Breaking Through Bottlenecks for Thermally Conductive Polymer Composites: A Perspective for Intrinsic Thermal Conductivity, Interfacial Thermal Resistance and Theoretics
Corresponding Author: Junwei Gu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 110
Abstract
Rapid development of energy, electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites. However, the thermal conductivity coefficient (λ) values of prepared thermally conductive polymer composites are still difficult to achieve expectations, which has become the bottleneck in the fields of thermally conductive polymer composites. Aimed at that, based on the accumulation of the previous research works by related researchers and our research group, this paper proposes three possible directions for breaking through the bottlenecks: (1) preparing and synthesizing intrinsically thermally conductive polymers, (2) reducing the interfacial thermal resistance in thermally conductive polymer composites, and (3) establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization. Also, the future development trends of the three above-mentioned directions are foreseen, hoping to provide certain basis and guidance for the preparation, researches and development of thermally conductive polymers and their composites.
Highlights:
1 Bottlenecks in the field of thermally conductive polymer composites are raised, and corresponding reasons are analysed.
2 Three possible directions for breaking through such bottlenecks are put forward, and current advances in these three directions are illustrated.
3 Future development trends and demands are foreseen to help the development of thermally conductive polymers and their composites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
- Y. Song, F. Jiang, N. Song, L. Shi, P. Ding, Multilayered structural design of flexible films for smart thermal management. Compos. Part A-Appl. Sci. Manufact. 141, 106222 (2021). https://doi.org/10.1016/j.compositesa.2020.106222
- Z. Zhu, C. Li, S.E.L. Xie, R. Geng, C. Lin et al., Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets. Compos. Sci. Technol. 170, 93–100 (2019). https://doi.org/10.1016/j.compscitech.2018.11.035
- C. Huang, X. Qian, R. Yang, Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R 132, 1–22 (2018). https://doi.org/10.1016/j.mser.2018.06.002
- F. Jiang, S. Cui, C. Rungnim, N. Song, L. Shi et al., Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites. Chem. Mater. 31(18), 7686–7695 (2019). https://doi.org/10.1021/acs.chemmater.9b02551
- Z. Tong, M. Liu, H. Bao, A numerical investigation on the heat conduction in high filler loading particulate composites. Int. J. Heat Mass Tran. 100, 355–361 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.092
- M. Akatsuka, Y. Takezawa, Study of high thermal conductive epoxy resins containing controlled high-order structures. J. Appl. Polym. Sci. 89(9), 2464–2467 (2003). https://doi.org/10.1002/app.12489
- I. Jeong, C.B. Kim, D.-G. Kang, K.-U. Jeong, S.G. Jang et al., Liquid crystalline epoxy resin with improved thermal conductivity by intermolecular dipole-dipole interactions. J. Polym. Sci. Pol. Chem. 57(6), 708–715 (2019). https://doi.org/10.1002/pola.29315
- X. Yang, X. Zhong, J. Zhang, J. Gu, Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance. J. Mater. Sci. Technol. 68, 209–215 (2021). https://doi.org/10.1016/j.jmst.2020.08.027
- X. Yang, J. Zhu, D. Yang, J. Zhang, Y. Guo et al., High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers. Compos. Part B-Eng. 185, 107784 (2020). https://doi.org/10.1016/j.compositesb.2020.107784
- C. Yu, J. Zhang, Z. Li, W. Tian, L. Wang et al., Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Compos. Part A-Appl. Sci. Manufact. 98, 25–31 (2017). https://doi.org/10.1016/j.compositesa.2017.03.012
- F. Jiang, S. Cui, N. Song, L. Shi, P. Ding, Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites. ACS Appl. Mater. Interfaces 10, 16812–16821 (2018). https://doi.org/10.1021/acsami.8b03522
- X. Zha, J. Yang, J. Pu, C. Feng, L. Bai et al., Enhanced thermal conductivity and balanced mechanical performance of PP/BN composites with 1 vol% finely dispersed MWCNTs assisted by OBC. Adv. Mater. Interfaces 6(9), 1900081 (2019). https://doi.org/10.1002/admi.201900081
- D. Zou, X. Huang, Y. Zhu, J. Chen, P. Jiang, Boron nitride nanosheets endow the traditional dielectric polymer composites with advanced thermal management capability. Compos. Sci. Technol. 177, 88–95 (2019). https://doi.org/10.1016/j.compscitech.2019.04.027
- Y. Han, X. Shi, X. Yang, Y. Guo, J. Zhang et al., Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos. Sci. Technol. 187, 107944 (2020). https://doi.org/10.1016/j.compscitech.2019.107944
- H. Guo, Q. Wang, J. Liu, C. Du, B. Li, Improved interfacial properties for largely enhanced thermal conductivity of poly(vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes. Appl. Surf. Sci. 487, 379–388 (2019). https://doi.org/10.1016/j.apsusc.2019.05.070
- T. Ma, Y. Zhao, K. Ruan, X. Liu, J. Zhang et al., Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl. Mater. Interfaces 12(1), 1677–1686 (2020). https://doi.org/10.1021/acsami.9b19844
- I.-L. Ngo, S.V.P. Vattikuti, C. Byon, A modified Hashin-Shtrikman model for predicting the thermal conductivity of polymer composites reinforced with randomly distributed hybrid fillers. Int. J. Heat Mass Tran. 114, 727–734 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.116
- K. Ruan, Y. Guo, C. Lu, X. Shi, T. Ma et al., Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021, 8438614 (2021). https://doi.org/10.34133/2021/8438614
- Y. Agari, T. Uno, Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 32(7), 5705–5712 (1986). https://doi.org/10.1002/app.1986.070320702
- J. Maxwell, Electricity and Magnetism (Clarendon Press, Oxford, 1873).
- L.E. Nielsen, Thermal conductivity of particulate-filled polymers. J. Appl. Polym. Sci. 17(12), 3819–3820 (1973). https://doi.org/10.1002/app.1973.070171224
- Y. Li, G. Xu, Y. Guo, T. Ma, X. Zhong et al., Fabrication, proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers. Compos. Part A-Appl. Sci. Manufact. 107, 570–578 (2018). https://doi.org/10.1016/j.compositesa.2018.02.006
- Y. Guo, G. Xu, X. Yang, K. Ruan, T. Ma et al., Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J. Mater. Chem. C 6(12), 3004–3015 (2018). https://doi.org/10.1039/C8TC00452H
- Y. Guo, K. Ruan, X. Yang, T. Ma, J. Kong et al., Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites. J. Mater. Chem. C 7(23), 7035–7044 (2019). https://doi.org/10.1039/C9TC01804B
- Y. Guo, X. Yang, K. Ruan, J. Kong, M. Dong et al., Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl. Mater. Interfaces 11(28), 25465–25473 (2019). https://doi.org/10.1021/acsami.9b10161
- X. Shi, R. Zhang, K. Ruan, T. Ma, Y. Guo et al., Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J. Mater. Sci. Technol. 82, 239–249 (2021). https://doi.org/10.1016/j.jmst.2021.01.018
- Z. Wang, M. Yang, Y. Cheng, J. Liu, B. Xiao et al., Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Compos. Part A-Appl. Sci. Manufact. 118, 302–311 (2019). https://doi.org/10.1016/j.compositesa.2018.12.022
- J. Gu, C. Xie, H. Li, J. Dang, W. Geng et al., Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polym. Compos. 35(6), 1087–1092 (2014). https://doi.org/10.1002/pc.22756
References
F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
Y. Song, F. Jiang, N. Song, L. Shi, P. Ding, Multilayered structural design of flexible films for smart thermal management. Compos. Part A-Appl. Sci. Manufact. 141, 106222 (2021). https://doi.org/10.1016/j.compositesa.2020.106222
Z. Zhu, C. Li, S.E.L. Xie, R. Geng, C. Lin et al., Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets. Compos. Sci. Technol. 170, 93–100 (2019). https://doi.org/10.1016/j.compscitech.2018.11.035
C. Huang, X. Qian, R. Yang, Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R 132, 1–22 (2018). https://doi.org/10.1016/j.mser.2018.06.002
F. Jiang, S. Cui, C. Rungnim, N. Song, L. Shi et al., Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites. Chem. Mater. 31(18), 7686–7695 (2019). https://doi.org/10.1021/acs.chemmater.9b02551
Z. Tong, M. Liu, H. Bao, A numerical investigation on the heat conduction in high filler loading particulate composites. Int. J. Heat Mass Tran. 100, 355–361 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.092
M. Akatsuka, Y. Takezawa, Study of high thermal conductive epoxy resins containing controlled high-order structures. J. Appl. Polym. Sci. 89(9), 2464–2467 (2003). https://doi.org/10.1002/app.12489
I. Jeong, C.B. Kim, D.-G. Kang, K.-U. Jeong, S.G. Jang et al., Liquid crystalline epoxy resin with improved thermal conductivity by intermolecular dipole-dipole interactions. J. Polym. Sci. Pol. Chem. 57(6), 708–715 (2019). https://doi.org/10.1002/pola.29315
X. Yang, X. Zhong, J. Zhang, J. Gu, Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance. J. Mater. Sci. Technol. 68, 209–215 (2021). https://doi.org/10.1016/j.jmst.2020.08.027
X. Yang, J. Zhu, D. Yang, J. Zhang, Y. Guo et al., High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers. Compos. Part B-Eng. 185, 107784 (2020). https://doi.org/10.1016/j.compositesb.2020.107784
C. Yu, J. Zhang, Z. Li, W. Tian, L. Wang et al., Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Compos. Part A-Appl. Sci. Manufact. 98, 25–31 (2017). https://doi.org/10.1016/j.compositesa.2017.03.012
F. Jiang, S. Cui, N. Song, L. Shi, P. Ding, Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites. ACS Appl. Mater. Interfaces 10, 16812–16821 (2018). https://doi.org/10.1021/acsami.8b03522
X. Zha, J. Yang, J. Pu, C. Feng, L. Bai et al., Enhanced thermal conductivity and balanced mechanical performance of PP/BN composites with 1 vol% finely dispersed MWCNTs assisted by OBC. Adv. Mater. Interfaces 6(9), 1900081 (2019). https://doi.org/10.1002/admi.201900081
D. Zou, X. Huang, Y. Zhu, J. Chen, P. Jiang, Boron nitride nanosheets endow the traditional dielectric polymer composites with advanced thermal management capability. Compos. Sci. Technol. 177, 88–95 (2019). https://doi.org/10.1016/j.compscitech.2019.04.027
Y. Han, X. Shi, X. Yang, Y. Guo, J. Zhang et al., Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos. Sci. Technol. 187, 107944 (2020). https://doi.org/10.1016/j.compscitech.2019.107944
H. Guo, Q. Wang, J. Liu, C. Du, B. Li, Improved interfacial properties for largely enhanced thermal conductivity of poly(vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes. Appl. Surf. Sci. 487, 379–388 (2019). https://doi.org/10.1016/j.apsusc.2019.05.070
T. Ma, Y. Zhao, K. Ruan, X. Liu, J. Zhang et al., Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl. Mater. Interfaces 12(1), 1677–1686 (2020). https://doi.org/10.1021/acsami.9b19844
I.-L. Ngo, S.V.P. Vattikuti, C. Byon, A modified Hashin-Shtrikman model for predicting the thermal conductivity of polymer composites reinforced with randomly distributed hybrid fillers. Int. J. Heat Mass Tran. 114, 727–734 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.116
K. Ruan, Y. Guo, C. Lu, X. Shi, T. Ma et al., Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021, 8438614 (2021). https://doi.org/10.34133/2021/8438614
Y. Agari, T. Uno, Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 32(7), 5705–5712 (1986). https://doi.org/10.1002/app.1986.070320702
J. Maxwell, Electricity and Magnetism (Clarendon Press, Oxford, 1873).
L.E. Nielsen, Thermal conductivity of particulate-filled polymers. J. Appl. Polym. Sci. 17(12), 3819–3820 (1973). https://doi.org/10.1002/app.1973.070171224
Y. Li, G. Xu, Y. Guo, T. Ma, X. Zhong et al., Fabrication, proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers. Compos. Part A-Appl. Sci. Manufact. 107, 570–578 (2018). https://doi.org/10.1016/j.compositesa.2018.02.006
Y. Guo, G. Xu, X. Yang, K. Ruan, T. Ma et al., Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J. Mater. Chem. C 6(12), 3004–3015 (2018). https://doi.org/10.1039/C8TC00452H
Y. Guo, K. Ruan, X. Yang, T. Ma, J. Kong et al., Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites. J. Mater. Chem. C 7(23), 7035–7044 (2019). https://doi.org/10.1039/C9TC01804B
Y. Guo, X. Yang, K. Ruan, J. Kong, M. Dong et al., Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl. Mater. Interfaces 11(28), 25465–25473 (2019). https://doi.org/10.1021/acsami.9b10161
X. Shi, R. Zhang, K. Ruan, T. Ma, Y. Guo et al., Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J. Mater. Sci. Technol. 82, 239–249 (2021). https://doi.org/10.1016/j.jmst.2021.01.018
Z. Wang, M. Yang, Y. Cheng, J. Liu, B. Xiao et al., Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Compos. Part A-Appl. Sci. Manufact. 118, 302–311 (2019). https://doi.org/10.1016/j.compositesa.2018.12.022
J. Gu, C. Xie, H. Li, J. Dang, W. Geng et al., Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polym. Compos. 35(6), 1087–1092 (2014). https://doi.org/10.1002/pc.22756