Flexible and Robust Functionalized Boron Nitride/Poly(p-Phenylene Benzobisoxazole) Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation
Corresponding Author: Junwei Gu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 38
Abstract
With the rapid development of 5G information technology, thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent. In this work, “high-temperature solid-phase & diazonium salt decomposition” method is carried out to prepare benzidine-functionalized boron nitride (m-BN). Subsequently, m-BN/poly(p-phenylene benzobisoxazole) nanofiber (PNF) nanocomposite paper with nacre-mimetic layered structures is prepared via sol–gel film transformation approach. The obtained m-BN/PNF nanocomposite paper with 50 wt% m-BN presents excellent thermal conductivity, incredible electrical insulation, outstanding mechanical properties and thermal stability, due to the construction of extensive hydrogen bonds and π–π interactions between m-BN and PNF, and stable nacre-mimetic layered structures. Its λ∥ and λ⊥ are 9.68 and 0.84 W m−1 K−1, and the volume resistivity and breakdown strength are as high as 2.3 × 1015 Ω cm and 324.2 kV mm−1, respectively. Besides, it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640 °C, showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
Highlights:
1 m-BN/PNF nanocomposite paper with nacre-mimetic layered structures prepared via sol–gel film transformation approach presents excellent thermal conductivity, incredible electrical insulation, outstanding mechanical property and thermal stability.
2 When the mass fraction of m-BN is 50 wt%, m-BN/PNF nanocomposite paper exhibits excellent thermal conductivity and electrical insulation. The λ∥ and λ⊥ are 9.68 and 0.84 W m−1 K−1, and the volume resistivity and breakdown strength are as high as 2.3 × 1015 Ω cm and 324.2 kV mm−1, respectively.
3 The m-BN/PNF nanocomposite paper with 50 wt% m-BN also presents outstanding mechanical properties (tensile strength of 193.6 MPa) and thermal stability (thermal decomposition temperature of 640 °C).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Chen, K. Wu, Y. Zhang, D. Liu, R. Li et al., Tropocollagen-inspired hierarchical spiral structure of organic fibers in epoxy bulk for 3d high thermal conductivity. Adv. Mater. 34(40), 2206088 (2022). https://doi.org/10.1002/adma.202206088
- Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 15(1), 160 (2023). https://doi.org/10.1007/s40820-023-01126-1
- P. Li, M. Yang, Y. Liu, H. Qin, J. Liu et al., Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11(1), 2645 (2020). https://doi.org/10.1038/s41467-020-16494-0
- Y. Han, K. Ruan, J. Gu, Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 62(5), e202216093 (2023). https://doi.org/10.1002/anie.202216093
- C.-P. Feng, F. Wei, K.-Y. Sun, Y. Wang, H.-B. Lan et al., Emerging flexible thermally conductive films: mechanism, fabrication, application. Nano-Micro Lett. 14(1), 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
- T. Kim, S.X. Drakopoulos, S. Ronca, A.J. Minnich, Origin of high thermal conductivity in disentangled ultra-high molecular weight polyethylene films: ballistic phonons within enlarged crystals. Nat. Commun. 13(1), 2452 (2022). https://doi.org/10.1038/s41467-022-29904-2
- X.-F. Pan, G.-H. Yu, H.-L. Gao, Z.-Z. Wang, Z. Bao et al., Large-scale production of rectorite nanosheets and their co-assembly with aramid nanofibers for high-performance electrical insulating nanopapers. Adv. Mater. 34(43), 2206855 (2022). https://doi.org/10.1002/adma.202206855
- L. An, R. Gu, B. Zhong, J. Wang, J. Zhang et al., Quasi-isotropically thermal conductive, highly transparent, insulating and super-flexible polymer films achieved by cross linked 2d hexagonal boron nitride nanosheets. Small 17(46), 2101409 (2021). https://doi.org/10.1002/smll.202101409
- M. Ma, L. Xu, L. Qiao, S. Chen, Y. Shi et al., Nanofibrillated cellulose/mgo@rgo composite films with highly anisotropic thermal conductivity and electrical insulation. Chem. Eng. J. 392, 123714 (2020). https://doi.org/10.1016/j.cej.2019.123714
- X. Yu, M.R. Bhatti, X. Ren, P. Steiner, F. Di Sacco et al., Dielectric polymer composites with ultra-high thermal conductivity and low dielectric loss. Compos. Sci. Technol. 229, 109695 (2022). https://doi.org/10.1016/j.compscitech.2022.109695
- W.-T. Cao, F.-F. Chen, Y.-J. Zhu, Y.-G. Zhang, Y.-Y. Jiang et al., Binary strengthening and toughening of mxene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- L. Xu, K. Zhan, S. Ding, J. Zhu, M. Liu et al., A malleable composite dough with well-dispersed and high-content boron nitride nanosheets. ACS Nano 17(5), 4886–4895 (2023). https://doi.org/10.1021/acsnano.2c11826
- K. Wu, J. Wang, D. Liu, C. Lei, D. Liu et al., Highly thermoconductive, thermostable, and super-flexible film by engineering 1d rigid rod-like aramid nanofiber/2d boron nitride nanosheets. Adv. Mater. 32(8), 1906939 (2020). https://doi.org/10.1002/adma.201906939
- Z. Liu, X. Fan, M. Han, H. Li, J. Zhang et al., Branched fluorine/adamantane interfacial compatibilizer for pbo fibers/cyanate ester wave-transparent laminated composites. Chin. J. Chem. 41(8), 939–950 (2023). https://doi.org/10.1002/cjoc.202200749
- Z. Liu, X. Fan, J. Zhang, L. Chen, Y. Tang et al., PbO fibers/fluorine-containing liquid crystal compound modified cyanate ester wave-transparent laminated composites with excellent mechanical and flame retardance properties. J. Mater. Sci. Technol. 152, 16–29 (2023). https://doi.org/10.1016/j.jmst.2023.01.007
- X. Zhang, C. Wang, Y. Sun, H. Ling, G. Li et al., Synergistically enhanced interfacial and wave-transparent properties of pbo fiber composites: constructing self-assembly interphase with different dimensional COF. Compos. Sci. Technol. 242, 110216 (2023). https://doi.org/10.1016/j.compscitech.2023.110216
- L. Tang, Y. Tang, J. Zhang, Y. Lin, J. Kong et al., High-strength super-hydrophobic double-layered pbo nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications. Sci. Bull. 67(21), 2196–2207 (2022). https://doi.org/10.1016/j.scib.2022.10.011
- Y. Wang, S. Xia, H. Li, J. Wang, Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3d nanofiber network as matrix. Adv. Funct. Mater. 29(38), 1903876 (2019). https://doi.org/10.1002/adfm.201903876
- S. Yu, W. Zhang, J. An, T. Wang, H. Ling et al., Flexible, multifunctional aerogel films based on pbo nanofibers and their application in wearable electronic devices. Electrochim. Acta 441, 141802 (2023). https://doi.org/10.1016/j.electacta.2022.141802
- R. Barstugan, M. Barstugan, I. Ozaytekin, Pbo/graphene added β-pvdf piezoelectric composite nanofiber production. Compos. Part B-Eng. 158, 141–148 (2019). https://doi.org/10.1016/j.compositesb.2018.09.059
- Z. Yu, S. Wu, C. Li, Y. Xiao, J. Liu et al., Mechanically robust fluorinated graphene/poly(p-phenylene benzobisoxazole) nanofiber films with low dielectric constant and enhanced thermal conductivity: Implications for thermal management applications. ACS Appl. Nano Mater. 5(12), 18247–18255 (2022). https://doi.org/10.1021/acsanm.2c04137
- Y. Liu, N. Zhao, J. Xu, Mechanically strong and flame-retardant pbo/bn/mxene nanocomposite paper with low thermal expansion coefficient, for efficient emi shielding and heat dissipation. Adv. Fiber Mater. (2023). https://doi.org/10.1007/s42765-023-00298-0
- L. Wang, Z. Ma, Y. Zhang, H. Qiu, K. Ruan et al., Mechanically strong and folding-endurance ti3c2tx mxene/pbo nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 4(2), 200–210 (2022). https://doi.org/10.1002/cey2.174
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
- J.S. Lee, J.-W. Kim, J.H. Lee, Y.K. Son, Y.B. Kim et al., Flash-induced high-throughput porous graphene via synergistic photo-effects for electromagnetic interference shielding. Nano-Micro Lett. 15(1), 191 (2023). https://doi.org/10.1007/s40820-023-01157-8
- K. Gong, Y. Peng, A. Liu, S. Qi, H. Qiu, Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos. Part A-Appl. S. 176, 107857 (2024). https://doi.org/10.1016/j.compositesa.2023.107857
- Y. Yao, J. Sun, X. Zeng, R. Sun, J.-B. Xu et al., Construction of 3d skeleton for polymer composites achieving a high thermal conductivity. Small 14(13), 1704044 (2018). https://doi.org/10.1002/smll.201704044
- R. Zhang, X. Shi, L. Tang, Z. Liu, J. Zhang et al., Thermally conductive and insulating epoxy composites by synchronously incorporating si-sol functionalized glass fibers and boron nitride fillers. Chin. J. Polym. Sci. 38(7), 730–739 (2020). https://doi.org/10.1007/s10118-020-2391-0
- T. Huang, X. Zhang, T. Wang, H. Zhang, Y. Li et al., Self-modifying nanointerface driving ultrahigh bidirectional thermal conductivity boron nitride-based composite flexible films. Nano-Micro Lett. 15, 2 (2023). https://doi.org/10.1007/s40820-022-00972-9
- Z. Liu, X. Yin, H. Zhang, M. Wang, Y. Feng, Efficient preparation of bn/uhmwpe composites with oriented thermal conductivity by powder solid-state extrusion. Compos. Part A-Appl. Sci. Manuf. 172, 107598 (2023). https://doi.org/10.1016/j.compositesa.2023.107598
- N. Ye, J. Li, G. Zhang, Y. Lu, Z. Wang et al., Vitrimer-assisted construction of boron nitride vertically aligned nacre-mimetic composites for highly thermally conductive thermal interface materials. Chem. Mater. 35(13), 5193–5203 (2023). https://doi.org/10.1021/acs.chemmater.3c00947
- P. Zhang, C. Yao, L. Yu, X. Zhao, L. Zhao et al., Large-scale plasma grafts voltage stabilizer on hexagonal boron nitride for improving electrical insulation and thermal conductivity of epoxy composite. High Volt. 8(3), 550–559 (2023). https://doi.org/10.1049/hve2.12261
- C.-P. Feng, S.-S. Wan, W.-C. Wu, L. Bai, R.-Y. Bao et al., Electrically insulating, layer structured sir/gnps/bn thermal management materials with enhanced thermal conductivity and breakdown voltage. Compos. Sci. Technol. 167, 456–462 (2018). https://doi.org/10.1016/j.compscitech.2018.08.039
- Y. Lu, R. Hu, X. Chen, Y. Bai, A strategy for constructing 3d ordered boron nitride aerogels-based thermally conductive phase change composites for battery thermal management. J. Mater. Sci. Technol. 160, 248–257 (2023). https://doi.org/10.1016/j.jmst.2023.03.021
- J. Wang, Z. Wang, K. Yang, N. Chen, J. Ni et al., Enhanced heat transport capability across boron nitride/copper interface through inelastic phonon scattering. Adv. Funct. Mater. 32(40), 2206545 (2022). https://doi.org/10.1002/adfm.202206545
- Q. Cai, D. Scullion, W. Gan, A. Falin, S. Zhang et al., High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 5(6), eaav0129 (2019). https://doi.org/10.1126/sciadv.aav0129
- Y. Guo, Z. Lyu, X. Yang, Y. Lu, K. Ruan et al., Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos. Part B-Eng. 164, 732–739 (2019). https://doi.org/10.1016/j.compositesb.2019.01.099
- T. Huang, X. Zhang, T. Wang, H. Zhang, Y. Li et al., Self-modifying nanointerface driving ultrahigh bidirectional thermal conductivity boron nitride-based composite flexible films. Nano-Micro Lett. 15(1), 2 (2022). https://doi.org/10.1007/s40820-022-00972-9
- W. Wu, M. Zheng, K. Lu, F. Liu, Y.-H. Song et al., Thermally conductive composites based on hexagonal boron nitride nanosheets for thermal management: fundamentals to applications. Compos. Part A-Appl. Sci. Manuf. 169, 107533 (2023). https://doi.org/10.1016/j.compositesa.2023.107533
- A.D. Kushwaha, B. Patel, I.A. Khan, A. Agrawal, Fabrication and characterization of hexagonal boron nitride/polyester composites to study the effect of filler loading and surface modification for microelectronic applications. Polym. Compos. 44(8), 4579–4593 (2023). https://doi.org/10.1002/pc.27421
- S.-Y. Ji, H.-B. Jung, M.-K. Kim, J.-H. Lim, J.-Y. Kim et al., Enhanced energy storage performance of polymer/ceramic/metal composites by increase of thermal conductivity and coulomb-blockade effect. ACS Appl. Mater. Interfaces 13(23), 27343–27352 (2021). https://doi.org/10.1021/acsami.1c01177
- R. Li, J. Liu, L. Li, H. Wang, Z. Weng et al., Non-covalent surface modification of boron nitride nanotubes for enhanced catalysis. Chem. Commun. 50(2), 225–227 (2014). https://doi.org/10.1039/C3CC45667F
- D. Yang, Y. Ni, X. Kong, D. Gao, Y. Wang et al., Mussel-inspired modification of boron nitride for natural rubber composites with high thermal conductivity and low dielectric constant. Compos. Sci. Technol. 177, 18–25 (2019). https://doi.org/10.1016/j.compscitech.2019.04.016
- T. Ito, T. Goto, K. Inoue, K. Ishikawa, H. Kondo et al., In-plane modification of hexagonal boron nitride ps via plasma in solution. Appl. Phys. Express 13(6), 066001 (2020). https://doi.org/10.35848/1882-0786/ab916c
- T. Goto, Y. Hidaka, L. Jiang, R. Maeda, K. Mayumi et al., Effect of movable crosslinking points on mechanical properties in composite materials of large amount of plasma-surface-modified boron nitride and slide-ring elastomer. Compos. Sci. Technol. 216, 109036 (2021). https://doi.org/10.1016/j.compscitech.2021.109036
- K. Wu, P. Liao, R. Du, Q. Zhang, F. Chen et al., Preparation of a thermally conductive biodegradable cellulose nanofiber/hydroxylated boron nitride nanosheet film: the critical role of edge-hydroxylation. J. Mater. Chem. A 6(25), 11863–11873 (2018). https://doi.org/10.1039/C8TA03642J
- I. Jang, K.-H. Shin, I. Yang, H. Kim, J. Kim et al., Enhancement of thermal conductivity of bn/epoxy composite through surface modification with silane coupling agents. Colloid. Surf. A 518, 64–72 (2017). https://doi.org/10.1016/j.colsurfa.2017.01.011
- W. Han, M. Chen, W. Song, C. Ge, X. Zhang, Construction of hexagonal boron nitride@polystyrene nanocomposite with high thermal conductivity for thermal management application. Ceram. Int. 46(6), 7595–7601 (2020). https://doi.org/10.1016/j.ceramint.2019.11.259
- Z. Wang, Q. Li, Z. Chen, H. Li, S. Zheng et al., Functionalization of boron nitride nanosheets by diazonium salt for preparation of nanocomposites with high-density polyethylene. Polym. Compos. 40(6), 2346–2356 (2019). https://doi.org/10.1002/pc.25093
- S.K. Swain, S. Dash, C. Behera, S.K. Kisku, L. Behera, Cellulose nanobiocomposites with reinforcement of boron nitride: study of thermal, oxygen barrier and chemical resistant properties. Carbohyd. Polym. 95(2), 728–732 (2013). https://doi.org/10.1016/j.carbpol.2013.02.080
- S. Gao, B. Li, C. Zhang, D. Li, R. Liu et al., Chemical vapor deposition of pyrolytic boron nitride ceramics from single source precursor. Ceram. Int. 43(13), 10020–10025 (2017). https://doi.org/10.1016/j.ceramint.2017.05.016
- Y. Wu, M. Guo, G. Liu, S. Xue, Y. Xia et al., Surface modification of boron nitride nanosheets by polyelectrolytes via atom transfer radical polymerization. Mater. Res. Express 5(4), 045026 (2018). https://doi.org/10.1088/2053-1591/aab8ec
- C. Zhang, Y. He, F. Li, H. Di, L. Zhang et al., H-bn decorated with Fe3O4 nanops through mussel-inspired chemistry of dopamine for reinforcing anticorrosion performance of epoxy coatings. J. Alloys Compd. 685, 743–751 (2016). https://doi.org/10.1016/j.jallcom.2016.06.220
- B. Heer, H. Sahasrabudhe, A.K. Khanra, A. Bandyopadhyay, Boron nitride-reinforced ss316 composite: influence of laser processing parameters on microstructure and wear resistance. J. Mater. Sci. 52(18), 10829–10839 (2017). https://doi.org/10.1007/s10853-017-1271-7
- T. Ma, K. Ruan, Y. Guo, Y. Han, J. Gu, Controlled length and number of thermal conduction pathways for copper wire/poly(lactic acid) composites via 3d printing. Sci. China Mater. (2023). https://doi.org/10.1007/s40843-023-2540-9
- C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Lett. 14, 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
- M. Ebermann, R. Bogenfeld, J. Kreikemeier, R. Glüge, Analytical and numerical approach to determine effective diffusion coefficients for composite pressure vessels. Compos. Struct. 291, 115616 (2022). https://doi.org/10.1016/j.compstruct.2022.115616
- Y. Liu, M. Lu, K. Wu, E. Jiao, L. Liang et al., Enhanced thermal conduction of functionalized graphene nanoflake/polydimethylsiloxane composites via thermoluminescence strategy. Compos. Sci. Technol. 213, 108940 (2021). https://doi.org/10.1016/j.compscitech.2021.108940
- Y. Liu, K. Wu, M. Lu, J. Shi, L. Liang et al., Enhanced thermal conductivity of bio-based epoxy-graphite nanocomposites with degradability by facile in-situ construction of microcapsules. Compos. Part B-Eng. 218, 108936 (2021). https://doi.org/10.1016/j.compositesb.2021.108936
- K. Ruan, X. Shi, Y. Zhang, Y. Guo, X. Zhong et al., Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 62(38), e202309010 (2023). https://doi.org/10.1002/anie.202309010
- L. Liu, J. Feng, Y. Xue, V. Chevali, Y. Zhang et al., 2d mxenes for fire retardancy and fire-warning applications: promises and prospects. Adv. Funct. Mater. 33(9), 2212124 (2023). https://doi.org/10.1002/adfm.202212124
- J. Cai, V. Murugadoss, J. Jiang, X. Gao, Z. Lin et al., Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Adv. Compos. Hybrid Mater. 5(2), 641–650 (2022). https://doi.org/10.1007/s42114-022-00473-8
- Z. Tang, J. Xia, H. Yin, G. Fu, X. Ai et al., High-temperature-resistant barium strontium titanate @ag/poly(arylene ether nitrile) composites with enhanced dielectric performance and high mechanical strength. Adv. Compos. Hybrid Mater. 5(2), 823–833 (2022). https://doi.org/10.1007/s42114-021-00366-2
- L. Li, M. Jiang, X. Kong, Y. Shen, G. Wang et al., Enhanced energy storage performance with high temperature stability in abs-plzst composites. J. Alloys Compd. 966, 171308 (2023). https://doi.org/10.1016/j.jallcom.2023.171308
- D. He, P. Geng, H. Liu, Z. Xu, Q. Li et al., Space charge characteristics of electrothermally aged oil-paper insulation under slightly nonuniform electric field. IEEE Trans. Dielectr. Electr. Insul. 30(3), 1125–1134 (2023). https://doi.org/10.1109/TDEI.2023.3266317
- Y. Feng, Z. He, Z. Yang, W. Tang, Q. Chi et al., Enhanced thermal conductivity and insulation properties of mica tape with bn coating via electrostatic spraying technology. J. Appl. Polym. Sci. 139(42), e53034 (2022). https://doi.org/10.1002/app.53034
- H. Ruan, F. Lü, J. Song, X. Bian, K. Yin et al., Enhanced thermal conductance and electrical insulation of aln/pmia composite paper via nano splitting of matrix and size grading of fillers. Compos. Sci. Technol. 224, 109477 (2022). https://doi.org/10.1016/j.compscitech.2022.109477
- L. Zhao, C. Wei, Z. Li, W. Wei, L. Jia et al., High-temperature dielectric paper with high thermal conductivity and mechanical strength by engineering the aramid nanofibers and boron nitride nanotubes. Mater. Des. 210, 110124 (2021). https://doi.org/10.1016/j.matdes.2021.110124
References
X. Chen, K. Wu, Y. Zhang, D. Liu, R. Li et al., Tropocollagen-inspired hierarchical spiral structure of organic fibers in epoxy bulk for 3d high thermal conductivity. Adv. Mater. 34(40), 2206088 (2022). https://doi.org/10.1002/adma.202206088
Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 15(1), 160 (2023). https://doi.org/10.1007/s40820-023-01126-1
P. Li, M. Yang, Y. Liu, H. Qin, J. Liu et al., Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11(1), 2645 (2020). https://doi.org/10.1038/s41467-020-16494-0
Y. Han, K. Ruan, J. Gu, Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 62(5), e202216093 (2023). https://doi.org/10.1002/anie.202216093
C.-P. Feng, F. Wei, K.-Y. Sun, Y. Wang, H.-B. Lan et al., Emerging flexible thermally conductive films: mechanism, fabrication, application. Nano-Micro Lett. 14(1), 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
T. Kim, S.X. Drakopoulos, S. Ronca, A.J. Minnich, Origin of high thermal conductivity in disentangled ultra-high molecular weight polyethylene films: ballistic phonons within enlarged crystals. Nat. Commun. 13(1), 2452 (2022). https://doi.org/10.1038/s41467-022-29904-2
X.-F. Pan, G.-H. Yu, H.-L. Gao, Z.-Z. Wang, Z. Bao et al., Large-scale production of rectorite nanosheets and their co-assembly with aramid nanofibers for high-performance electrical insulating nanopapers. Adv. Mater. 34(43), 2206855 (2022). https://doi.org/10.1002/adma.202206855
L. An, R. Gu, B. Zhong, J. Wang, J. Zhang et al., Quasi-isotropically thermal conductive, highly transparent, insulating and super-flexible polymer films achieved by cross linked 2d hexagonal boron nitride nanosheets. Small 17(46), 2101409 (2021). https://doi.org/10.1002/smll.202101409
M. Ma, L. Xu, L. Qiao, S. Chen, Y. Shi et al., Nanofibrillated cellulose/mgo@rgo composite films with highly anisotropic thermal conductivity and electrical insulation. Chem. Eng. J. 392, 123714 (2020). https://doi.org/10.1016/j.cej.2019.123714
X. Yu, M.R. Bhatti, X. Ren, P. Steiner, F. Di Sacco et al., Dielectric polymer composites with ultra-high thermal conductivity and low dielectric loss. Compos. Sci. Technol. 229, 109695 (2022). https://doi.org/10.1016/j.compscitech.2022.109695
W.-T. Cao, F.-F. Chen, Y.-J. Zhu, Y.-G. Zhang, Y.-Y. Jiang et al., Binary strengthening and toughening of mxene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
L. Xu, K. Zhan, S. Ding, J. Zhu, M. Liu et al., A malleable composite dough with well-dispersed and high-content boron nitride nanosheets. ACS Nano 17(5), 4886–4895 (2023). https://doi.org/10.1021/acsnano.2c11826
K. Wu, J. Wang, D. Liu, C. Lei, D. Liu et al., Highly thermoconductive, thermostable, and super-flexible film by engineering 1d rigid rod-like aramid nanofiber/2d boron nitride nanosheets. Adv. Mater. 32(8), 1906939 (2020). https://doi.org/10.1002/adma.201906939
Z. Liu, X. Fan, M. Han, H. Li, J. Zhang et al., Branched fluorine/adamantane interfacial compatibilizer for pbo fibers/cyanate ester wave-transparent laminated composites. Chin. J. Chem. 41(8), 939–950 (2023). https://doi.org/10.1002/cjoc.202200749
Z. Liu, X. Fan, J. Zhang, L. Chen, Y. Tang et al., PbO fibers/fluorine-containing liquid crystal compound modified cyanate ester wave-transparent laminated composites with excellent mechanical and flame retardance properties. J. Mater. Sci. Technol. 152, 16–29 (2023). https://doi.org/10.1016/j.jmst.2023.01.007
X. Zhang, C. Wang, Y. Sun, H. Ling, G. Li et al., Synergistically enhanced interfacial and wave-transparent properties of pbo fiber composites: constructing self-assembly interphase with different dimensional COF. Compos. Sci. Technol. 242, 110216 (2023). https://doi.org/10.1016/j.compscitech.2023.110216
L. Tang, Y. Tang, J. Zhang, Y. Lin, J. Kong et al., High-strength super-hydrophobic double-layered pbo nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications. Sci. Bull. 67(21), 2196–2207 (2022). https://doi.org/10.1016/j.scib.2022.10.011
Y. Wang, S. Xia, H. Li, J. Wang, Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3d nanofiber network as matrix. Adv. Funct. Mater. 29(38), 1903876 (2019). https://doi.org/10.1002/adfm.201903876
S. Yu, W. Zhang, J. An, T. Wang, H. Ling et al., Flexible, multifunctional aerogel films based on pbo nanofibers and their application in wearable electronic devices. Electrochim. Acta 441, 141802 (2023). https://doi.org/10.1016/j.electacta.2022.141802
R. Barstugan, M. Barstugan, I. Ozaytekin, Pbo/graphene added β-pvdf piezoelectric composite nanofiber production. Compos. Part B-Eng. 158, 141–148 (2019). https://doi.org/10.1016/j.compositesb.2018.09.059
Z. Yu, S. Wu, C. Li, Y. Xiao, J. Liu et al., Mechanically robust fluorinated graphene/poly(p-phenylene benzobisoxazole) nanofiber films with low dielectric constant and enhanced thermal conductivity: Implications for thermal management applications. ACS Appl. Nano Mater. 5(12), 18247–18255 (2022). https://doi.org/10.1021/acsanm.2c04137
Y. Liu, N. Zhao, J. Xu, Mechanically strong and flame-retardant pbo/bn/mxene nanocomposite paper with low thermal expansion coefficient, for efficient emi shielding and heat dissipation. Adv. Fiber Mater. (2023). https://doi.org/10.1007/s42765-023-00298-0
L. Wang, Z. Ma, Y. Zhang, H. Qiu, K. Ruan et al., Mechanically strong and folding-endurance ti3c2tx mxene/pbo nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 4(2), 200–210 (2022). https://doi.org/10.1002/cey2.174
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
J.S. Lee, J.-W. Kim, J.H. Lee, Y.K. Son, Y.B. Kim et al., Flash-induced high-throughput porous graphene via synergistic photo-effects for electromagnetic interference shielding. Nano-Micro Lett. 15(1), 191 (2023). https://doi.org/10.1007/s40820-023-01157-8
K. Gong, Y. Peng, A. Liu, S. Qi, H. Qiu, Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos. Part A-Appl. S. 176, 107857 (2024). https://doi.org/10.1016/j.compositesa.2023.107857
Y. Yao, J. Sun, X. Zeng, R. Sun, J.-B. Xu et al., Construction of 3d skeleton for polymer composites achieving a high thermal conductivity. Small 14(13), 1704044 (2018). https://doi.org/10.1002/smll.201704044
R. Zhang, X. Shi, L. Tang, Z. Liu, J. Zhang et al., Thermally conductive and insulating epoxy composites by synchronously incorporating si-sol functionalized glass fibers and boron nitride fillers. Chin. J. Polym. Sci. 38(7), 730–739 (2020). https://doi.org/10.1007/s10118-020-2391-0
T. Huang, X. Zhang, T. Wang, H. Zhang, Y. Li et al., Self-modifying nanointerface driving ultrahigh bidirectional thermal conductivity boron nitride-based composite flexible films. Nano-Micro Lett. 15, 2 (2023). https://doi.org/10.1007/s40820-022-00972-9
Z. Liu, X. Yin, H. Zhang, M. Wang, Y. Feng, Efficient preparation of bn/uhmwpe composites with oriented thermal conductivity by powder solid-state extrusion. Compos. Part A-Appl. Sci. Manuf. 172, 107598 (2023). https://doi.org/10.1016/j.compositesa.2023.107598
N. Ye, J. Li, G. Zhang, Y. Lu, Z. Wang et al., Vitrimer-assisted construction of boron nitride vertically aligned nacre-mimetic composites for highly thermally conductive thermal interface materials. Chem. Mater. 35(13), 5193–5203 (2023). https://doi.org/10.1021/acs.chemmater.3c00947
P. Zhang, C. Yao, L. Yu, X. Zhao, L. Zhao et al., Large-scale plasma grafts voltage stabilizer on hexagonal boron nitride for improving electrical insulation and thermal conductivity of epoxy composite. High Volt. 8(3), 550–559 (2023). https://doi.org/10.1049/hve2.12261
C.-P. Feng, S.-S. Wan, W.-C. Wu, L. Bai, R.-Y. Bao et al., Electrically insulating, layer structured sir/gnps/bn thermal management materials with enhanced thermal conductivity and breakdown voltage. Compos. Sci. Technol. 167, 456–462 (2018). https://doi.org/10.1016/j.compscitech.2018.08.039
Y. Lu, R. Hu, X. Chen, Y. Bai, A strategy for constructing 3d ordered boron nitride aerogels-based thermally conductive phase change composites for battery thermal management. J. Mater. Sci. Technol. 160, 248–257 (2023). https://doi.org/10.1016/j.jmst.2023.03.021
J. Wang, Z. Wang, K. Yang, N. Chen, J. Ni et al., Enhanced heat transport capability across boron nitride/copper interface through inelastic phonon scattering. Adv. Funct. Mater. 32(40), 2206545 (2022). https://doi.org/10.1002/adfm.202206545
Q. Cai, D. Scullion, W. Gan, A. Falin, S. Zhang et al., High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 5(6), eaav0129 (2019). https://doi.org/10.1126/sciadv.aav0129
Y. Guo, Z. Lyu, X. Yang, Y. Lu, K. Ruan et al., Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos. Part B-Eng. 164, 732–739 (2019). https://doi.org/10.1016/j.compositesb.2019.01.099
T. Huang, X. Zhang, T. Wang, H. Zhang, Y. Li et al., Self-modifying nanointerface driving ultrahigh bidirectional thermal conductivity boron nitride-based composite flexible films. Nano-Micro Lett. 15(1), 2 (2022). https://doi.org/10.1007/s40820-022-00972-9
W. Wu, M. Zheng, K. Lu, F. Liu, Y.-H. Song et al., Thermally conductive composites based on hexagonal boron nitride nanosheets for thermal management: fundamentals to applications. Compos. Part A-Appl. Sci. Manuf. 169, 107533 (2023). https://doi.org/10.1016/j.compositesa.2023.107533
A.D. Kushwaha, B. Patel, I.A. Khan, A. Agrawal, Fabrication and characterization of hexagonal boron nitride/polyester composites to study the effect of filler loading and surface modification for microelectronic applications. Polym. Compos. 44(8), 4579–4593 (2023). https://doi.org/10.1002/pc.27421
S.-Y. Ji, H.-B. Jung, M.-K. Kim, J.-H. Lim, J.-Y. Kim et al., Enhanced energy storage performance of polymer/ceramic/metal composites by increase of thermal conductivity and coulomb-blockade effect. ACS Appl. Mater. Interfaces 13(23), 27343–27352 (2021). https://doi.org/10.1021/acsami.1c01177
R. Li, J. Liu, L. Li, H. Wang, Z. Weng et al., Non-covalent surface modification of boron nitride nanotubes for enhanced catalysis. Chem. Commun. 50(2), 225–227 (2014). https://doi.org/10.1039/C3CC45667F
D. Yang, Y. Ni, X. Kong, D. Gao, Y. Wang et al., Mussel-inspired modification of boron nitride for natural rubber composites with high thermal conductivity and low dielectric constant. Compos. Sci. Technol. 177, 18–25 (2019). https://doi.org/10.1016/j.compscitech.2019.04.016
T. Ito, T. Goto, K. Inoue, K. Ishikawa, H. Kondo et al., In-plane modification of hexagonal boron nitride ps via plasma in solution. Appl. Phys. Express 13(6), 066001 (2020). https://doi.org/10.35848/1882-0786/ab916c
T. Goto, Y. Hidaka, L. Jiang, R. Maeda, K. Mayumi et al., Effect of movable crosslinking points on mechanical properties in composite materials of large amount of plasma-surface-modified boron nitride and slide-ring elastomer. Compos. Sci. Technol. 216, 109036 (2021). https://doi.org/10.1016/j.compscitech.2021.109036
K. Wu, P. Liao, R. Du, Q. Zhang, F. Chen et al., Preparation of a thermally conductive biodegradable cellulose nanofiber/hydroxylated boron nitride nanosheet film: the critical role of edge-hydroxylation. J. Mater. Chem. A 6(25), 11863–11873 (2018). https://doi.org/10.1039/C8TA03642J
I. Jang, K.-H. Shin, I. Yang, H. Kim, J. Kim et al., Enhancement of thermal conductivity of bn/epoxy composite through surface modification with silane coupling agents. Colloid. Surf. A 518, 64–72 (2017). https://doi.org/10.1016/j.colsurfa.2017.01.011
W. Han, M. Chen, W. Song, C. Ge, X. Zhang, Construction of hexagonal boron nitride@polystyrene nanocomposite with high thermal conductivity for thermal management application. Ceram. Int. 46(6), 7595–7601 (2020). https://doi.org/10.1016/j.ceramint.2019.11.259
Z. Wang, Q. Li, Z. Chen, H. Li, S. Zheng et al., Functionalization of boron nitride nanosheets by diazonium salt for preparation of nanocomposites with high-density polyethylene. Polym. Compos. 40(6), 2346–2356 (2019). https://doi.org/10.1002/pc.25093
S.K. Swain, S. Dash, C. Behera, S.K. Kisku, L. Behera, Cellulose nanobiocomposites with reinforcement of boron nitride: study of thermal, oxygen barrier and chemical resistant properties. Carbohyd. Polym. 95(2), 728–732 (2013). https://doi.org/10.1016/j.carbpol.2013.02.080
S. Gao, B. Li, C. Zhang, D. Li, R. Liu et al., Chemical vapor deposition of pyrolytic boron nitride ceramics from single source precursor. Ceram. Int. 43(13), 10020–10025 (2017). https://doi.org/10.1016/j.ceramint.2017.05.016
Y. Wu, M. Guo, G. Liu, S. Xue, Y. Xia et al., Surface modification of boron nitride nanosheets by polyelectrolytes via atom transfer radical polymerization. Mater. Res. Express 5(4), 045026 (2018). https://doi.org/10.1088/2053-1591/aab8ec
C. Zhang, Y. He, F. Li, H. Di, L. Zhang et al., H-bn decorated with Fe3O4 nanops through mussel-inspired chemistry of dopamine for reinforcing anticorrosion performance of epoxy coatings. J. Alloys Compd. 685, 743–751 (2016). https://doi.org/10.1016/j.jallcom.2016.06.220
B. Heer, H. Sahasrabudhe, A.K. Khanra, A. Bandyopadhyay, Boron nitride-reinforced ss316 composite: influence of laser processing parameters on microstructure and wear resistance. J. Mater. Sci. 52(18), 10829–10839 (2017). https://doi.org/10.1007/s10853-017-1271-7
T. Ma, K. Ruan, Y. Guo, Y. Han, J. Gu, Controlled length and number of thermal conduction pathways for copper wire/poly(lactic acid) composites via 3d printing. Sci. China Mater. (2023). https://doi.org/10.1007/s40843-023-2540-9
C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Lett. 14, 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
M. Ebermann, R. Bogenfeld, J. Kreikemeier, R. Glüge, Analytical and numerical approach to determine effective diffusion coefficients for composite pressure vessels. Compos. Struct. 291, 115616 (2022). https://doi.org/10.1016/j.compstruct.2022.115616
Y. Liu, M. Lu, K. Wu, E. Jiao, L. Liang et al., Enhanced thermal conduction of functionalized graphene nanoflake/polydimethylsiloxane composites via thermoluminescence strategy. Compos. Sci. Technol. 213, 108940 (2021). https://doi.org/10.1016/j.compscitech.2021.108940
Y. Liu, K. Wu, M. Lu, J. Shi, L. Liang et al., Enhanced thermal conductivity of bio-based epoxy-graphite nanocomposites with degradability by facile in-situ construction of microcapsules. Compos. Part B-Eng. 218, 108936 (2021). https://doi.org/10.1016/j.compositesb.2021.108936
K. Ruan, X. Shi, Y. Zhang, Y. Guo, X. Zhong et al., Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 62(38), e202309010 (2023). https://doi.org/10.1002/anie.202309010
L. Liu, J. Feng, Y. Xue, V. Chevali, Y. Zhang et al., 2d mxenes for fire retardancy and fire-warning applications: promises and prospects. Adv. Funct. Mater. 33(9), 2212124 (2023). https://doi.org/10.1002/adfm.202212124
J. Cai, V. Murugadoss, J. Jiang, X. Gao, Z. Lin et al., Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Adv. Compos. Hybrid Mater. 5(2), 641–650 (2022). https://doi.org/10.1007/s42114-022-00473-8
Z. Tang, J. Xia, H. Yin, G. Fu, X. Ai et al., High-temperature-resistant barium strontium titanate @ag/poly(arylene ether nitrile) composites with enhanced dielectric performance and high mechanical strength. Adv. Compos. Hybrid Mater. 5(2), 823–833 (2022). https://doi.org/10.1007/s42114-021-00366-2
L. Li, M. Jiang, X. Kong, Y. Shen, G. Wang et al., Enhanced energy storage performance with high temperature stability in abs-plzst composites. J. Alloys Compd. 966, 171308 (2023). https://doi.org/10.1016/j.jallcom.2023.171308
D. He, P. Geng, H. Liu, Z. Xu, Q. Li et al., Space charge characteristics of electrothermally aged oil-paper insulation under slightly nonuniform electric field. IEEE Trans. Dielectr. Electr. Insul. 30(3), 1125–1134 (2023). https://doi.org/10.1109/TDEI.2023.3266317
Y. Feng, Z. He, Z. Yang, W. Tang, Q. Chi et al., Enhanced thermal conductivity and insulation properties of mica tape with bn coating via electrostatic spraying technology. J. Appl. Polym. Sci. 139(42), e53034 (2022). https://doi.org/10.1002/app.53034
H. Ruan, F. Lü, J. Song, X. Bian, K. Yin et al., Enhanced thermal conductance and electrical insulation of aln/pmia composite paper via nano splitting of matrix and size grading of fillers. Compos. Sci. Technol. 224, 109477 (2022). https://doi.org/10.1016/j.compscitech.2022.109477
L. Zhao, C. Wei, Z. Li, W. Wei, L. Jia et al., High-temperature dielectric paper with high thermal conductivity and mechanical strength by engineering the aramid nanofibers and boron nitride nanotubes. Mater. Des. 210, 110124 (2021). https://doi.org/10.1016/j.matdes.2021.110124