Shen et al., Structure engineering of graphene nanocages toward high-performance microwave absorption applications. Adv. Opt. Mater. 10, 2101904 (2022). https://doi.org/10.1002/adom.202101904
C. Xu, P. Liu, Z. Wu, H. Zhang, R. Zhang et al., Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption. Adv. Sci. 9, e2200804 (2022). https://doi.org/10.1002/advs.202200804
J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F- regulation engineering. Adv. Funct. Mater. 32, 2110496 (2022). https://doi.org/10.1002/adfm.202110496
Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32(34), 2204499 (2022). https://doi.org/10.1002/adfm.202204499
J. Xiang, J. Li, X. Zhang, Q. Ye, J. Xu et al., Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanops as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A 2, 16905–16914 (2014). https://doi.org/10.1039/C4TA03732D
H. Ding, Z. Sun, S. Tian, P. Wang, Z. Guo et al., Tailoring Ni3ZnC0.7/graphite heterostructure in N-rich laminated porous carbon nanosheets for highly efficient microwave absorption. Ceram. Int. 49, 31763–31772 (2023). https://doi.org/10.1016/j.ceramint.2023.07.131
X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang et al., Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8, 6101–6109 (2016). https://doi.org/10.1021/acsami.6b00388
X. Tian, Y. Wang, F. Peng, F. Huang, W. Tian et al., Defect-enhanced electromagnetic wave absorption property of hierarchical graphite capsules@helical carbon nanotube hybrid nanocomposites. ACS Appl. Mater. Interfaces 13, 28710–28720 (2021). https://doi.org/10.1021/acsami.1c06871
H. Lv, C. Wu, J. Tang, H. Du, F. Qin et al., Two-dimensional SnO/SnO2 heterojunctions for electromagnetic wave absorption. Chem. Eng. J. 411, 128445 (2021). https://doi.org/10.1016/j.cej.2021.128445
H. Wang, F. Meng, F. Huang, C. Jing, Y. Li et al., Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11, 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122
H. Zhang, H. Liu, H. Wu, M. Yuan, J. Chen et al., Microwave absorbing property of gelcasting SiC-Si3N4 ceramics with hierarchical pore structures. J. Eur. Ceram. Soc. 42, 1249–1257 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.12.011
T. Han, R.Y. Luo, G.Y. Cui, L.Y. Wang, Effect of SiC nanowires on the high-temperature microwave absorption properties of SiCf/SiC composites. J. Eur. Ceram. Soc. 39, 1743–1756 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.01.018
H. Wang, D. Zhu, W. Zhou, F. Luo, High temperature electromagnetic and microwave absorbing properties of polyimide/multi-walled carbon nanotubes nancomposites. Chem. Phys. Lett. 633, 223–228 (2015). https://doi.org/10.1016/j.cplett.2015.05.048
W. Zhou, R.-M. Yin, L. Long, H. Luo, W.-D. Hu et al., Enhanced high-temperature dielectric properties and microwave absorption of SiC nanofibers modified Si3N4 ceramics within the gigahertz range. Ceram. Int. 44, 12301–12307 (2018). https://doi.org/10.1016/j.ceramint.2018.04.017
J. Liu, L. Zhang, H. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32, 2200544 (2022). https://doi.org/10.1002/adfm.202200544
C. Wei, M. He, M. Li, X. Ma, W. Dang et al., Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 36, 101142 (2023). https://doi.org/10.1016/j.mtphys.2023.101142
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
Y. Han, M. He, J. Hu, P. Liu, Z. Liu et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 16, 1773–1778 (2023). https://doi.org/10.1007/s12274-022-5111-y
L. Cai, F. Pan, X. Zhu, Y. Dong, Y. Shi et al., Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for high-performance microwave absorbers. Chem. Eng. J. 434, 133865 (2022). https://doi.org/10.1016/j.cej.2021.133865
J. Zhang, X. Qi, X. Gong, Q. Peng, Y. Chen et al., Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption. J. Mater. Sci. Technol. 128, 59–70 (2022). https://doi.org/10.1016/j.jmst.2022.04.017
S. Tian, Z. Sun, H. Ding, Z. Guo, P. Wang et al., Coordination environment-mediated different heteroatomic configuration from doping strategy for enhancing microwave absorption. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202310475
Y. Tian, D. Estevez, G. Wang, M. Peng, F. Qin, Macro-ordered porous carbon nanocomposites for efficient microwave absorption. Carbon 218, 118614 (2024). https://doi.org/10.1016/j.carbon.2023.118614
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202313544
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
J.M. Xu, L. Xia, J.H. Luo, S.R. Lu, X.X. Huang et al., High-performance electromagnetic wave absorbing CNT/SiCf composites: synthesis, tuning, and mechanism. ACS Appl. Mater. Interfaces 12, 20775–20784 (2020). https://doi.org/10.1021/acsami.9b19281
X.C. Di, Y. Wang, Y.Q. Fu, X.M. Wu, P. Wang, Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber. Carbon 173, 174–184 (2021). https://doi.org/10.1016/j.carbon.2020.11.006
X. Wang, J.-C. Shu, X.-M. He, M. Zhang, X.-X. Wang et al., Green approach to conductive PEDOT: PSS decorating magnetic-graphene to recover conductivity for highly efficient absorption. ACS Sustain. Chem. Eng. 6, 14017–14025 (2018). https://doi.org/10.1021/acssuschemeng.8b02534
R. Xing, G. Xu, N. Qu, R. Zhou, J. Yang et al., 3D printing of liquid-metal-in-ceramic metamaterials for high-efficient microwave absorption. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202307499
Z. Cheng, R. Wang, Y. Cao, Z. Cai, Z. Zhang et al., Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel. Adv. Funct. Mater. 32, 2205160 (2022). https://doi.org/10.1002/adfm.202205160
C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
Y. Tian, D. Zhi, T. Li, J. Li, J. Li et al., Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic attenuation. Chem. Eng. J. 464, 142644 (2023). https://doi.org/10.1016/j.cej.2023.142644
H. Li, T. Zhang, J. Zhang, W. Zhang, H. Lu et al., Amorphism SiBON interface anchored rGO nanoplatelets composites with tunable electromagnetic properties for microwave absorption. Carbon 214, 118343 (2023). https://doi.org/10.1016/j.carbon.2023.118343
Y. Tian, D. Estevez, H. Wei, M. Peng, L. Zhou et al., Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption. Chem. Eng. J. 421, 129781 (2021). https://doi.org/10.1016/j.cej.2021.129781