Highly Thermally Conductive and Flame-Retardant Waterborne Polyurethane Composites with 3D BNNS Bridging Structures via Magnetic Field Assistance
Corresponding Author: Junwei Gu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 138
Abstract
The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in modern electronic devices. Hence, a composite with three-dimensional network (Ho/U-BNNS/WPU) is developed by simultaneously incorporating magnetically modified boron nitride nanosheets (M@BNNS) and non-magnetic organo-grafted BNNS (U-BNNS) into waterborne polyurethane (WPU) to synchronous molding under a horizontal magnetic field. The results indicate that the continuous in-plane pathways formed by M@BNNS aligned along the magnetic field direction, combined with the bridging structure established by U-BNNS, enable Ho/U-BNNS/WPU to exhibit exceptional in-plane (λ//) and through-plane thermal conductivities (λ⊥). In particular, with the addition of 30 wt% M@BNNS and 5 wt% U-BNNS, the λ// and λ⊥ of composites reach 11.47 and 2.88 W m−1 K−1, respectively, which representing a 194.2% improvement in λ⊥ compared to the composites with a single orientation of M@BNNS. Meanwhile, Ho/U-BNNS/WPU exhibits distinguished thermal management capabilities as thermal interface materials for LED and chips. The composites also demonstrate excellent flame retardancy, with a peak heat release and total heat release reduced by 58.9% and 36.9%, respectively, compared to WPU. Thus, this work offers new insights into the thermally conductive structural design and efficient flame-retardant systems of polymer composites, presenting broad application potential in electronic packaging fields.
Highlights:
1 By simultaneously incorporating the magnetic filler-modified boron nitride nanosheets (M@BNNS) and the non-magnetic filler U-BNNS into the polymer matrix, a three-dimensional heat conduction pathway composites are obtained under a horizontal magnetic field.
2 Owing to the microstructural design of the 3D-bridging architecture, with the addition of only 5 wt% U-BNNS, the λ⊥ of composites achieved 2.88 W m−1 K−1, representing a remarkable increase of 194.2% compared to single-oriented composites.
3 The 3D-bridging architecture composite also demonstrates excellent flame retardancy, attributed to the synergistic mechanisms of condensed and gas phases, effectively mitigating the risks of thermal runaway in electronic devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. An, Y. Yu, Q. Cai, S. Mateti, L.H. Li et al., Hexagonal boron nitride nanosheets: preparation, heat transport property and application as thermally conductive fillers. Prog. Mater Sci. 138, 101154 (2023). https://doi.org/10.1016/j.pmatsci.2023.101154
- Z.E. Nataj, Y. Xu, D. Wright, J.O. Brown, J. Garg et al., Cryogenic characteristics of graphene composites—evolution from thermal conductors to thermal insulators. Nat. Commun. 14, 3190 (2023). https://doi.org/10.1038/s41467-023-38508-3
- Y. Ma, J. Shen, T. Li, X. Sheng, Y. Chen, A “net-ball” structure fiber membrane with electro-/ photo-thermal heating and phase change synchronous temperature regulation capacity via electrospinning. Sol. Energy Mater. Sol. Cells 276, 113078 (2024). https://doi.org/10.1016/j.solmat.2024.113078
- V. Guerra, C. Wan, T. McNally, Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog. Mater. Sci. 100, 170–186 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.002
- J. Yun, Recent progress in thermal management for flexible/wearable devices. Soft Sci. 3, 12 (2023). https://doi.org/10.20517/ss.2023.04
- Y. Guo, S. Wang, H. Zhang, H. Guo, M. He et al., Consistent thermal conductivities of spring-like structured polydimethylsiloxane composites under large deformation. Adv. Mater. 36, e2404648 (2024). https://doi.org/10.1002/adma.202404648
- R. Yan, Z. Huang, Y. Chen, L. Zhang, X. Sheng, Phase change composite based on lignin carbon aerogel/nickel foam dual-network for multisource energy harvesting and superb EMI shielding. Int. J. Biol. Macromol. 277, 134233 (2024). https://doi.org/10.1016/j.ijbiomac.2024.134233
- J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13, 337–345 (2019). https://doi.org/10.1021/acsnano.8b06290
- Y. Han, K. Ruan, X. He, Y. Tang, H. Guo et al., Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared camouflages and information encryption. Angew. Chem. Int. Ed. 63, e202401538 (2024). https://doi.org/10.1002/anie.202401538
- H. Shivakumar, G.D. Gurumurthy, K.B. Bommegowda, S. Parameshwara, S. Parameshwara, Study of galvanic charging-discharging properties of graphene nanoplatelets incorporated epoxy-carbon fabric composites. J. Polym. Mater. 40, 93–103 (2023). https://doi.org/10.32381/jpm.2023.40.1-2.8
- J.-H. Yi, J.Y. Park, H. Shen, Y.-H. Choa, Mechanically robust and thermally conductive nano-porous anodic aluminum oxide templates via thermal stress minimization and alpha phase transformation for interposer. ACS Appl. Nano Mater. 6, 10967–10976 (2023). https://doi.org/10.1021/acsanm.3c00396
- S. Rao, X. Zeng, X. Cheng, J. Fan, D. He et al., Damping, soft, and thermally conductive composite elastomer via introducing bottlebrush chains. Chem. Eng. J. 474, 145847 (2023). https://doi.org/10.1016/j.cej.2023.145847
- M. He, X. Zhong, X. Lu, J. Hu, K. Ruan et al., Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by Hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 36, 2410186 (2024). https://doi.org/10.1002/adma.202410186
- C. Boobalan, S.K. Kannaiyan, A correlation to predict the thermal conductivity of MXene-silicone oil based nano-fluids and data driven modeling using artificial neural networks. Int. J. Energy Res. 46, 21538–21547 (2022). https://doi.org/10.1002/er.7786
- X. He, J. Wu, X. Huang, Y. Chen, L. Zhang et al., Three-in-one polymer nanocomposite coating via constructing tannic acid functionalized MXene/BP hybrids with superior corrosion resistance, friction resistance, and flame-retardancy. Chem. Eng. Sci. 283, 119429 (2024). https://doi.org/10.1016/j.ces.2023.119429
- F. Zhang, D. Ren, Y. Zhang, L. Huang, Y. Sun et al., Production of highly-oriented graphite monoliths with high thermal conductivity. Chem. Eng. J. 431, 134102 (2022). https://doi.org/10.1016/j.cej.2021.134102
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
- R. Mohanraman, P. Steiner, C. Kocabas, I.A. Kinloch, M.A. Bissett, Synergistic improvement in the thermal conductivity of hybrid boron nitride nanotube/nanosheet epoxy composites. ACS Appl. Nano Mater. 7, 13142–13146 (2024). https://doi.org/10.1021/acsanm.4c01646
- M.R.R. Roudi, M. Ranjkesh, A.H. Korayem, R. Shahsavary, Review of boron nitride nanosheet-based composites for construction applications. ACS Appl. Nano Mater. 5, 17356–17372 (2022). https://doi.org/10.1021/acsanm.2c03200
- M. Yang, D. Hu, Y. Guo, X. Zhao, W. Ma, Glucose-assisted exfoliation of hexagonal boron nitride nanosheets and modification with hyperbranched polymers for thermally conductive epoxy composites: implications for thermal management. ACS Appl. Nano Mater. 5, 16315–16324 (2022). https://doi.org/10.1021/acsanm.2c03353
- M. Wang, Z. Jiao, Y. Chen, X. Hou, L. Fu et al., Enhanced thermal conductivity of poly(vinylidene fluoride)/boron nitride nanosheet composites at low filler content. Compos. Part A Appl. Sci. Manuf. 109, 321–329 (2018). https://doi.org/10.1016/j.compositesa.2018.03.023
- Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv et al., Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15, 6489–6498 (2021). https://doi.org/10.1021/acsnano.0c09229
- E. Kim, K.-Y. Chan, J. Yang, H. Venkatesan, M.H. Adegun et al., Engineering anisotropic structures of thermally insulating aerogels with high solar reflectance for energy-efficient cooling applications. J. Mater. Chem. A 11, 7105–7114 (2023). https://doi.org/10.1039/D2TA09983G
- Z. Zhou, Z. Wu, H. Liu, C. Huang, T. Wang et al., Enhancing cryogenic thermal conductivity of epoxy composites through the incorporation of boron nitride nanosheets/nanodiamond aerogels prepared by directional-freezing method. Polym. Compos. 45, 2670–2684 (2024). https://doi.org/10.1002/pc.27947
- W. Wu, M. Zheng, K. Lu, F. Liu, Y.-H. Song et al., Thermally conductive composites based on hexagonal boron nitride nanosheets for thermal management: fundamentals to applications. Compos. Part A Appl. Sci. Manuf. 169, 107533 (2023). https://doi.org/10.1016/j.compositesa.2023.107533
- X. Lin, M. Han, Recent progress in soft electronics and robotics based on magnetic nanomaterials. Soft Sci. 3, 14 (2023). https://doi.org/10.20517/ss.2023.05
- M.-Y. Song, C.-G. Ma, X.-L. Li, H.-T. Chi, P. Zhang et al., Highly thermally conductive and insulating PET nonwoven fabric/PDMS sandwich composite film by synergism of boron nitride nanosheets and alumina ps. Polym. Compos. 44, 6136–6148 (2023). https://doi.org/10.1002/pc.27552
- J. Zhou, Z. Yu, M.M. Mohideen, J. Ge, X. Lv et al., Constructing hierarchical polymer nanocomposites with strongly enhanced thermal conductivity. ACS Appl. Mater. Interfaces 15, 42900–42911 (2023). https://doi.org/10.1021/acsami.3c09847
- S. Zuo, M. Li, S. Xie, J. Luo, L. Xu et al., Enhanced out-of-plane thermal conductivity of polyimide composite films by adding hollow cube-like boron nitride. Ceram. Int. 49, 12615–12624 (2023). https://doi.org/10.1016/j.ceramint.2022.12.124
- Y. Liang, N. Zhao, W. Gao, H. Bai, Mechanically and thermally guided, honeycomb-like nanocomposites with strain-insensitive high thermal conductivity for stretchable electronics. ACS Nano 18, 8199–8208 (2024). https://doi.org/10.1021/acsnano.3c12233
- Y. He, F. Kuang, Z. Che, F. Sun, K. Zheng et al., Achieving high out-of-plane thermal conductivity for boron nitride nano sheets/epoxy composite films by magnetic orientation. Compos. Part A Appl. Sci. Manuf. 157, 106933 (2022). https://doi.org/10.1016/j.compositesa.2022.106933
- H. He, W. Peng, J. Liu, X.Y. Chan, S. Liu et al., Microstructured BN composites with internally designed high thermal conductivity paths for 3D electronic packaging. Adv. Mater. 34, e2205120 (2022). https://doi.org/10.1002/adma.202205120
- H. Jiang, J. Li, Y. Xie, H. Guo, M. He et al., Design of efficient microstructured path by magnetic orientation boron nitride nanosheets/MnFe2O4 enabling waterborne polyurethane with high thermal conductivity and flame retardancy. J. Mater. Sci. Technol. 209, 207–218 (2025). https://doi.org/10.1016/j.jmst.2024.05.013
- N. Wang, G. Yang, H. Wang, C. Yan, R. Sun et al., A universal method for large-yield and high-concentration exfoliation of two-dimensional hexagonal boron nitride nanosheets. Mater. Today 27, 33–42 (2019). https://doi.org/10.1016/j.mattod.2018.10.039
- A. Mishra, V. Sharma, T. Mohanty, B.K. Kuanr, Microstructural and magnetic properties of rGO/MnFe2O4 nanocomposites; relaxation dynamics. J. Alloys Compd. 790, 983–991 (2019). https://doi.org/10.1016/j.jallcom.2019.03.266
- H. Yu, Y. Feng, L. Gao, C. Chen, Z. Zhang et al., Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 53, 7161–7170 (2020). https://doi.org/10.1021/acs.macromol.9b02544
- W. Fu, H. Mei, Z. Zhang, Q. Wang, R. Li et al., Self-healing and chemical resistance polyurethane elastomers based on 2-ureido-4 [1H] pyrimidinone. J. Appl. Polym. Sci. 139, e52931 (2022). https://doi.org/10.1002/app.52931
- P.Y.W. Dankers, Z. Zhang, E. Wisse, D.W. Grijpma, R.P. Sijbesma et al., Oligo(trimethylene carbonate)-based supramolecular biomaterials. Macromolecules 39, 8763–8771 (2006). https://doi.org/10.1021/ma061078o
- X. Dai, L.-B. Huang, Y. Du, J. Han, Q. Zheng et al., Self-healing, flexible, and tailorable triboelectric nanogenerators for self-powered sensors based on thermal effect of infrared radiation. Adv. Funct. Mater. 30, 1910723 (2020). https://doi.org/10.1002/adfm.201910723
- X. Meng, T. Song, C. Zhang, H. Wang, M. Ge et al., Magnetic MnFe2O4 nanops anchored on sludge-derived biochar in activating peroxydisulfate for levofloxacin degradation: mechanism, degradation pathways and cost analysis. J. Environ. Chem. Eng. 11, 110241 (2023). https://doi.org/10.1016/j.jece.2023.110241
- H. Qin, Y. Yang, W. Shi, Y. She, Heterogeneous fenton degradation of ofloxacin catalyzed by magnetic nanostructured MnFe2O4 with different morphologies. Environ. Sci. Pollut. Res. Int. 28, 26558–26570 (2021). https://doi.org/10.1007/s11356-021-12548-y
- Z. Liu, X. Sun, J. Xie, X. Zhang, J. Li, Interfacial thermal transport properties and its effect on thermal conductivity of functionalized BNNS/epoxy composites. Int. J. Heat Mass Transf. 195, 123031 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123031
- Y. Wang, M. Liu, Y. Zang, C. Zhou, Y. Xin et al., Ascorbic acid enhanced MnFe2O4/peroxymonosulfate oxidation of organic pollutant: key role of singlet oxygen generation and Fe/Mn cycling. J. Environ. Manage. 321, 115971 (2022). https://doi.org/10.1016/j.jenvman.2022.115971
- X. Yang, X. Ling, Y. Li, H. Wang, Simultaneous enhanced mechanical properties and foamability of biodegradable PBAT via physical cross-linking through reactive blending. ACS Appl. Polym. Mater. 6, 13969–13978 (2024). https://doi.org/10.1021/acsapm.4c03104
- K. Ruan, X. Shi, Y. Zhang, Y. Guo, X. Zhong et al., Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 62, e202309010 (2023). https://doi.org/10.1002/anie.202309010
- M. Salehirad, M.M. Alavi Nikje, L. Ahmadian-Alam, Synthesis and characterization of functionalized Fe3O4/boron nitride as magnetically alignable 2D-nanofiller to improve the thermal conductivity of epoxy nanocomposites. Ind. Eng. Chem. Res. 57, 1803–1814 (2018). https://doi.org/10.1021/acs.iecr.7b03540
- C. Chen, Y. Xue, Z. Li, Y. Wen, X. Li et al., Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in situ sintering of silver nanops. Chem. Eng. J. 369, 1150–1160 (2019). https://doi.org/10.1016/j.cej.2019.03.150
- Y. Han, K. Ruan, J. Gu, Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver Nanowires@Boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 62, e202216093 (2023). https://doi.org/10.1002/anie.202216093
- Q. He, M. Qin, H. Zhang, J. Yue, L. Peng et al., Patterned liquid metal embedded in brush-shaped polymers for dynamic thermal management. Mater. Horiz. 11, 531–544 (2024). https://doi.org/10.1039/d3mh01498c
- Z. Lin, H. Jin, H. Deng, Z. Zu, H. Huang et al., Robust, self-healable, recyclable and thermally conductive silicone composite as intelligent thermal interface material. Compos. Struct. 332, 117932 (2024). https://doi.org/10.1016/j.compstruct.2024.117932
- H. Niu, H. Guo, Y. Ren, L. Ren, R. Lv et al., Spherical aggregated BN/AlN filled silicone composites with enhanced through-plane thermal conductivity assisted by Vortex flow. Chem. Eng. J. 430, 133155 (2022). https://doi.org/10.1016/j.cej.2021.133155
- M. Qin, Y. Huo, G. Han, J. Yue, X. Zhou et al., Three-dimensional boron nitride network/polyvinyl alcohol composite hydrogel with solid-liquid interpenetrating heat conduction network for thermal management. J. Mater. Sci. Technol. 127, 183–191 (2022). https://doi.org/10.1016/j.jmst.2022.04.013
- F. You, Y. Chen, Y. Shen, Y. Ke, G. Tong et al., Constructing a 3D interlinked network with magnetic/dielectric loss and electron/phonon co-transfer in MgO@Ni@C and MgO@Ni@CNT foams for low loads and prominent thermal/electromagnetic performance. Chem. Eng. J. 480, 147975 (2024). https://doi.org/10.1016/j.cej.2023.147975
- A. Shimamura, Y. Hotta, H. Hyuga, M. Hotta, K. Hirao, Improving the thermal conductivity of epoxy composites using a combustion-synthesized aggregated β-Si3N4 filler with randomly oriented grains. Sci. Rep. 10, 14926 (2020). https://doi.org/10.1038/s41598-020-71745-w
- B. Liu, J. Zeng, P. Li, J. Li, B. Wang et al., Flexible nanocellulose-based layered films by crosslinking phosphorus lignin nanops and functionalized boron nitride nanosheets for flame-resistant and thermal conductivity applications. J. Mater. Chem. A 11, 24057–24071 (2023). https://doi.org/10.1039/D3TA05636H
- X. He, C. Cui, Y. Chen, L. Zhang, X. Sheng et al., MXene and polymer collision: sparking the future of high-performance multifunctional coatings. Adv. Funct. Mater. 34, 2409675 (2024). https://doi.org/10.1002/adfm.202409675
- H. Jiang, Y. Xie, Y. Jiang, Y. Luo, X. Sheng et al., Rationally assembled sandwich structure of MXene-based phosphorous flame retardant at ultra-low loading nanosheets enabling fire-safe thermoplastic polyurethane. Appl. Surf. Sci. 649, 159111 (2024). https://doi.org/10.1016/j.apsusc.2023.159111
- M. Aydin, T. Uyar, M.A. Tasdelen, Y. Yagci, Polymer/clay nanocomposites through multiple hydrogen-bonding interactions. J. Polym. Sci. Part A Polym. Chem. 53, 650–658 (2015). https://doi.org/10.1002/pola.27487
- G. Zhou, S. Li, X. Zhang, Z. Liu, M. He et al., Synthesis and properties of a fire-retardant coating based on intercalated expandable graphite-modified cellulose for steel structures. J. Build. Eng. 51, 104270 (2022). https://doi.org/10.1016/j.jobe.2022.104270
- L. Liu, J. Feng, Y. Xue, V. Chevali, Y. Zhang et al., 2D MXenes for fire retardancy and fire-warning applications: promises and prospects. Adv. Funct. Mater. 33, 2212124 (2023). https://doi.org/10.1002/adfm.202212124
- R. Wu, X. Song, Y. Ji, H. Wu, S. Guo et al., In-situ exfoliation of hexagonal boron nitride during the forced flow of highly elastic polylactide to fabricate electrospun fibrous film with high thermal conductivity and low dielectric loss. Compos. Sci. Technol. 251, 110573 (2024). https://doi.org/10.1016/j.compscitech.2024.110573
- D.S. Bag, S. Tiwari, A. Dixit, K. Meenu, Chiral copolymers of (R)-N-(1-phenyl-ethyl) methacrylamide (R-NPEMAM) and 2-hydroxy ethyl methacrylate (HEMA): investigation of physico- chemical behavior, thermal properties and degradation kinetics. J. Polym. Mater. 40, 105–129 (2023). https://doi.org/10.32381/jpm.2023.40.1-2.9
References
L. An, Y. Yu, Q. Cai, S. Mateti, L.H. Li et al., Hexagonal boron nitride nanosheets: preparation, heat transport property and application as thermally conductive fillers. Prog. Mater Sci. 138, 101154 (2023). https://doi.org/10.1016/j.pmatsci.2023.101154
Z.E. Nataj, Y. Xu, D. Wright, J.O. Brown, J. Garg et al., Cryogenic characteristics of graphene composites—evolution from thermal conductors to thermal insulators. Nat. Commun. 14, 3190 (2023). https://doi.org/10.1038/s41467-023-38508-3
Y. Ma, J. Shen, T. Li, X. Sheng, Y. Chen, A “net-ball” structure fiber membrane with electro-/ photo-thermal heating and phase change synchronous temperature regulation capacity via electrospinning. Sol. Energy Mater. Sol. Cells 276, 113078 (2024). https://doi.org/10.1016/j.solmat.2024.113078
V. Guerra, C. Wan, T. McNally, Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog. Mater. Sci. 100, 170–186 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.002
J. Yun, Recent progress in thermal management for flexible/wearable devices. Soft Sci. 3, 12 (2023). https://doi.org/10.20517/ss.2023.04
Y. Guo, S. Wang, H. Zhang, H. Guo, M. He et al., Consistent thermal conductivities of spring-like structured polydimethylsiloxane composites under large deformation. Adv. Mater. 36, e2404648 (2024). https://doi.org/10.1002/adma.202404648
R. Yan, Z. Huang, Y. Chen, L. Zhang, X. Sheng, Phase change composite based on lignin carbon aerogel/nickel foam dual-network for multisource energy harvesting and superb EMI shielding. Int. J. Biol. Macromol. 277, 134233 (2024). https://doi.org/10.1016/j.ijbiomac.2024.134233
J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13, 337–345 (2019). https://doi.org/10.1021/acsnano.8b06290
Y. Han, K. Ruan, X. He, Y. Tang, H. Guo et al., Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared camouflages and information encryption. Angew. Chem. Int. Ed. 63, e202401538 (2024). https://doi.org/10.1002/anie.202401538
H. Shivakumar, G.D. Gurumurthy, K.B. Bommegowda, S. Parameshwara, S. Parameshwara, Study of galvanic charging-discharging properties of graphene nanoplatelets incorporated epoxy-carbon fabric composites. J. Polym. Mater. 40, 93–103 (2023). https://doi.org/10.32381/jpm.2023.40.1-2.8
J.-H. Yi, J.Y. Park, H. Shen, Y.-H. Choa, Mechanically robust and thermally conductive nano-porous anodic aluminum oxide templates via thermal stress minimization and alpha phase transformation for interposer. ACS Appl. Nano Mater. 6, 10967–10976 (2023). https://doi.org/10.1021/acsanm.3c00396
S. Rao, X. Zeng, X. Cheng, J. Fan, D. He et al., Damping, soft, and thermally conductive composite elastomer via introducing bottlebrush chains. Chem. Eng. J. 474, 145847 (2023). https://doi.org/10.1016/j.cej.2023.145847
M. He, X. Zhong, X. Lu, J. Hu, K. Ruan et al., Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by Hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 36, 2410186 (2024). https://doi.org/10.1002/adma.202410186
C. Boobalan, S.K. Kannaiyan, A correlation to predict the thermal conductivity of MXene-silicone oil based nano-fluids and data driven modeling using artificial neural networks. Int. J. Energy Res. 46, 21538–21547 (2022). https://doi.org/10.1002/er.7786
X. He, J. Wu, X. Huang, Y. Chen, L. Zhang et al., Three-in-one polymer nanocomposite coating via constructing tannic acid functionalized MXene/BP hybrids with superior corrosion resistance, friction resistance, and flame-retardancy. Chem. Eng. Sci. 283, 119429 (2024). https://doi.org/10.1016/j.ces.2023.119429
F. Zhang, D. Ren, Y. Zhang, L. Huang, Y. Sun et al., Production of highly-oriented graphite monoliths with high thermal conductivity. Chem. Eng. J. 431, 134102 (2022). https://doi.org/10.1016/j.cej.2021.134102
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
R. Mohanraman, P. Steiner, C. Kocabas, I.A. Kinloch, M.A. Bissett, Synergistic improvement in the thermal conductivity of hybrid boron nitride nanotube/nanosheet epoxy composites. ACS Appl. Nano Mater. 7, 13142–13146 (2024). https://doi.org/10.1021/acsanm.4c01646
M.R.R. Roudi, M. Ranjkesh, A.H. Korayem, R. Shahsavary, Review of boron nitride nanosheet-based composites for construction applications. ACS Appl. Nano Mater. 5, 17356–17372 (2022). https://doi.org/10.1021/acsanm.2c03200
M. Yang, D. Hu, Y. Guo, X. Zhao, W. Ma, Glucose-assisted exfoliation of hexagonal boron nitride nanosheets and modification with hyperbranched polymers for thermally conductive epoxy composites: implications for thermal management. ACS Appl. Nano Mater. 5, 16315–16324 (2022). https://doi.org/10.1021/acsanm.2c03353
M. Wang, Z. Jiao, Y. Chen, X. Hou, L. Fu et al., Enhanced thermal conductivity of poly(vinylidene fluoride)/boron nitride nanosheet composites at low filler content. Compos. Part A Appl. Sci. Manuf. 109, 321–329 (2018). https://doi.org/10.1016/j.compositesa.2018.03.023
Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv et al., Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15, 6489–6498 (2021). https://doi.org/10.1021/acsnano.0c09229
E. Kim, K.-Y. Chan, J. Yang, H. Venkatesan, M.H. Adegun et al., Engineering anisotropic structures of thermally insulating aerogels with high solar reflectance for energy-efficient cooling applications. J. Mater. Chem. A 11, 7105–7114 (2023). https://doi.org/10.1039/D2TA09983G
Z. Zhou, Z. Wu, H. Liu, C. Huang, T. Wang et al., Enhancing cryogenic thermal conductivity of epoxy composites through the incorporation of boron nitride nanosheets/nanodiamond aerogels prepared by directional-freezing method. Polym. Compos. 45, 2670–2684 (2024). https://doi.org/10.1002/pc.27947
W. Wu, M. Zheng, K. Lu, F. Liu, Y.-H. Song et al., Thermally conductive composites based on hexagonal boron nitride nanosheets for thermal management: fundamentals to applications. Compos. Part A Appl. Sci. Manuf. 169, 107533 (2023). https://doi.org/10.1016/j.compositesa.2023.107533
X. Lin, M. Han, Recent progress in soft electronics and robotics based on magnetic nanomaterials. Soft Sci. 3, 14 (2023). https://doi.org/10.20517/ss.2023.05
M.-Y. Song, C.-G. Ma, X.-L. Li, H.-T. Chi, P. Zhang et al., Highly thermally conductive and insulating PET nonwoven fabric/PDMS sandwich composite film by synergism of boron nitride nanosheets and alumina ps. Polym. Compos. 44, 6136–6148 (2023). https://doi.org/10.1002/pc.27552
J. Zhou, Z. Yu, M.M. Mohideen, J. Ge, X. Lv et al., Constructing hierarchical polymer nanocomposites with strongly enhanced thermal conductivity. ACS Appl. Mater. Interfaces 15, 42900–42911 (2023). https://doi.org/10.1021/acsami.3c09847
S. Zuo, M. Li, S. Xie, J. Luo, L. Xu et al., Enhanced out-of-plane thermal conductivity of polyimide composite films by adding hollow cube-like boron nitride. Ceram. Int. 49, 12615–12624 (2023). https://doi.org/10.1016/j.ceramint.2022.12.124
Y. Liang, N. Zhao, W. Gao, H. Bai, Mechanically and thermally guided, honeycomb-like nanocomposites with strain-insensitive high thermal conductivity for stretchable electronics. ACS Nano 18, 8199–8208 (2024). https://doi.org/10.1021/acsnano.3c12233
Y. He, F. Kuang, Z. Che, F. Sun, K. Zheng et al., Achieving high out-of-plane thermal conductivity for boron nitride nano sheets/epoxy composite films by magnetic orientation. Compos. Part A Appl. Sci. Manuf. 157, 106933 (2022). https://doi.org/10.1016/j.compositesa.2022.106933
H. He, W. Peng, J. Liu, X.Y. Chan, S. Liu et al., Microstructured BN composites with internally designed high thermal conductivity paths for 3D electronic packaging. Adv. Mater. 34, e2205120 (2022). https://doi.org/10.1002/adma.202205120
H. Jiang, J. Li, Y. Xie, H. Guo, M. He et al., Design of efficient microstructured path by magnetic orientation boron nitride nanosheets/MnFe2O4 enabling waterborne polyurethane with high thermal conductivity and flame retardancy. J. Mater. Sci. Technol. 209, 207–218 (2025). https://doi.org/10.1016/j.jmst.2024.05.013
N. Wang, G. Yang, H. Wang, C. Yan, R. Sun et al., A universal method for large-yield and high-concentration exfoliation of two-dimensional hexagonal boron nitride nanosheets. Mater. Today 27, 33–42 (2019). https://doi.org/10.1016/j.mattod.2018.10.039
A. Mishra, V. Sharma, T. Mohanty, B.K. Kuanr, Microstructural and magnetic properties of rGO/MnFe2O4 nanocomposites; relaxation dynamics. J. Alloys Compd. 790, 983–991 (2019). https://doi.org/10.1016/j.jallcom.2019.03.266
H. Yu, Y. Feng, L. Gao, C. Chen, Z. Zhang et al., Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 53, 7161–7170 (2020). https://doi.org/10.1021/acs.macromol.9b02544
W. Fu, H. Mei, Z. Zhang, Q. Wang, R. Li et al., Self-healing and chemical resistance polyurethane elastomers based on 2-ureido-4 [1H] pyrimidinone. J. Appl. Polym. Sci. 139, e52931 (2022). https://doi.org/10.1002/app.52931
P.Y.W. Dankers, Z. Zhang, E. Wisse, D.W. Grijpma, R.P. Sijbesma et al., Oligo(trimethylene carbonate)-based supramolecular biomaterials. Macromolecules 39, 8763–8771 (2006). https://doi.org/10.1021/ma061078o
X. Dai, L.-B. Huang, Y. Du, J. Han, Q. Zheng et al., Self-healing, flexible, and tailorable triboelectric nanogenerators for self-powered sensors based on thermal effect of infrared radiation. Adv. Funct. Mater. 30, 1910723 (2020). https://doi.org/10.1002/adfm.201910723
X. Meng, T. Song, C. Zhang, H. Wang, M. Ge et al., Magnetic MnFe2O4 nanops anchored on sludge-derived biochar in activating peroxydisulfate for levofloxacin degradation: mechanism, degradation pathways and cost analysis. J. Environ. Chem. Eng. 11, 110241 (2023). https://doi.org/10.1016/j.jece.2023.110241
H. Qin, Y. Yang, W. Shi, Y. She, Heterogeneous fenton degradation of ofloxacin catalyzed by magnetic nanostructured MnFe2O4 with different morphologies. Environ. Sci. Pollut. Res. Int. 28, 26558–26570 (2021). https://doi.org/10.1007/s11356-021-12548-y
Z. Liu, X. Sun, J. Xie, X. Zhang, J. Li, Interfacial thermal transport properties and its effect on thermal conductivity of functionalized BNNS/epoxy composites. Int. J. Heat Mass Transf. 195, 123031 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123031
Y. Wang, M. Liu, Y. Zang, C. Zhou, Y. Xin et al., Ascorbic acid enhanced MnFe2O4/peroxymonosulfate oxidation of organic pollutant: key role of singlet oxygen generation and Fe/Mn cycling. J. Environ. Manage. 321, 115971 (2022). https://doi.org/10.1016/j.jenvman.2022.115971
X. Yang, X. Ling, Y. Li, H. Wang, Simultaneous enhanced mechanical properties and foamability of biodegradable PBAT via physical cross-linking through reactive blending. ACS Appl. Polym. Mater. 6, 13969–13978 (2024). https://doi.org/10.1021/acsapm.4c03104
K. Ruan, X. Shi, Y. Zhang, Y. Guo, X. Zhong et al., Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 62, e202309010 (2023). https://doi.org/10.1002/anie.202309010
M. Salehirad, M.M. Alavi Nikje, L. Ahmadian-Alam, Synthesis and characterization of functionalized Fe3O4/boron nitride as magnetically alignable 2D-nanofiller to improve the thermal conductivity of epoxy nanocomposites. Ind. Eng. Chem. Res. 57, 1803–1814 (2018). https://doi.org/10.1021/acs.iecr.7b03540
C. Chen, Y. Xue, Z. Li, Y. Wen, X. Li et al., Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in situ sintering of silver nanops. Chem. Eng. J. 369, 1150–1160 (2019). https://doi.org/10.1016/j.cej.2019.03.150
Y. Han, K. Ruan, J. Gu, Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver Nanowires@Boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 62, e202216093 (2023). https://doi.org/10.1002/anie.202216093
Q. He, M. Qin, H. Zhang, J. Yue, L. Peng et al., Patterned liquid metal embedded in brush-shaped polymers for dynamic thermal management. Mater. Horiz. 11, 531–544 (2024). https://doi.org/10.1039/d3mh01498c
Z. Lin, H. Jin, H. Deng, Z. Zu, H. Huang et al., Robust, self-healable, recyclable and thermally conductive silicone composite as intelligent thermal interface material. Compos. Struct. 332, 117932 (2024). https://doi.org/10.1016/j.compstruct.2024.117932
H. Niu, H. Guo, Y. Ren, L. Ren, R. Lv et al., Spherical aggregated BN/AlN filled silicone composites with enhanced through-plane thermal conductivity assisted by Vortex flow. Chem. Eng. J. 430, 133155 (2022). https://doi.org/10.1016/j.cej.2021.133155
M. Qin, Y. Huo, G. Han, J. Yue, X. Zhou et al., Three-dimensional boron nitride network/polyvinyl alcohol composite hydrogel with solid-liquid interpenetrating heat conduction network for thermal management. J. Mater. Sci. Technol. 127, 183–191 (2022). https://doi.org/10.1016/j.jmst.2022.04.013
F. You, Y. Chen, Y. Shen, Y. Ke, G. Tong et al., Constructing a 3D interlinked network with magnetic/dielectric loss and electron/phonon co-transfer in MgO@Ni@C and MgO@Ni@CNT foams for low loads and prominent thermal/electromagnetic performance. Chem. Eng. J. 480, 147975 (2024). https://doi.org/10.1016/j.cej.2023.147975
A. Shimamura, Y. Hotta, H. Hyuga, M. Hotta, K. Hirao, Improving the thermal conductivity of epoxy composites using a combustion-synthesized aggregated β-Si3N4 filler with randomly oriented grains. Sci. Rep. 10, 14926 (2020). https://doi.org/10.1038/s41598-020-71745-w
B. Liu, J. Zeng, P. Li, J. Li, B. Wang et al., Flexible nanocellulose-based layered films by crosslinking phosphorus lignin nanops and functionalized boron nitride nanosheets for flame-resistant and thermal conductivity applications. J. Mater. Chem. A 11, 24057–24071 (2023). https://doi.org/10.1039/D3TA05636H
X. He, C. Cui, Y. Chen, L. Zhang, X. Sheng et al., MXene and polymer collision: sparking the future of high-performance multifunctional coatings. Adv. Funct. Mater. 34, 2409675 (2024). https://doi.org/10.1002/adfm.202409675
H. Jiang, Y. Xie, Y. Jiang, Y. Luo, X. Sheng et al., Rationally assembled sandwich structure of MXene-based phosphorous flame retardant at ultra-low loading nanosheets enabling fire-safe thermoplastic polyurethane. Appl. Surf. Sci. 649, 159111 (2024). https://doi.org/10.1016/j.apsusc.2023.159111
M. Aydin, T. Uyar, M.A. Tasdelen, Y. Yagci, Polymer/clay nanocomposites through multiple hydrogen-bonding interactions. J. Polym. Sci. Part A Polym. Chem. 53, 650–658 (2015). https://doi.org/10.1002/pola.27487
G. Zhou, S. Li, X. Zhang, Z. Liu, M. He et al., Synthesis and properties of a fire-retardant coating based on intercalated expandable graphite-modified cellulose for steel structures. J. Build. Eng. 51, 104270 (2022). https://doi.org/10.1016/j.jobe.2022.104270
L. Liu, J. Feng, Y. Xue, V. Chevali, Y. Zhang et al., 2D MXenes for fire retardancy and fire-warning applications: promises and prospects. Adv. Funct. Mater. 33, 2212124 (2023). https://doi.org/10.1002/adfm.202212124
R. Wu, X. Song, Y. Ji, H. Wu, S. Guo et al., In-situ exfoliation of hexagonal boron nitride during the forced flow of highly elastic polylactide to fabricate electrospun fibrous film with high thermal conductivity and low dielectric loss. Compos. Sci. Technol. 251, 110573 (2024). https://doi.org/10.1016/j.compscitech.2024.110573
D.S. Bag, S. Tiwari, A. Dixit, K. Meenu, Chiral copolymers of (R)-N-(1-phenyl-ethyl) methacrylamide (R-NPEMAM) and 2-hydroxy ethyl methacrylate (HEMA): investigation of physico- chemical behavior, thermal properties and degradation kinetics. J. Polym. Mater. 40, 105–129 (2023). https://doi.org/10.32381/jpm.2023.40.1-2.9