Thermally Conductive Ti3C2Tx Fibers with Superior Electrical Conductivity
Corresponding Author: Junwei Gu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 235
Abstract
High-performance Ti3C2Tx fibers have garnered significant potential for smart fibers enabled fabrics. Nonetheless, a major challenge hindering their widespread use is the lack of strong interlayer interactions between Ti3C2Tx nanosheets within fibers, which restricts their properties. Herein, a versatile strategy is proposed to construct wet-spun Ti3C2Tx fibers, in which trace amounts of borate form strong interlayer crosslinking between Ti3C2Tx nanosheets to significantly enhance interactions as supported by density functional theory calculations, thereby reducing interlayer spacing, diminishing microscopic voids and promoting orientation of the nanosheets. The resultant Ti3C2Tx fibers exhibit exceptional electrical conductivity of 7781 S cm−1 and mechanical properties, including tensile strength of 188.72 MPa and Young’s modulus of 52.42 GPa. Notably, employing equilibrium molecular dynamics simulations, finite element analysis, and cross-wire geometry method, it is revealed that such crosslinking also effectively lowers interfacial thermal resistance and ultimately elevates thermal conductivity of Ti3C2Tx fibers to 13 W m−1 K−1, marking the first systematic study on thermal conductivity of Ti3C2Tx fibers. The simple and efficient interlayer crosslinking enhancement strategy not only enables the construction of thermal conductivity Ti3C2Tx fibers with high electrical conductivity for smart textiles, but also offers a scalable approach for assembling other nanomaterials into multifunctional fibers.
Highlights:
1 The strong covalent crosslinking between trace amounts of borates and the hydroxyl groups of Ti3C2Tx significantly reduces interlayer spacing, enhances orientation and compactness, leading to notable improvements in both the mechanical (tensile strength of 188.72 MPa) and electrical properties (7781 S cm−1) of Ti3C2Tx fibers.
2 Trace amounts of borates can promote the regularization of interfacial structures, reduce interfacial thermal resistance, and significantly enhance the thermal conductivity (13 W m−1 K−1) of Ti3C2Tx fibers, thus increasing their potential for efficient heat transfer applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Hou, M. Zhu, Semiconductors flex thermoelectric power ductile inorganic semiconductors can help enable self-powered wearable electronics. Science 377, 815–816 (2022). https://doi.org/10.1126/science.add7029
- A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori et al., 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4(9), eaau0920 (2018). https://doi.org/10.1126/sciadv.aau0920
- N. Lu, X. Sun, H. Wang, J. Zhang, C. Ma et al., Synergistic effect of woven copper wires with graphene foams for high thermal conductivity of carbon fiber/epoxy composites. Adv. Compos. Hybrid Mater. 7(1), 29 (2024). https://doi.org/10.1007/s42114-024-00840-7
- M. Liu, Y. Yang, R. Liu, K. Wang, S. Cheng et al., Carbon nanotubes/graphene-skinned glass fiber fabric with 3D hierarchical electrically and thermally conductive network. Adv. Funct. Mater. 34(49), 2409379 (2024). https://doi.org/10.1002/adfm.202409379
- D. Lee, S.G. Kim, S. Hong, C. Madrona, Y. Oh et al., Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence. Sci. Adv. 8(16), eabn0939 (2022). https://doi.org/10.1126/sciadv.abn0939
- Y. Liu, W. Zou, N. Zhao, J. Xu, Electrically insulating PBO/MXene film with superior thermal conductivity, mechanical properties, thermal stability, and flame retardancy. Nat. Commun. 14(1), 5342 (2023). https://doi.org/10.1038/s41467-023-40707-x
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3 C2 Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), e2211642 (2023). https://doi.org/10.1002/adma.202211642
- H. Fang, A. Thakur, A. Zahmatkeshsaredorahi, Z. Fang, V. Rad et al., Stabilizing Ti3C2Tx MXene flakes in air by removing confined water. Proc. Natl. Acad. Sci. U.S.A. 121(28), e2400084121 (2024). https://doi.org/10.1073/pnas.2400084121
- S. Seyedin, S. Uzun, A. Levitt, B. Anasori, G. Dion et al., MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater. 30(12), 1910504 (2020). https://doi.org/10.1002/adfm.201910504
- L.X. Liu, W. Chen, H.B. Zhang, L. Ye, Z. Wang, Y. Zhang, P. Min, Z.Z. Yu, Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14(1), 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
- J. Fu, Y. Li, T. Zhou, S. Fang, M. Zhang et al., Large stroke radially oriented MXene composite fiber tensile artificial muscles. Sci. Adv. 11(2), eadt1560 (2025). https://doi.org/10.1126/sciadv.adt1560
- J. Gu, F. Li, Y. Zhu, D. Li, X. Liu et al., Extremely robust and multifunctional nanocomposite fibers for strain-unperturbed textile electronics. Adv. Mater. 35(15), 2209527 (2023). https://doi.org/10.1002/adma.202209527
- N. He, S. Patil, J. Qu, J. Liao, F. Zhao et al., Effects of electrolyte mediation and MXene size in fiber-shaped supercapacitors. ACS Appl. Energy Mater. 3(3), 2949–2958 (2020). https://doi.org/10.1021/acsaem.0c00024
- H. Wang, Y. Wang, J. Chang, J. Yang, H. Dai et al., Nacre-inspired strong MXene/cellulose fiber with superior supercapacitive performance via synergizing the interfacial bonding and interlayer spacing. Nano Lett. 23(12), 5663–5672 (2023). https://doi.org/10.1021/acs.nanolett.3c01307
- L. Ye, L.-X. Liu, G. Yin, Y. Liu, Z. Deng et al., Highly conductive, hydrophobic, and acid/alkali-resistant MXene@PVDF hollow core-shell fibers for efficient electromagnetic interference shielding and Joule heating. Mater. Today Phys. 35, 101100 (2023). https://doi.org/10.1016/j.mtphys.2023.101100
- Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai et al., MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5(42), 22113–22119 (2017). https://doi.org/10.1039/c7ta07999k
- G. Zhao, C. Sui, C. Zhao, Y. Zhao, G. Cheng et al., Supertough MXene/sodium alginate composite fiber felts integrated with outstanding electromagnetic interference shielding and heating properties. Nano Lett. 24(26), 8098–8106 (2024). https://doi.org/10.1021/acs.nanolett.4c01920
- G. Yin, J. Wu, L. Ye, L. Liu, Y. Yu, P. Min, Z.Z. Yu, H.B. Zhang, Dynamic adaptive wrinkle-structured silk fibroin/MXene composite fibers for switchable electromagnetic interference shielding. Adv. Funct. Mater. 2314425 (2024).. https://doi.org/10.1002/adfm.202314425
- Y. Zhou, Y. Zhang, K. Ruan, H. Guo, M. He et al., MXene-based fibers: preparation, applications, and prospects. Sci. Bull. 69(17), 2776–2792 (2024). https://doi.org/10.1016/j.scib.2024.07.009
- Z. Xu, C. Gao, Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc. Chem. Res. 47(4), 1267–1276 (2014). https://doi.org/10.1021/ar4002813
- Y. Li, X. Zhang, Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers. Adv. Funct. Mater. 32(4), 2107767 (2022). https://doi.org/10.1002/adfm.202107767
- W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee et al., Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11(1), 2825 (2020). https://doi.org/10.1038/s41467-020-16671-1
- X. Cao, G. Wu, K. Li, C. Hou, Y. Li et al., High-performance Zn2+-crosslinked MXene fibers for versatile flexible electronics. Adv. Funct. Mater. 34(46), 2407975 (2024). https://doi.org/10.1002/adfm.202407975
- J. Zhang, S. Uzun, S. Seyedin, P.A. Lynch, B. Akuzum et al., Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 6(2), 254–265 (2020). https://doi.org/10.1021/acscentsci.9b01217
- Y. Zheng, Y. Wang, J. Zhao, Y. Li, Electrostatic interfacial cross-linking and structurally oriented fiber constructed by surface-modified 2D MXene for high-performance flexible pseudocapacitive storage. ACS Nano 17(3), 2487–2496 (2023). https://doi.org/10.1021/acsnano.2c10065
- S. Li, Z. Fan, G. Wu, Y. Shao, Z. Xia et al., Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS Nano 15(4), 7821–7832 (2021). https://doi.org/10.1021/acsnano.1c02271
- S. Lakshmanan, V. Jurečič, V. Bobnar, V. Kokol, Dielectric and thermal conductive properties of differently structured Ti3C2Tx MXene-integrated nanofibrillated cellulose films. Cellulose 31(13), 8149–8168 (2024). https://doi.org/10.1007/s10570-024-06105-2
- Y. Han, K. Ruan, X. He, Y. Tang, H. Guo et al., Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared camouflages and information encryption. Angew. Chem. Int. Ed. 63(17), e202401538 (2024). https://doi.org/10.1002/anie.202401538
- W. Dai, Y. Wang, M. Li, L. Chen, Q. Yan et al., 2D materials-based thermal interface materials: structure, properties, and applications. Adv. Mater. 36(37), 2311335 (2024). https://doi.org/10.1002/adma.202311335
- Y. Liu, Y. Wu, X. Wang, Thermal transports in the MXenes family: opportunities and challenges. Nano Res. 17(8), 7700–7716 (2024). https://doi.org/10.1007/s12274-024-6763-6
- L. Yan, X. Luo, R. Yang, F. Dai, D. Zhu et al., Highly thermoelectric ZnO@MXene (Ti3C2Tx) composite films grown by atomic layer deposition. ACS Appl. Mater. Interfaces 14(30), 34562–34570 (2022). https://doi.org/10.1021/acsami.2c05003
- S. Wan, X. Li, Y. Chen, N. Liu, Y. Du et al., High-strength scalable MXene films through bridging-induced densification. Science 374(6563), 96–99 (2021). https://doi.org/10.1126/science.abg2026
- S. Wan, Y. Chen, S. Fang, S. Wang, Z. Xu et al., High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 20(5), 624–631 (2021). https://doi.org/10.1038/s41563-020-00892-2
- L. Ding, T. Xu, J. Zhang, J. Ji, Z. Song et al., Covalently bridging graphene edges for improving mechanical and electrical properties of fibers. Nat. Commun. 15, 4880 (2024). https://doi.org/10.1038/s41467-024-49270-5
- Z. An, O.C. Compton, K.W. Putz, L.C. Brinson et al., Bio-lnspired borate cross-linking in ultra-stiff graphene oxide thin films. Adv. Mater. 23, 3842–3846 (2011). https://doi.org/10.1002/adma.201101544
- J. Shen, G. Liu, Y. Ji, Q. Liu, L. Cheng et al., 2D MXene nanofilms with tunable gas transport channels. Adv. Funct. Mater. 28(31), 1801511 (2018). https://doi.org/10.1002/adfm.201801511
- Q. Chen, S. Huo, Y. Lu, M. Ding, J. Feng et al., Heterostructured Graphene@Silica@Iron phenylphosphinate for fire-retardant, strong, thermally conductive yet electrically insulated epoxy nanocomposites. Small 20(31), 2310724 (2024). https://doi.org/10.1002/smll.202310724
- H. Singh, S. Chen, G. Francius, L. Liu, P.S. Lee et al., Understanding in-plane sliding of functionalized Ti3C2Tx MXene by in situ microscale analysis of electrochemical actuation. Chem. Mater. 36(19), 9575–9583 (2024). https://doi.org/10.1021/acs.chemmater.4c01597
- M. He, X. Zhong, X. Lu, J. Hu, K. Ruan et al., Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by Hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 36(48), 2410186 (2024). https://doi.org/10.1002/adma.202410186
- T. Zhou, C. Cao, S. Yuan, Z. Wang, Q. Zhu et al., Interlocking-governed ultra-strong and highly conductive MXene fibers through fluidics-assisted thermal drawing. Adv. Mater. 35(51), e2305807 (2023). https://doi.org/10.1002/adma.202305807
- L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang et al., MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9, 155 (2018). https://doi.org/10.1038/s41467-017-02529-6
- A. Liu, H. Qiu, X. Lu, H. Guo, J. Hu et al., Asymmetric structural MXene/PBO aerogels for high-performance electromagnetic interference shielding with ultra-low reflection. Adv. Mater. 37(5), e2414085 (2025). https://doi.org/10.1002/adma.202414085
- Y. Liu, Z. Xu, W. Gao, Z. Cheng, C. Gao, Graphene and other 2D colloids: liquid crystals and macroscopic fibers. Adv. Mater. 29(14), 1606794 (2017). https://doi.org/10.1002/adma.201606794
- Y. Xia, T.S. Mathis, M.-Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557(7705), 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
- B. Akuzum, K. Maleski, B. Anasori, P. Lelyukh, N.J. Alvarez et al., Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano 12(3), 2685–2694 (2018). https://doi.org/10.1021/acsnano.7b08889
- Q. Zhang, H. Lai, R. Fan, P. Ji, X. Fu et al., High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 15, 5249–5262 (2021). https://doi.org/10.1021/acsnano.0c10671
- S. Wan, X. Li, Y. Chen, N. Liu, S. Wang et al., Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat. Commun. 13, 7340 (2022). https://doi.org/10.1038/s41467-022-35226-0
- Q. Chen, L. Liu, A. Zhang, W. Wang, Z. Wang et al., An iron phenylphosphinate@graphene oxide nanohybrid enabled flame-retardant, mechanically reinforced, and thermally conductive epoxy nanocomposites. Chem. Eng. J. 454, 140424 (2023). https://doi.org/10.1016/j.cej.2022.140424
- T.D. Kühne, M. Iannuzzi, M. Del Ben, V.V. Rybkin, P. Seewald et al., CP2K: an electronic structure and molecular dynamics software package—quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152(19), 194103 (2020). https://doi.org/10.1063/5.0007045
- T. Lu, A comprehensive electron wavefunction analysis toolbox for chemists Multiwfn. J. Chem. Phys. 161(8), 082503 (2024). https://doi.org/10.1063/5.0216272
- X. Zuo, L. Wang, M. Zhen, T. You, D. Liu et al., Multifunctional TiN-MXene-Co@CNTs networks as sulfur/lithium host for high-areal-capacity lithium-sulfur batteries. Angew. Chem. Int. Ed. 63(35), e202408026 (2024). https://doi.org/10.1002/anie.202408026
- W. Lyu, Y. Liu, D. Chen, F. Wang, Y. Li, Engineering the electron localization of metal sites on nanosheets assembled periodic macropores for CO2 photoreduction. Nat. Commun. 15(1), 10589 (2024). https://doi.org/10.1038/s41467-024-54988-3
- L. Huang, H. Wu, L. Ding, J. Caro, H. Wang, Shearing liquid-crystalline MXene into lamellar membranes with super-aligned nanochannels for ion sieving. Angew. Chem. Int. Ed. 63(6), e202314638 (2024). https://doi.org/10.1002/anie.202314638
- H. Shin, W. Jeong, T.H. Han, Maximizing light-to-heat conversion of Ti3C2Tx MXene metamaterials with wrinkled surfaces for artificial actuators. Nat. Commun. 15, 10507 (2024). https://doi.org/10.1038/s41467-024-54802-0
- Q. Chen, Z. Ma, Z. Wang, L. Liu, M. Zhu et al., Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv. Funct. Mater. 32(8), 2110782 (2022). https://doi.org/10.1002/adfm.202110782
- Z. Shi, S. Liao, Y. Wei, L. Li, Theoretical insights into He/CH4 separation by MXene nanopore. Chem. Eng. Sci. 287, 119781 (2024). https://doi.org/10.1016/j.ces.2024.119781
- Q. Chen, Z. Wang, A copper organic phosphonate functionalizing boron nitride nanosheet for PVA film with excellent flame retardancy and improved thermal conductive property. Compos. Part A Appl. Sci. Manuf. 153, 106738 (2022). https://doi.org/10.1016/j.compositesa.2021.106738
- H. Liu, C. Du, L. Liao, H. Zhang, H. Zhou et al., Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity. Nat. Commun. 13, 3420 (2022). https://doi.org/10.1038/s41467-022-31051-7
- X. Liu, W. Ma, Z. Qiu, T. Yang, J. Wang et al., Manipulation of impedance matching toward 3D-printed lightweight and stiff MXene-based aerogels for consecutive multiband tunable electromagnetic wave absorption. ACS Nano 17(9), 8420–8432 (2023). https://doi.org/10.1021/acsnano.3c00338
- Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
- H. Chen, H. Sun, L. Chen, Y. Chen, J. Chen et al., Simultaneous measurement of thermal conductivity and thermal diffusivity of individual microwires by using a cross-wire geometry. Rev. Sci. Instrum. 93(2), 024901 (2022). https://doi.org/10.1063/5.0074632
- Q. Chen, Z. Ma, M. Wang, Z. Wang, J. Feng et al., Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites. Nano Res. 16(1), 1362–1386 (2023). https://doi.org/10.1007/s12274-022-4824-2
- X. Wang, Z. Lei, X. Ma, G. He, T. Xu et al., A lightweight MXene-Coated nonwoven fabric with excellent flame Retardancy, EMI Shielding, and Electrothermal/Photothermal conversion for wearable heater. Chem. Eng. J. 430, 132605 (2022). https://doi.org/10.1016/j.cej.2021.132605
- Y. Zhang, G. Zhang, Z. Ma, J. Qin, X. Shen, Heterogeneous MXene-based films with graded electrical conductivity towards highly efficient EMI shielding and electrothermal heating. Nano Res. 17(8), 7264–7274 (2024). https://doi.org/10.1007/s12274-024-6709-z
References
C. Hou, M. Zhu, Semiconductors flex thermoelectric power ductile inorganic semiconductors can help enable self-powered wearable electronics. Science 377, 815–816 (2022). https://doi.org/10.1126/science.add7029
A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori et al., 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4(9), eaau0920 (2018). https://doi.org/10.1126/sciadv.aau0920
N. Lu, X. Sun, H. Wang, J. Zhang, C. Ma et al., Synergistic effect of woven copper wires with graphene foams for high thermal conductivity of carbon fiber/epoxy composites. Adv. Compos. Hybrid Mater. 7(1), 29 (2024). https://doi.org/10.1007/s42114-024-00840-7
M. Liu, Y. Yang, R. Liu, K. Wang, S. Cheng et al., Carbon nanotubes/graphene-skinned glass fiber fabric with 3D hierarchical electrically and thermally conductive network. Adv. Funct. Mater. 34(49), 2409379 (2024). https://doi.org/10.1002/adfm.202409379
D. Lee, S.G. Kim, S. Hong, C. Madrona, Y. Oh et al., Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence. Sci. Adv. 8(16), eabn0939 (2022). https://doi.org/10.1126/sciadv.abn0939
Y. Liu, W. Zou, N. Zhao, J. Xu, Electrically insulating PBO/MXene film with superior thermal conductivity, mechanical properties, thermal stability, and flame retardancy. Nat. Commun. 14(1), 5342 (2023). https://doi.org/10.1038/s41467-023-40707-x
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3 C2 Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), e2211642 (2023). https://doi.org/10.1002/adma.202211642
H. Fang, A. Thakur, A. Zahmatkeshsaredorahi, Z. Fang, V. Rad et al., Stabilizing Ti3C2Tx MXene flakes in air by removing confined water. Proc. Natl. Acad. Sci. U.S.A. 121(28), e2400084121 (2024). https://doi.org/10.1073/pnas.2400084121
S. Seyedin, S. Uzun, A. Levitt, B. Anasori, G. Dion et al., MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater. 30(12), 1910504 (2020). https://doi.org/10.1002/adfm.201910504
L.X. Liu, W. Chen, H.B. Zhang, L. Ye, Z. Wang, Y. Zhang, P. Min, Z.Z. Yu, Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14(1), 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
J. Fu, Y. Li, T. Zhou, S. Fang, M. Zhang et al., Large stroke radially oriented MXene composite fiber tensile artificial muscles. Sci. Adv. 11(2), eadt1560 (2025). https://doi.org/10.1126/sciadv.adt1560
J. Gu, F. Li, Y. Zhu, D. Li, X. Liu et al., Extremely robust and multifunctional nanocomposite fibers for strain-unperturbed textile electronics. Adv. Mater. 35(15), 2209527 (2023). https://doi.org/10.1002/adma.202209527
N. He, S. Patil, J. Qu, J. Liao, F. Zhao et al., Effects of electrolyte mediation and MXene size in fiber-shaped supercapacitors. ACS Appl. Energy Mater. 3(3), 2949–2958 (2020). https://doi.org/10.1021/acsaem.0c00024
H. Wang, Y. Wang, J. Chang, J. Yang, H. Dai et al., Nacre-inspired strong MXene/cellulose fiber with superior supercapacitive performance via synergizing the interfacial bonding and interlayer spacing. Nano Lett. 23(12), 5663–5672 (2023). https://doi.org/10.1021/acs.nanolett.3c01307
L. Ye, L.-X. Liu, G. Yin, Y. Liu, Z. Deng et al., Highly conductive, hydrophobic, and acid/alkali-resistant MXene@PVDF hollow core-shell fibers for efficient electromagnetic interference shielding and Joule heating. Mater. Today Phys. 35, 101100 (2023). https://doi.org/10.1016/j.mtphys.2023.101100
Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai et al., MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5(42), 22113–22119 (2017). https://doi.org/10.1039/c7ta07999k
G. Zhao, C. Sui, C. Zhao, Y. Zhao, G. Cheng et al., Supertough MXene/sodium alginate composite fiber felts integrated with outstanding electromagnetic interference shielding and heating properties. Nano Lett. 24(26), 8098–8106 (2024). https://doi.org/10.1021/acs.nanolett.4c01920
G. Yin, J. Wu, L. Ye, L. Liu, Y. Yu, P. Min, Z.Z. Yu, H.B. Zhang, Dynamic adaptive wrinkle-structured silk fibroin/MXene composite fibers for switchable electromagnetic interference shielding. Adv. Funct. Mater. 2314425 (2024).. https://doi.org/10.1002/adfm.202314425
Y. Zhou, Y. Zhang, K. Ruan, H. Guo, M. He et al., MXene-based fibers: preparation, applications, and prospects. Sci. Bull. 69(17), 2776–2792 (2024). https://doi.org/10.1016/j.scib.2024.07.009
Z. Xu, C. Gao, Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc. Chem. Res. 47(4), 1267–1276 (2014). https://doi.org/10.1021/ar4002813
Y. Li, X. Zhang, Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers. Adv. Funct. Mater. 32(4), 2107767 (2022). https://doi.org/10.1002/adfm.202107767
W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee et al., Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11(1), 2825 (2020). https://doi.org/10.1038/s41467-020-16671-1
X. Cao, G. Wu, K. Li, C. Hou, Y. Li et al., High-performance Zn2+-crosslinked MXene fibers for versatile flexible electronics. Adv. Funct. Mater. 34(46), 2407975 (2024). https://doi.org/10.1002/adfm.202407975
J. Zhang, S. Uzun, S. Seyedin, P.A. Lynch, B. Akuzum et al., Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 6(2), 254–265 (2020). https://doi.org/10.1021/acscentsci.9b01217
Y. Zheng, Y. Wang, J. Zhao, Y. Li, Electrostatic interfacial cross-linking and structurally oriented fiber constructed by surface-modified 2D MXene for high-performance flexible pseudocapacitive storage. ACS Nano 17(3), 2487–2496 (2023). https://doi.org/10.1021/acsnano.2c10065
S. Li, Z. Fan, G. Wu, Y. Shao, Z. Xia et al., Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS Nano 15(4), 7821–7832 (2021). https://doi.org/10.1021/acsnano.1c02271
S. Lakshmanan, V. Jurečič, V. Bobnar, V. Kokol, Dielectric and thermal conductive properties of differently structured Ti3C2Tx MXene-integrated nanofibrillated cellulose films. Cellulose 31(13), 8149–8168 (2024). https://doi.org/10.1007/s10570-024-06105-2
Y. Han, K. Ruan, X. He, Y. Tang, H. Guo et al., Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared camouflages and information encryption. Angew. Chem. Int. Ed. 63(17), e202401538 (2024). https://doi.org/10.1002/anie.202401538
W. Dai, Y. Wang, M. Li, L. Chen, Q. Yan et al., 2D materials-based thermal interface materials: structure, properties, and applications. Adv. Mater. 36(37), 2311335 (2024). https://doi.org/10.1002/adma.202311335
Y. Liu, Y. Wu, X. Wang, Thermal transports in the MXenes family: opportunities and challenges. Nano Res. 17(8), 7700–7716 (2024). https://doi.org/10.1007/s12274-024-6763-6
L. Yan, X. Luo, R. Yang, F. Dai, D. Zhu et al., Highly thermoelectric ZnO@MXene (Ti3C2Tx) composite films grown by atomic layer deposition. ACS Appl. Mater. Interfaces 14(30), 34562–34570 (2022). https://doi.org/10.1021/acsami.2c05003
S. Wan, X. Li, Y. Chen, N. Liu, Y. Du et al., High-strength scalable MXene films through bridging-induced densification. Science 374(6563), 96–99 (2021). https://doi.org/10.1126/science.abg2026
S. Wan, Y. Chen, S. Fang, S. Wang, Z. Xu et al., High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 20(5), 624–631 (2021). https://doi.org/10.1038/s41563-020-00892-2
L. Ding, T. Xu, J. Zhang, J. Ji, Z. Song et al., Covalently bridging graphene edges for improving mechanical and electrical properties of fibers. Nat. Commun. 15, 4880 (2024). https://doi.org/10.1038/s41467-024-49270-5
Z. An, O.C. Compton, K.W. Putz, L.C. Brinson et al., Bio-lnspired borate cross-linking in ultra-stiff graphene oxide thin films. Adv. Mater. 23, 3842–3846 (2011). https://doi.org/10.1002/adma.201101544
J. Shen, G. Liu, Y. Ji, Q. Liu, L. Cheng et al., 2D MXene nanofilms with tunable gas transport channels. Adv. Funct. Mater. 28(31), 1801511 (2018). https://doi.org/10.1002/adfm.201801511
Q. Chen, S. Huo, Y. Lu, M. Ding, J. Feng et al., Heterostructured Graphene@Silica@Iron phenylphosphinate for fire-retardant, strong, thermally conductive yet electrically insulated epoxy nanocomposites. Small 20(31), 2310724 (2024). https://doi.org/10.1002/smll.202310724
H. Singh, S. Chen, G. Francius, L. Liu, P.S. Lee et al., Understanding in-plane sliding of functionalized Ti3C2Tx MXene by in situ microscale analysis of electrochemical actuation. Chem. Mater. 36(19), 9575–9583 (2024). https://doi.org/10.1021/acs.chemmater.4c01597
M. He, X. Zhong, X. Lu, J. Hu, K. Ruan et al., Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by Hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 36(48), 2410186 (2024). https://doi.org/10.1002/adma.202410186
T. Zhou, C. Cao, S. Yuan, Z. Wang, Q. Zhu et al., Interlocking-governed ultra-strong and highly conductive MXene fibers through fluidics-assisted thermal drawing. Adv. Mater. 35(51), e2305807 (2023). https://doi.org/10.1002/adma.202305807
L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang et al., MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9, 155 (2018). https://doi.org/10.1038/s41467-017-02529-6
A. Liu, H. Qiu, X. Lu, H. Guo, J. Hu et al., Asymmetric structural MXene/PBO aerogels for high-performance electromagnetic interference shielding with ultra-low reflection. Adv. Mater. 37(5), e2414085 (2025). https://doi.org/10.1002/adma.202414085
Y. Liu, Z. Xu, W. Gao, Z. Cheng, C. Gao, Graphene and other 2D colloids: liquid crystals and macroscopic fibers. Adv. Mater. 29(14), 1606794 (2017). https://doi.org/10.1002/adma.201606794
Y. Xia, T.S. Mathis, M.-Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557(7705), 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
B. Akuzum, K. Maleski, B. Anasori, P. Lelyukh, N.J. Alvarez et al., Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano 12(3), 2685–2694 (2018). https://doi.org/10.1021/acsnano.7b08889
Q. Zhang, H. Lai, R. Fan, P. Ji, X. Fu et al., High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 15, 5249–5262 (2021). https://doi.org/10.1021/acsnano.0c10671
S. Wan, X. Li, Y. Chen, N. Liu, S. Wang et al., Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat. Commun. 13, 7340 (2022). https://doi.org/10.1038/s41467-022-35226-0
Q. Chen, L. Liu, A. Zhang, W. Wang, Z. Wang et al., An iron phenylphosphinate@graphene oxide nanohybrid enabled flame-retardant, mechanically reinforced, and thermally conductive epoxy nanocomposites. Chem. Eng. J. 454, 140424 (2023). https://doi.org/10.1016/j.cej.2022.140424
T.D. Kühne, M. Iannuzzi, M. Del Ben, V.V. Rybkin, P. Seewald et al., CP2K: an electronic structure and molecular dynamics software package—quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152(19), 194103 (2020). https://doi.org/10.1063/5.0007045
T. Lu, A comprehensive electron wavefunction analysis toolbox for chemists Multiwfn. J. Chem. Phys. 161(8), 082503 (2024). https://doi.org/10.1063/5.0216272
X. Zuo, L. Wang, M. Zhen, T. You, D. Liu et al., Multifunctional TiN-MXene-Co@CNTs networks as sulfur/lithium host for high-areal-capacity lithium-sulfur batteries. Angew. Chem. Int. Ed. 63(35), e202408026 (2024). https://doi.org/10.1002/anie.202408026
W. Lyu, Y. Liu, D. Chen, F. Wang, Y. Li, Engineering the electron localization of metal sites on nanosheets assembled periodic macropores for CO2 photoreduction. Nat. Commun. 15(1), 10589 (2024). https://doi.org/10.1038/s41467-024-54988-3
L. Huang, H. Wu, L. Ding, J. Caro, H. Wang, Shearing liquid-crystalline MXene into lamellar membranes with super-aligned nanochannels for ion sieving. Angew. Chem. Int. Ed. 63(6), e202314638 (2024). https://doi.org/10.1002/anie.202314638
H. Shin, W. Jeong, T.H. Han, Maximizing light-to-heat conversion of Ti3C2Tx MXene metamaterials with wrinkled surfaces for artificial actuators. Nat. Commun. 15, 10507 (2024). https://doi.org/10.1038/s41467-024-54802-0
Q. Chen, Z. Ma, Z. Wang, L. Liu, M. Zhu et al., Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv. Funct. Mater. 32(8), 2110782 (2022). https://doi.org/10.1002/adfm.202110782
Z. Shi, S. Liao, Y. Wei, L. Li, Theoretical insights into He/CH4 separation by MXene nanopore. Chem. Eng. Sci. 287, 119781 (2024). https://doi.org/10.1016/j.ces.2024.119781
Q. Chen, Z. Wang, A copper organic phosphonate functionalizing boron nitride nanosheet for PVA film with excellent flame retardancy and improved thermal conductive property. Compos. Part A Appl. Sci. Manuf. 153, 106738 (2022). https://doi.org/10.1016/j.compositesa.2021.106738
H. Liu, C. Du, L. Liao, H. Zhang, H. Zhou et al., Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity. Nat. Commun. 13, 3420 (2022). https://doi.org/10.1038/s41467-022-31051-7
X. Liu, W. Ma, Z. Qiu, T. Yang, J. Wang et al., Manipulation of impedance matching toward 3D-printed lightweight and stiff MXene-based aerogels for consecutive multiband tunable electromagnetic wave absorption. ACS Nano 17(9), 8420–8432 (2023). https://doi.org/10.1021/acsnano.3c00338
Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
H. Chen, H. Sun, L. Chen, Y. Chen, J. Chen et al., Simultaneous measurement of thermal conductivity and thermal diffusivity of individual microwires by using a cross-wire geometry. Rev. Sci. Instrum. 93(2), 024901 (2022). https://doi.org/10.1063/5.0074632
Q. Chen, Z. Ma, M. Wang, Z. Wang, J. Feng et al., Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites. Nano Res. 16(1), 1362–1386 (2023). https://doi.org/10.1007/s12274-022-4824-2
X. Wang, Z. Lei, X. Ma, G. He, T. Xu et al., A lightweight MXene-Coated nonwoven fabric with excellent flame Retardancy, EMI Shielding, and Electrothermal/Photothermal conversion for wearable heater. Chem. Eng. J. 430, 132605 (2022). https://doi.org/10.1016/j.cej.2021.132605
Y. Zhang, G. Zhang, Z. Ma, J. Qin, X. Shen, Heterogeneous MXene-based films with graded electrical conductivity towards highly efficient EMI shielding and electrothermal heating. Nano Res. 17(8), 7264–7274 (2024). https://doi.org/10.1007/s12274-024-6709-z