Functionalized Aluminum Nitride for Improving Hydrolysis Resistances of Highly Thermally Conductive Polysiloxane Composites
Corresponding Author: Junwei Gu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 134
Abstract
A series of divinylphenyl-acryloyl chloride copolymers (PDVB-co-PACl) is synthesized via atom transfer radical polymerization employing tert-butyl acrylate and divinylbenzene as monomers. PDVB-co-PACl is utilized to graft on the surface of spherical aluminum nitride (AlN) to prepare functionalized AlN (AlN@PDVB-co-PACl). Polymethylhydrosiloxane (PMHS) is then used as the matrix to prepare thermally conductive AlN@PDVB-co-PACl/PMHS composites with AlN@PDVB-co-PACl as fillers through blending and curing. The grafting of PDVB-co-PACl synchronously enhances the hydrolysis resistance of AlN and its interfacial compatibility with PMHS matrix. When the molecular weight of PDVB-co-PACl is 5100 g mol−1 and the grafting density is 0.8 wt%, the composites containing 75 wt% of AlN@PDVB-co-PACl exhibit the optimal comprehensive performance. The thermal conductivity (λ) of the composite is 1.14 W m−1 K−1, which enhances by 20% and 420% compared to the λ of simply physically blended AlN/PMHS composite and pure PMHS, respectively. Meanwhile, AlN@PDVB-co-PACl/PMHS composites display remarkable hydrothermal aging resistance by retaining 99.1% of its λ after soaking in 90 °C deionized water for 80 h, whereas the λ of the blended AlN/PMHS composites decreases sharply to 93.7%.
Highlights:
1 Copolymer of divinylphenyl-acryloyl chloride copolymers (PDVB-co-PACl) is designed and synthesized to graft on the surface of aluminum nitride (AlN) to improve its hydrolysis resistance.
2 AlN fillers functionalized by PDVB-co-PACl with the molecular weight of 5100 g mol-1 exhibits the highest hydrolysis resistance and the lowest interfacial thermal resistance.
3 When the mass fraction of AlN@PDVB-co-PACl is 75 wt% and the grafting density of PDVB-co-PACl is 0.8 wt%, the λ for AlN@PDVB-co-PACl/PMHS composites is 1.14 W m-1 K-1 and maintains 99.1% after soaking in 90 °C deionized water for 80 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Wu, Z. Dou, S. Deng, D. Wu, B. Zhang et al., Mechanochemistry-mediated colloidal liquid metals for electronic device cooling at kilowatt levels. Nat. Nanotechnol. 20, 104–111 (2025). https://doi.org/10.1038/s41565-024-01793-0
- J. Wu, Y. Wang, P. Song, M. Sang, Z. Fan et al., Asymmetric aramid aerogel composite with durable and covert thermal management via janus heat transfer structure. Nano Lett. 24, 14020–14027 (2024). https://doi.org/10.1021/acs.nanolett.4c03652
- Y. Guo, S. Wang, H. Zhang, H. Guo, M. He et al., Consistent thermal conductivities of spring-like structured polydimethylsiloxane composites under large deformation. Adv. Mater. 36, 2404648 (2024). https://doi.org/10.1002/adma.202404648
- P. Saechan, I. Dhuchakallaya, F.A.Z.M. Saat, Thermal performance improvement of forced-air cooling system combined with liquid spray for densely packed batteries of electric vehicle. Eng. Sci. 24, 886 (2023). https://doi.org/10.30919/es886
- S. Sirikasemsuk, P. Vengsungnle, S. Eiamsa-ard, P. Naphon, Thermal management of prismatic LiFePO4 battery module with inversed-zigzag channeled ferrofluid flows. Eng. Sci. 27, 1017 (2024). https://doi.org/10.30919/es1017
- K. Zhang, J. Zhang, L. Dang, Y. Wu, M. He et al., Highly intrinsic thermal conduction and low dielectric constant of liquid crystalline epoxy resins with fluorine-containing semi-IPN structures. Sci. China Chem. (2025). https://doi.org/10.1007/s11426-024-2504-y
- J. Yun, Y. Yoo, H. Kim, Y. Song, Recent progress in thermal management for flexible/wearable devices. Soft Sci. 3, 12 (2023). https://doi.org/10.20517/ss.2023.04
- X. Kong, Y. Chen, R. Yang, Y. Wang, Z. Zhang et al., Large-scale production of boron nitride nanosheets for flexible thermal interface materials with highly thermally conductive and low dielectric constant. Compos. Part B-Eng. 271, 111164 (2024). https://doi.org/10.1016/j.compositesb.2023.111164
- Z. Wu, X. Wang, S.H.K. Annamareddy, S. Gao, Q. Xu et al., Dielectric properties and thermal conductivity of polyvinylidene fluoride synergistically enhanced with silica@multi-walled carbon nanotubes and boron nitride. ES Mater. Manufact. 22, 847 (2023). https://doi.org/10.30919/esmm5f847
- M. Arun Kumar, L.S. Jayakumari, Ramji Chandran, Enhanced mechanical and electrical properties of styrene butadiene rubber nanocomposites with graphene platelet nano-powder. J. Polym. Mater. 40, 141–156 (2023). https://doi.org/10.32381/JPM.2023.40.3-4.2
- J. Zhang, L. Dang, F. Zhang, K. Zhang, Q. Kong et al., Effect of the structure of epoxy monomers and curing agents: toward making intrinsically highly thermally conductive and low-dielectric epoxy resins. JACS Au 3, 3424–3435 (2023). https://doi.org/10.1021/jacsau.3c00582
- Y. Bai, X. Wang, X. Wang, Q. Li, K. Yang et al., Study the intermolecular interaction of polymethylhydrosiloxane modifying acrylic resin and their application on anticorrosion area. Prog. Org. Coat. 195, 108632 (2024). https://doi.org/10.1016/j.porgcoat.2024.108632
- Y. Xiao, J. Wu, Y. Zhang, Recent advances in the design, fabrication, actuation mechanisms and applications of liquid crystal elastomers. Soft Sci. 3, 11 (2023). https://doi.org/10.20517/ss.2023.03
- Y. Guo, H. Qiu, K. Ruan, S. Wang, Y. Zhang et al., Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos. Sci. Technol. 219, 109253 (2022). https://doi.org/10.1016/j.compscitech.2021.109253
- M. Yang, Y. Pang, J. Li, W. Zhou, L. Ren et al., Grafted alkene chains: triggers for defeating contact thermal resistance in composite elastomers. Small 20, 2305090 (2024). https://doi.org/10.1002/smll.202305090
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. 2316691, (2024). https://doi.org/10.1002/adfm.202316691
- J. Wie, M. Kim, J. Kim, Enhanced thermal conductivity of a polysilazane-coated A-BN/epoxy composite following surface treatment with silane coupling agents. Appl. Surf. Sci. 529, 147091 (2020). https://doi.org/10.1016/j.apsusc.2020.147091
- C. Perez, A.J. McLeod, M.E. Chen, S.I. Yi, S. Vaziri et al., High thermal conductivity of submicrometer aluminum nitride thin films sputter-deposited at low temperature. ACS Nano 17, 21240–21250 (2023). https://doi.org/10.1021/acsnano.3c05485
- S. Rao, X. Zeng, X. Cheng, J. Fan, D. He et al., Damping, soft, and thermally conductive composite elastomer via introducing bottlebrush chains. Chem. Eng. J. 474, 145847 (2023). https://doi.org/10.1016/j.cej.2023.145847
- J. Du, W. Dai, H. Kou, P. Wu, W. Xing et al., AlN coatings with high thermal conductivity and excellent electrical properties for thermal management devices. Ceram. Int. 49, 16740–16752 (2023). https://doi.org/10.1016/j.ceramint.2023.02.035
- N.T. Thuong, N.B. Lam, P.A. Son, N.B. Chien, N.P.D. Linh et al., Preparation and characterization of thermally conductive high impact polystyrene/AlN composite. Int. J. Polym. Sci. 2024, 2723981 (2024). https://doi.org/10.1155/2024/2723981
- W. Yang, J. Kim, J. Kim, Improving thermal conductivity of epoxy composite by three-dimensional filler network constructed with two different diameters aluminum nitride and cellulose nanofiber. Cellulose 31, 2461–2474 (2024). https://doi.org/10.1007/s10570-024-05737-8
- A. Mukhopadhyay, A. Pal, S. Sarkar, C.M. Megaridis, Laser-tuned surface wettability modification and incorporation of aluminum nitride (AlN) ceramics in thermal management devices. Adv. Funct. Mater. 34, 2313141 (2024). https://doi.org/10.1002/adfm.202313141
- W.-K. Li, R.-Z. Zhang, J.-M. Wu, L. Guo, W.-H. Cai et al., Optimizing AlN hydrolysis process to fabricate coated modified powders for improving the properties of Si3N4/SiAlON ceramics prepared by Vat Photopolymerization. Addit. Manuf. 94, 104460 (2024). https://doi.org/10.1016/j.addma.2024.104460
- F. Lü, R. Yang, H. Ruan, S. Wang, X. Yu, Effect of anti-hydrolysis AlN Microspheres on the electrical insulation and thermal conductivity of PMIA paper. IEEE T. Dielect. El. In. 30, 1674–1680 (2023). https://doi.org/10.1109/TDEI.2023.3243194
- B.P. Sahoo, D. Das, P. Rath, S. Chakrabarty, S. Roy et al., Improving reinforcement properties of CNTs in aluminium matrix composites: a case of surface modification through AlN nano-p grafting. Surf. Interfaces 36, 102571 (2023). https://doi.org/10.1016/j.surfin.2022.102571
- X. Wang, Y. He, X. Xiao, W. Zhao, J. Leng, High-Tg shape memory polyimide composites with “spot-plane” directional thermally conduction structure based on AlN nanops and acidified graphene. Compos. Struct. 330, 117846 (2024). https://doi.org/10.1016/j.compstruct.2023.117846
- M.A. Saad, M.A.S. Sakr, N.H. Teleb, O.H. Abd-Elkader, H. Abdelsalam et al., Chemically functionalized AlN quantum dots for effective sensing and removal of methanol, ethanol, and formaldehyde: A first principle study. Chem. Phys. Impact 8, 100620 (2024). https://doi.org/10.1016/j.chphi.2024.100620
- J. Hu, Z. Wei, B. Ge, L. Zhao, K. Peng et al., AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion. J. Mater. Chem. A 11, 10727–10737 (2023). https://doi.org/10.1039/d2ta08748k
- A. Bekeshev, A. Mostovoy, A. Shcherbakov, L. Tastanova, M. Akhmetova et al., The influence of pristine and aminoacetic acid-treated aluminum nitride on the structure, curing processes, and properties of epoxy nanocomposites. J. Compos. Sci. 7, 482 (2023). https://doi.org/10.3390/jcs7120482
- Z. Wang, Q. An, L. Jiao, P. Lu, Y. Qu et al., Preparation and properties of fluorosilicone composites with thermal conductivity and chemical resistance through modification of filler and matrix. Polym. Degrad. Stabil. 225, 110823 (2024). https://doi.org/10.1016/j.polymdegradstab.2024.110823
- I. Ganesh, N. Thiyagarajan, G. Sundararajan, S.M. Olhero, J.M.F. Ferreira, A non-aqueous processing route for phosphate-protection of AlN powder against hydrolysis. J. Eur. Ceram. Soc. 28, 2281–2288 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.02.025
- Y. Wang, S. Wang, G. Zhu, J. Xie, Z. Chen et al., Optimizing hydrolysis resistance and dispersion characteristics via surface modification of aluminum nitride powder coated with PVP-b-P(St-alt-ITA) copolymer. Molecules 27, 2457 (2022). https://doi.org/10.3390/molecules27082457
- M. Li, J. Ai, Z. Wang, Z. Xue, L. Cheng et al., HPMA modified aluminium nitride powder for aqueous tape casting of AlN ceramic substrates. J. Adv. Ceram. 12, 1701–1711 (2023). https://doi.org/10.26599/JAC.2023.9220780
- S.-Y. Wu, Y.-L. Huang, C.-C.M. Ma, S.-M. Yuen, C.-C. Teng et al., Mechanical, thermal and electrical properties of aluminum nitride/polyetherimide composites. Compos. Part A-Appl. S. 42, 1573–1583 (2011). https://doi.org/10.1016/j.compositesa.2011.06.009
- W. Tang, T. Zhao, K. Wang, T. Yu, R. Lv et al., Dendrite-free lithium metal batteries enabled by coordination chemistry in polymer-ceramic modified separators. Adv. Funct. Mater. 34, 2314045 (2024). https://doi.org/10.1002/adfm.202314045
- G. Yu, J. Xie, S. Wang, Y. Wang, T. Wang et al., Non hydrolizable aluminum nitride powders surface modified by silicic acids. Ceram. Int. 47, 29253–29260 (2021). https://doi.org/10.1016/j.ceramint.2021.07.089
- Y. Liu, Q. Lin, X. Long, S. Zhang, H. Dong et al., Effect of segment structure of monotrimethoxysilylethyl-terminated asymmetric polysiloxanes on the thermal management performance of AlN-filled silicone pastes. React. Funct. Polym. 198, 105889 (2024). https://doi.org/10.1016/j.reactfunctpolym.2024.105889
- J. Zheng, S. He, J. Wang, W. Fang, Y. Xue et al., Performance of silicone rubber composites filled with aluminum nitride and alumina tri-hydrate. Materials 13, 2489 (2020). https://doi.org/10.3390/ma13112489
- C.-T. Yang, H.-I. Hsiang, T.-S. Huang, P.-C. Huang, Y.-K. Han, Thermal conductivity and dielectric properties of PEDOT:PSS-AlN filler reinforced water-soluble polymer composites. Ceram. Int. 43, S710–S716 (2017). https://doi.org/10.1016/j.ceramint.2017.05.271
- Z. Lule, J. Kim, Surface modification of aluminum nitride to fabricate thermally conductive poly(butylene succinate) nanocomposite. Polymers 11, 148 (2019). https://doi.org/10.3390/polym11010148
- G. Shao, A. Li, Y. Liu, B. Yuan, W. Zhang, Branched polymers: synthesis and application. Macromolecules 57, 830–846 (2023). https://doi.org/10.1021/acs.macromol.3c01631
- J.P. Coats, R. Cochereau, I.A. Dinu, D. Messmer, F. Sciortino et al., Trends in the synthesis of polymer nano- and microscale materials for bio-related applications. Macromol. Biosci. 23, 2200474 (2023). https://doi.org/10.1002/mabi.202200474
- B. Peng, X. Xu, Y. Wang, J. Zhang, J. Chen et al., Antifouling coating of membrane surface with branched poly(2-hydroxyethyl acrylate) brushes via aqueous reversible deactivation radical polymerization. Prog. Org. Coat. 184, 107868 (2023). https://doi.org/10.1016/j.porgcoat.2023.107868
- J.-W. Zha, F. Wang, B. Wan, Polymer composites with high thermal conductivity: Theory, simulation, structure and interfacial regulation. Prog. Mater. Sci. 148, 101362 (2025). https://doi.org/10.1016/j.pmatsci.2024.101362
- S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, 2110423 (2023). https://doi.org/10.1002/adma.202110423
- C. Yu, J. Feng, K. Feng, Z. Mo, Y. He et al., Effect of multi-epoxy compatibilizers with branched structures on enhancing mechanical and compatibility of PLA/starch composite. Polym. Advan. Technol. 34, 1622–1632 (2023). https://doi.org/10.1002/pat.5996
- S.H. Jeong, J.M. Kim, C. Baig, Rheological influence of short-chain branching for polymeric materials under shear with variable branch density and branching architecture. Macromolecules 50, 4491–4500 (2017). https://doi.org/10.1021/acs.macromol.7b00544
- D. Wang, X. Wen, D. Zhang, X. Tan, J. Tang, Single-polymer dynamics of starch-like branched ring polymers in steady shear flow. Int. J. Biol. Macromol. 227, 173–181 (2023). https://doi.org/10.1016/j.ijbiomac.2022.12.100
- M. Zhang, P. Yu, J. Xie, J. Li, Recent advances of zwitterionic-based topological polymers for biomedical applications. J. Mater. Chem. B 10, 2338–2356 (2022). https://doi.org/10.1039/d1tb02323c
- Y. Zhang, C. Cai, T. Chen, C. Wu, X. Gong et al., Enhanced thermal conductivity of BN/SR composites via biomass-modification of BN. Electron. Mater. Lett. 19, 201–211 (2022). https://doi.org/10.1007/s13391-022-00387-z
- J. Song, Y. Zhang, Performance improvement of alumina/silicone rubber composites by adding 3-(trimethoxysilyl)propyl methacrylate grafted siloxane copolymer. Polym. Composites 41, 4842–4848 (2020). https://doi.org/10.1002/pc.25756
- P. Jin, J. Zhu, S. Yuan, G. Zhang, A. Volodine et al., Erythritol-based polyester loose nanofiltration membrane with fast water transport for efficient dye/salt separation. Chem. Eng. J. 406, 126796 (2021). https://doi.org/10.1016/j.cej.2020.126796
- B. Zhang, P. Zhang, H. Zhang, C. Yan, Z. Zheng et al., A transparent, highly stretchable, autonomous self-healing poly(dimethyl siloxane) elastomer. Macromol. Rapid Commun. 38, 1700110 (2017). https://doi.org/10.1002/marc.201700110
- S. Demski, D. Brzakalski, M. Gubernat, K. Dydek, P. Czaja et al., Nanocomposites based on thermoplastic acrylic resin with the addition of chemically modified multi-walled carbon nanotubes. Polymers 16, 422 (2024). https://doi.org/10.3390/polym16030422
- V.Y. Rudyak, A.V. Minakov, M.I. Pryazhnikov, Preparation, characterization, and viscosity studding the single-walled carbon nanotube nanofluids. J. Mol. Liq. 329, 115517 (2021). https://doi.org/10.1016/j.molliq.2021.115517
- A. Iwata, J. Akedo, Hexagonal to cubic crystal structure transformation during aerosol deposition of aluminum nitride. J. Cryst. Growth 275, e1269–e1273 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.082
- T. Hamada, Y. Nakanishi, K. Okada, J. Ohshita, Crack- and shrinkage-free ethylene-bridged polysilsesquioxane film prepared by a hydrosilylation reaction. ACS Omega 6, 8430–8437 (2021). https://doi.org/10.1021/acsomega.1c00183
References
K. Wu, Z. Dou, S. Deng, D. Wu, B. Zhang et al., Mechanochemistry-mediated colloidal liquid metals for electronic device cooling at kilowatt levels. Nat. Nanotechnol. 20, 104–111 (2025). https://doi.org/10.1038/s41565-024-01793-0
J. Wu, Y. Wang, P. Song, M. Sang, Z. Fan et al., Asymmetric aramid aerogel composite with durable and covert thermal management via janus heat transfer structure. Nano Lett. 24, 14020–14027 (2024). https://doi.org/10.1021/acs.nanolett.4c03652
Y. Guo, S. Wang, H. Zhang, H. Guo, M. He et al., Consistent thermal conductivities of spring-like structured polydimethylsiloxane composites under large deformation. Adv. Mater. 36, 2404648 (2024). https://doi.org/10.1002/adma.202404648
P. Saechan, I. Dhuchakallaya, F.A.Z.M. Saat, Thermal performance improvement of forced-air cooling system combined with liquid spray for densely packed batteries of electric vehicle. Eng. Sci. 24, 886 (2023). https://doi.org/10.30919/es886
S. Sirikasemsuk, P. Vengsungnle, S. Eiamsa-ard, P. Naphon, Thermal management of prismatic LiFePO4 battery module with inversed-zigzag channeled ferrofluid flows. Eng. Sci. 27, 1017 (2024). https://doi.org/10.30919/es1017
K. Zhang, J. Zhang, L. Dang, Y. Wu, M. He et al., Highly intrinsic thermal conduction and low dielectric constant of liquid crystalline epoxy resins with fluorine-containing semi-IPN structures. Sci. China Chem. (2025). https://doi.org/10.1007/s11426-024-2504-y
J. Yun, Y. Yoo, H. Kim, Y. Song, Recent progress in thermal management for flexible/wearable devices. Soft Sci. 3, 12 (2023). https://doi.org/10.20517/ss.2023.04
X. Kong, Y. Chen, R. Yang, Y. Wang, Z. Zhang et al., Large-scale production of boron nitride nanosheets for flexible thermal interface materials with highly thermally conductive and low dielectric constant. Compos. Part B-Eng. 271, 111164 (2024). https://doi.org/10.1016/j.compositesb.2023.111164
Z. Wu, X. Wang, S.H.K. Annamareddy, S. Gao, Q. Xu et al., Dielectric properties and thermal conductivity of polyvinylidene fluoride synergistically enhanced with silica@multi-walled carbon nanotubes and boron nitride. ES Mater. Manufact. 22, 847 (2023). https://doi.org/10.30919/esmm5f847
M. Arun Kumar, L.S. Jayakumari, Ramji Chandran, Enhanced mechanical and electrical properties of styrene butadiene rubber nanocomposites with graphene platelet nano-powder. J. Polym. Mater. 40, 141–156 (2023). https://doi.org/10.32381/JPM.2023.40.3-4.2
J. Zhang, L. Dang, F. Zhang, K. Zhang, Q. Kong et al., Effect of the structure of epoxy monomers and curing agents: toward making intrinsically highly thermally conductive and low-dielectric epoxy resins. JACS Au 3, 3424–3435 (2023). https://doi.org/10.1021/jacsau.3c00582
Y. Bai, X. Wang, X. Wang, Q. Li, K. Yang et al., Study the intermolecular interaction of polymethylhydrosiloxane modifying acrylic resin and their application on anticorrosion area. Prog. Org. Coat. 195, 108632 (2024). https://doi.org/10.1016/j.porgcoat.2024.108632
Y. Xiao, J. Wu, Y. Zhang, Recent advances in the design, fabrication, actuation mechanisms and applications of liquid crystal elastomers. Soft Sci. 3, 11 (2023). https://doi.org/10.20517/ss.2023.03
Y. Guo, H. Qiu, K. Ruan, S. Wang, Y. Zhang et al., Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos. Sci. Technol. 219, 109253 (2022). https://doi.org/10.1016/j.compscitech.2021.109253
M. Yang, Y. Pang, J. Li, W. Zhou, L. Ren et al., Grafted alkene chains: triggers for defeating contact thermal resistance in composite elastomers. Small 20, 2305090 (2024). https://doi.org/10.1002/smll.202305090
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. 2316691, (2024). https://doi.org/10.1002/adfm.202316691
J. Wie, M. Kim, J. Kim, Enhanced thermal conductivity of a polysilazane-coated A-BN/epoxy composite following surface treatment with silane coupling agents. Appl. Surf. Sci. 529, 147091 (2020). https://doi.org/10.1016/j.apsusc.2020.147091
C. Perez, A.J. McLeod, M.E. Chen, S.I. Yi, S. Vaziri et al., High thermal conductivity of submicrometer aluminum nitride thin films sputter-deposited at low temperature. ACS Nano 17, 21240–21250 (2023). https://doi.org/10.1021/acsnano.3c05485
S. Rao, X. Zeng, X. Cheng, J. Fan, D. He et al., Damping, soft, and thermally conductive composite elastomer via introducing bottlebrush chains. Chem. Eng. J. 474, 145847 (2023). https://doi.org/10.1016/j.cej.2023.145847
J. Du, W. Dai, H. Kou, P. Wu, W. Xing et al., AlN coatings with high thermal conductivity and excellent electrical properties for thermal management devices. Ceram. Int. 49, 16740–16752 (2023). https://doi.org/10.1016/j.ceramint.2023.02.035
N.T. Thuong, N.B. Lam, P.A. Son, N.B. Chien, N.P.D. Linh et al., Preparation and characterization of thermally conductive high impact polystyrene/AlN composite. Int. J. Polym. Sci. 2024, 2723981 (2024). https://doi.org/10.1155/2024/2723981
W. Yang, J. Kim, J. Kim, Improving thermal conductivity of epoxy composite by three-dimensional filler network constructed with two different diameters aluminum nitride and cellulose nanofiber. Cellulose 31, 2461–2474 (2024). https://doi.org/10.1007/s10570-024-05737-8
A. Mukhopadhyay, A. Pal, S. Sarkar, C.M. Megaridis, Laser-tuned surface wettability modification and incorporation of aluminum nitride (AlN) ceramics in thermal management devices. Adv. Funct. Mater. 34, 2313141 (2024). https://doi.org/10.1002/adfm.202313141
W.-K. Li, R.-Z. Zhang, J.-M. Wu, L. Guo, W.-H. Cai et al., Optimizing AlN hydrolysis process to fabricate coated modified powders for improving the properties of Si3N4/SiAlON ceramics prepared by Vat Photopolymerization. Addit. Manuf. 94, 104460 (2024). https://doi.org/10.1016/j.addma.2024.104460
F. Lü, R. Yang, H. Ruan, S. Wang, X. Yu, Effect of anti-hydrolysis AlN Microspheres on the electrical insulation and thermal conductivity of PMIA paper. IEEE T. Dielect. El. In. 30, 1674–1680 (2023). https://doi.org/10.1109/TDEI.2023.3243194
B.P. Sahoo, D. Das, P. Rath, S. Chakrabarty, S. Roy et al., Improving reinforcement properties of CNTs in aluminium matrix composites: a case of surface modification through AlN nano-p grafting. Surf. Interfaces 36, 102571 (2023). https://doi.org/10.1016/j.surfin.2022.102571
X. Wang, Y. He, X. Xiao, W. Zhao, J. Leng, High-Tg shape memory polyimide composites with “spot-plane” directional thermally conduction structure based on AlN nanops and acidified graphene. Compos. Struct. 330, 117846 (2024). https://doi.org/10.1016/j.compstruct.2023.117846
M.A. Saad, M.A.S. Sakr, N.H. Teleb, O.H. Abd-Elkader, H. Abdelsalam et al., Chemically functionalized AlN quantum dots for effective sensing and removal of methanol, ethanol, and formaldehyde: A first principle study. Chem. Phys. Impact 8, 100620 (2024). https://doi.org/10.1016/j.chphi.2024.100620
J. Hu, Z. Wei, B. Ge, L. Zhao, K. Peng et al., AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion. J. Mater. Chem. A 11, 10727–10737 (2023). https://doi.org/10.1039/d2ta08748k
A. Bekeshev, A. Mostovoy, A. Shcherbakov, L. Tastanova, M. Akhmetova et al., The influence of pristine and aminoacetic acid-treated aluminum nitride on the structure, curing processes, and properties of epoxy nanocomposites. J. Compos. Sci. 7, 482 (2023). https://doi.org/10.3390/jcs7120482
Z. Wang, Q. An, L. Jiao, P. Lu, Y. Qu et al., Preparation and properties of fluorosilicone composites with thermal conductivity and chemical resistance through modification of filler and matrix. Polym. Degrad. Stabil. 225, 110823 (2024). https://doi.org/10.1016/j.polymdegradstab.2024.110823
I. Ganesh, N. Thiyagarajan, G. Sundararajan, S.M. Olhero, J.M.F. Ferreira, A non-aqueous processing route for phosphate-protection of AlN powder against hydrolysis. J. Eur. Ceram. Soc. 28, 2281–2288 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.02.025
Y. Wang, S. Wang, G. Zhu, J. Xie, Z. Chen et al., Optimizing hydrolysis resistance and dispersion characteristics via surface modification of aluminum nitride powder coated with PVP-b-P(St-alt-ITA) copolymer. Molecules 27, 2457 (2022). https://doi.org/10.3390/molecules27082457
M. Li, J. Ai, Z. Wang, Z. Xue, L. Cheng et al., HPMA modified aluminium nitride powder for aqueous tape casting of AlN ceramic substrates. J. Adv. Ceram. 12, 1701–1711 (2023). https://doi.org/10.26599/JAC.2023.9220780
S.-Y. Wu, Y.-L. Huang, C.-C.M. Ma, S.-M. Yuen, C.-C. Teng et al., Mechanical, thermal and electrical properties of aluminum nitride/polyetherimide composites. Compos. Part A-Appl. S. 42, 1573–1583 (2011). https://doi.org/10.1016/j.compositesa.2011.06.009
W. Tang, T. Zhao, K. Wang, T. Yu, R. Lv et al., Dendrite-free lithium metal batteries enabled by coordination chemistry in polymer-ceramic modified separators. Adv. Funct. Mater. 34, 2314045 (2024). https://doi.org/10.1002/adfm.202314045
G. Yu, J. Xie, S. Wang, Y. Wang, T. Wang et al., Non hydrolizable aluminum nitride powders surface modified by silicic acids. Ceram. Int. 47, 29253–29260 (2021). https://doi.org/10.1016/j.ceramint.2021.07.089
Y. Liu, Q. Lin, X. Long, S. Zhang, H. Dong et al., Effect of segment structure of monotrimethoxysilylethyl-terminated asymmetric polysiloxanes on the thermal management performance of AlN-filled silicone pastes. React. Funct. Polym. 198, 105889 (2024). https://doi.org/10.1016/j.reactfunctpolym.2024.105889
J. Zheng, S. He, J. Wang, W. Fang, Y. Xue et al., Performance of silicone rubber composites filled with aluminum nitride and alumina tri-hydrate. Materials 13, 2489 (2020). https://doi.org/10.3390/ma13112489
C.-T. Yang, H.-I. Hsiang, T.-S. Huang, P.-C. Huang, Y.-K. Han, Thermal conductivity and dielectric properties of PEDOT:PSS-AlN filler reinforced water-soluble polymer composites. Ceram. Int. 43, S710–S716 (2017). https://doi.org/10.1016/j.ceramint.2017.05.271
Z. Lule, J. Kim, Surface modification of aluminum nitride to fabricate thermally conductive poly(butylene succinate) nanocomposite. Polymers 11, 148 (2019). https://doi.org/10.3390/polym11010148
G. Shao, A. Li, Y. Liu, B. Yuan, W. Zhang, Branched polymers: synthesis and application. Macromolecules 57, 830–846 (2023). https://doi.org/10.1021/acs.macromol.3c01631
J.P. Coats, R. Cochereau, I.A. Dinu, D. Messmer, F. Sciortino et al., Trends in the synthesis of polymer nano- and microscale materials for bio-related applications. Macromol. Biosci. 23, 2200474 (2023). https://doi.org/10.1002/mabi.202200474
B. Peng, X. Xu, Y. Wang, J. Zhang, J. Chen et al., Antifouling coating of membrane surface with branched poly(2-hydroxyethyl acrylate) brushes via aqueous reversible deactivation radical polymerization. Prog. Org. Coat. 184, 107868 (2023). https://doi.org/10.1016/j.porgcoat.2023.107868
J.-W. Zha, F. Wang, B. Wan, Polymer composites with high thermal conductivity: Theory, simulation, structure and interfacial regulation. Prog. Mater. Sci. 148, 101362 (2025). https://doi.org/10.1016/j.pmatsci.2024.101362
S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, 2110423 (2023). https://doi.org/10.1002/adma.202110423
C. Yu, J. Feng, K. Feng, Z. Mo, Y. He et al., Effect of multi-epoxy compatibilizers with branched structures on enhancing mechanical and compatibility of PLA/starch composite. Polym. Advan. Technol. 34, 1622–1632 (2023). https://doi.org/10.1002/pat.5996
S.H. Jeong, J.M. Kim, C. Baig, Rheological influence of short-chain branching for polymeric materials under shear with variable branch density and branching architecture. Macromolecules 50, 4491–4500 (2017). https://doi.org/10.1021/acs.macromol.7b00544
D. Wang, X. Wen, D. Zhang, X. Tan, J. Tang, Single-polymer dynamics of starch-like branched ring polymers in steady shear flow. Int. J. Biol. Macromol. 227, 173–181 (2023). https://doi.org/10.1016/j.ijbiomac.2022.12.100
M. Zhang, P. Yu, J. Xie, J. Li, Recent advances of zwitterionic-based topological polymers for biomedical applications. J. Mater. Chem. B 10, 2338–2356 (2022). https://doi.org/10.1039/d1tb02323c
Y. Zhang, C. Cai, T. Chen, C. Wu, X. Gong et al., Enhanced thermal conductivity of BN/SR composites via biomass-modification of BN. Electron. Mater. Lett. 19, 201–211 (2022). https://doi.org/10.1007/s13391-022-00387-z
J. Song, Y. Zhang, Performance improvement of alumina/silicone rubber composites by adding 3-(trimethoxysilyl)propyl methacrylate grafted siloxane copolymer. Polym. Composites 41, 4842–4848 (2020). https://doi.org/10.1002/pc.25756
P. Jin, J. Zhu, S. Yuan, G. Zhang, A. Volodine et al., Erythritol-based polyester loose nanofiltration membrane with fast water transport for efficient dye/salt separation. Chem. Eng. J. 406, 126796 (2021). https://doi.org/10.1016/j.cej.2020.126796
B. Zhang, P. Zhang, H. Zhang, C. Yan, Z. Zheng et al., A transparent, highly stretchable, autonomous self-healing poly(dimethyl siloxane) elastomer. Macromol. Rapid Commun. 38, 1700110 (2017). https://doi.org/10.1002/marc.201700110
S. Demski, D. Brzakalski, M. Gubernat, K. Dydek, P. Czaja et al., Nanocomposites based on thermoplastic acrylic resin with the addition of chemically modified multi-walled carbon nanotubes. Polymers 16, 422 (2024). https://doi.org/10.3390/polym16030422
V.Y. Rudyak, A.V. Minakov, M.I. Pryazhnikov, Preparation, characterization, and viscosity studding the single-walled carbon nanotube nanofluids. J. Mol. Liq. 329, 115517 (2021). https://doi.org/10.1016/j.molliq.2021.115517
A. Iwata, J. Akedo, Hexagonal to cubic crystal structure transformation during aerosol deposition of aluminum nitride. J. Cryst. Growth 275, e1269–e1273 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.082
T. Hamada, Y. Nakanishi, K. Okada, J. Ohshita, Crack- and shrinkage-free ethylene-bridged polysilsesquioxane film prepared by a hydrosilylation reaction. ACS Omega 6, 8430–8437 (2021). https://doi.org/10.1021/acsomega.1c00183