A Perspective for Developing Polymer-Based Electromagnetic Interference Shielding Composites
Corresponding Author: Junwei Gu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 89
Abstract
The rapid development of aerospace weapons and equipment, wireless base stations and 5G communication technologies has put forward newer and higher requirements for the comprehensive performances of polymer-based electromagnetic interference (EMI) shielding composites. However, most of currently prepared polymer-based EMI shielding composites are still difficult to combine high performance and multi-functionality. In response to this, based on the research works of relevant researchers as well as our research group, three possible directions to break through the above bottlenecks are proposed, including construction of efficient conductive networks, optimization of multi-interfaces for lightweight and multifunction compatibility design. The future development trends in three directions are prospected, and it is hoped to provide certain theoretical basis and technical guidance for the preparation, research and development of polymer-based EMI shielding composites.
Highlights:
1 Bottlenecks for developing polymer based electromagnetic interference (EMI) shielding composites are proposed and inner reasons are discussed
2 Possible directions to break through bottlenecks are raised and recent advances in such directions are introduced.
3 Development trends in the future are foreseen to provide theoretical basis and technical guidance for development of polymer based EMI shielding composites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro. Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- Y. Chen, P. Potschke, J. Pionteck, B. Voit, H. Qi, Multifunctional cellulose/rGO/Fe3O4 composite aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12(19), 22088–22098 (2020). https://doi.org/10.1021/acsami.9b23052
- Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
- W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
- M.A.F. Shahzad, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- G. Cao, S. Cai, H. Zhang, Y. Tian, High-performance conductive adhesives based on water-soluble resins for printed circuits, flexible conductive films, and electromagnetic interference shielding devices. Adv. Compos. Hybrid Mater. (2022). https://doi.org/10.1007/s42114-021-00402-1
- Y. Han, K. Ruan, J. Gu. Janus, (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heat performances. Nano Res. 15, 4747–4755 (2022). https://doi.org/10.1007/s12274-022-4159-z
- C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
- T.W. Lee, S.E. Lee, Y.G. Jeong, Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl. Mater. Interfaces 8(20), 13123–13132 (2016). https://doi.org/10.1021/acsami.6b02218
- H. Zhu, Y. Yang, A. Sheng, H. Duan, G. Zhao et al., Layered structural design of flexible waterborne polyurethane conductive film for excellent electromagnetic interference shielding and low microwave reflectivity. Appl. Surf. Sci. 469, 1–9 (2019). https://doi.org/10.1016/j.apsusc.2018.11.007
- P. Song, B. Liu, H. Qiu, X. Shi, D. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
- Y.J. Wan, X.M. Li, P.L. Zhu, R. Sun, C.P. Wong et al., Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 130, 105764 (2020). https://doi.org/10.1016/j.compositesa.2020.105764
- H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
- M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- Z. Fan, H. He, J. Yu, L. Liu, Y. Liu et al., Lightweight three-dimensional cellular MXene film for superior energy storage and electromagnetic interference shielding. ACS Appl. Energ. Mater. 3(9), 8171–8178 (2020). https://doi.org/10.1021/acsaem.0c01650
- P. Hu, J. Lyu, C. Fu, W.B. Gong, J. Liao et al., Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 14(1), 688–697 (2020). https://doi.org/10.1021/acsnano.9b07459
- H. Wei, M. Wang, W. Zheng, Z. Jiang, Y. Huang, 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceram. Int. 46(5), 6199–6204 (2020). https://doi.org/10.1016/j.ceramint.2019.11.087
- Y. Xu, Y. Yang, D.X. Yan, H. Duan, G. Zhao et al., Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl. Mater. Interfaces 10(22), 19143–19152 (2018). https://doi.org/10.1021/acsami.8b05129
- L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao et al., Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 1(3), 413–431 (2021). https://doi.org/10.1002/sus2.21
- R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- J.Q. Luo, S. Zhao, H.B. Zhang, Z. Deng, L. Li et al., Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 (2019). https://doi.org/10.1016/j.compscitech.2019.107754
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- Y. Zhang, Z. Ma, K. Ruan, J. Gu, Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research 2022, 1–12 (2022)
- S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- Z.M. Shen, J.C. Feng, Preparation of thermally conductive polymer composites with good electromagnetic interference shielding efficiency based on natural wood-derived carbon scaffolds. ACS Sustain. Chem. Eng. 7(6), 6259–6266 (2019). https://doi.org/10.1021/acssuschemeng.8b06661
- P. Song, H. Qiu, L. Wang, X. Liu, Y. Zhang et al., Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain. Mater. Technol. 24, e00153 (2020). https://doi.org/10.1016/j.susmat.2020.e00153
- C. Liang, P. Song, H. Qiu, Y. Zhang, X. Ma et al., Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 11(46), 22590–22598 (2019). https://doi.org/10.1039/C9NR06022G
- J. Yang, X. Liao, G. Wang, J. Chen, F. Guo et al., Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding. Chem. Eng. J. 390, 124589 (2020). https://doi.org/10.1016/j.cej.2020.124589
- Z. Fan, D. Wang, Y. Yuan, Y. Wang, Z. Cheng et al., A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
- Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan et al., A mini-review of MXene porous films: preparation, mechanism and application. J. Mater. Sci. Technol. 103, 42–49 (2022). https://doi.org/10.1016/j.jmst.2021.08.001
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
- Z. Zeng, C. Wang, Y. Zhang, P. Wang, S.I.S. Shahabadi et al., Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 10(9), 8205–8213 (2018). https://doi.org/10.1021/acsami.7b19427
- C. Liang, H. Qiu, P. Song, X. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65(8), 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
- T.B. Ma, H. Ma, K.P. Ruan, X.T. Shi, H. Qiu et al., Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chinese J. Polym. Sci. 40(3), 248–255 (2022). https://doi.org/10.1007/s10118-022-2673-9
- Q. Gao, Y. Pan, G. Zheng, C. Liu, C. Shen et al., Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 4(2), 274–285 (2021). https://doi.org/10.1007/s42114-021-00221-4
- Y. Guo, H. Qiu, K. Ruan, S. Wang, Y. Zhang et al., Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos. Sci. Technol. 219, 109253 (2022). https://doi.org/10.1016/j.compscitech.2021.109253
- Y. Zhang, K. Ruan, J. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42), 2101951 (2021). https://doi.org/10.1002/smll.202101951
- Z. Zhou, Q. Song, B. Huang, S. Feng, C. Lu, Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 15(7), 12405–12417 (2021). https://doi.org/10.1021/acsnano.1c04526
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202200705
References
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro. Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
Y. Chen, P. Potschke, J. Pionteck, B. Voit, H. Qi, Multifunctional cellulose/rGO/Fe3O4 composite aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12(19), 22088–22098 (2020). https://doi.org/10.1021/acsami.9b23052
Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
M.A.F. Shahzad, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
G. Cao, S. Cai, H. Zhang, Y. Tian, High-performance conductive adhesives based on water-soluble resins for printed circuits, flexible conductive films, and electromagnetic interference shielding devices. Adv. Compos. Hybrid Mater. (2022). https://doi.org/10.1007/s42114-021-00402-1
Y. Han, K. Ruan, J. Gu. Janus, (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heat performances. Nano Res. 15, 4747–4755 (2022). https://doi.org/10.1007/s12274-022-4159-z
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
T.W. Lee, S.E. Lee, Y.G. Jeong, Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl. Mater. Interfaces 8(20), 13123–13132 (2016). https://doi.org/10.1021/acsami.6b02218
H. Zhu, Y. Yang, A. Sheng, H. Duan, G. Zhao et al., Layered structural design of flexible waterborne polyurethane conductive film for excellent electromagnetic interference shielding and low microwave reflectivity. Appl. Surf. Sci. 469, 1–9 (2019). https://doi.org/10.1016/j.apsusc.2018.11.007
P. Song, B. Liu, H. Qiu, X. Shi, D. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
Y.J. Wan, X.M. Li, P.L. Zhu, R. Sun, C.P. Wong et al., Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 130, 105764 (2020). https://doi.org/10.1016/j.compositesa.2020.105764
H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
Z. Fan, H. He, J. Yu, L. Liu, Y. Liu et al., Lightweight three-dimensional cellular MXene film for superior energy storage and electromagnetic interference shielding. ACS Appl. Energ. Mater. 3(9), 8171–8178 (2020). https://doi.org/10.1021/acsaem.0c01650
P. Hu, J. Lyu, C. Fu, W.B. Gong, J. Liao et al., Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 14(1), 688–697 (2020). https://doi.org/10.1021/acsnano.9b07459
H. Wei, M. Wang, W. Zheng, Z. Jiang, Y. Huang, 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceram. Int. 46(5), 6199–6204 (2020). https://doi.org/10.1016/j.ceramint.2019.11.087
Y. Xu, Y. Yang, D.X. Yan, H. Duan, G. Zhao et al., Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl. Mater. Interfaces 10(22), 19143–19152 (2018). https://doi.org/10.1021/acsami.8b05129
L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao et al., Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 1(3), 413–431 (2021). https://doi.org/10.1002/sus2.21
R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
J.Q. Luo, S. Zhao, H.B. Zhang, Z. Deng, L. Li et al., Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 (2019). https://doi.org/10.1016/j.compscitech.2019.107754
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
Y. Zhang, Z. Ma, K. Ruan, J. Gu, Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research 2022, 1–12 (2022)
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
Z.M. Shen, J.C. Feng, Preparation of thermally conductive polymer composites with good electromagnetic interference shielding efficiency based on natural wood-derived carbon scaffolds. ACS Sustain. Chem. Eng. 7(6), 6259–6266 (2019). https://doi.org/10.1021/acssuschemeng.8b06661
P. Song, H. Qiu, L. Wang, X. Liu, Y. Zhang et al., Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain. Mater. Technol. 24, e00153 (2020). https://doi.org/10.1016/j.susmat.2020.e00153
C. Liang, P. Song, H. Qiu, Y. Zhang, X. Ma et al., Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 11(46), 22590–22598 (2019). https://doi.org/10.1039/C9NR06022G
J. Yang, X. Liao, G. Wang, J. Chen, F. Guo et al., Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding. Chem. Eng. J. 390, 124589 (2020). https://doi.org/10.1016/j.cej.2020.124589
Z. Fan, D. Wang, Y. Yuan, Y. Wang, Z. Cheng et al., A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan et al., A mini-review of MXene porous films: preparation, mechanism and application. J. Mater. Sci. Technol. 103, 42–49 (2022). https://doi.org/10.1016/j.jmst.2021.08.001
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
Z. Zeng, C. Wang, Y. Zhang, P. Wang, S.I.S. Shahabadi et al., Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 10(9), 8205–8213 (2018). https://doi.org/10.1021/acsami.7b19427
C. Liang, H. Qiu, P. Song, X. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65(8), 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
T.B. Ma, H. Ma, K.P. Ruan, X.T. Shi, H. Qiu et al., Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chinese J. Polym. Sci. 40(3), 248–255 (2022). https://doi.org/10.1007/s10118-022-2673-9
Q. Gao, Y. Pan, G. Zheng, C. Liu, C. Shen et al., Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 4(2), 274–285 (2021). https://doi.org/10.1007/s42114-021-00221-4
Y. Guo, H. Qiu, K. Ruan, S. Wang, Y. Zhang et al., Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos. Sci. Technol. 219, 109253 (2022). https://doi.org/10.1016/j.compscitech.2021.109253
Y. Zhang, K. Ruan, J. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42), 2101951 (2021). https://doi.org/10.1002/smll.202101951
Z. Zhou, Q. Song, B. Huang, S. Feng, C. Lu, Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 15(7), 12405–12417 (2021). https://doi.org/10.1021/acsnano.1c04526
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202200705