Layered Structural PBAT Composite Foams for Efficient Electromagnetic Interference Shielding
Corresponding Author: Junwei Gu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 31
Abstract
The utilization of eco-friendly, lightweight, high-efficiency and high-absorbing electromagnetic interference (EMI) shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing. In this work, magnetic poly (butyleneadipate-co-terephthalate) (PBAT) microspheres were firstly synthesized via phase separation method, then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques. The merits of integrating ferroferric oxide-loaded multi-walled carbon nanotubes (Fe3O4@MWCNTs) nanoparticles, a microcellular framework, and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration. Microwaves are consumed throughout the process of “absorption-reflection-reabsorption” as much as possible, which greatly declines the secondary radiation pollution. The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%, and authenticated favorable stabilization after the tape adhesion experiment.
Highlights:
1 A layered segregated shielding network was organized in porous PBAT/Fe3O4@MWCNTs/Ag composite by scCO2 foaming and scraping techniques.
2 The composite foam achieved an electromagnetic interference (EMI) shielding effectiveness (SE) of up to 68.0 dB and a reflectivity of as low as 23% due to the “absorption-reflection-re-absorption” shielding mechanism.
3 The solid and foamed PBAT/Fe3O4@MWCNTs/Ag composites displayed superior retention (> 92%) of EMI SE even after peeling experiment of 500 times under 100 g weight pressure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.F. Ma, J. Pan, H.T. Guo, J.W. Wang, C.M. Zhang et al., Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Mater. 33, 2213431 (2023). https://doi.org/10.1002/adfm.202213431
- Y.L. Zhang, K.P. Ruan, Y.Q. Guo, J.W. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photon. Res. (2023). https://doi.org/10.1002/adpr.202300224
- J.C. Shu, M.S. Cao, Y.L. Zhang, Y.Z. Wang, Q.L. Zhao et al., Atomic-molecular engineering tailoring graphene microlaminates to tune multifunctional antennas. Adv. Funct. Mater. 33, 2212379 (2023). https://doi.org/10.1002/adfm.202212379
- X.F. Ma, J.J. Pan, H.T. Guo, J.W. Wang, C.M. Zhang et al., Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 33, 2213431 (2023). https://doi.org/10.1002/adfm.202213431
- Y.L. Zhang, K.P. Ruan, K. Zhou, J.W. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
- S. Ganguly, P. Das, A. Saha, M. Noked, A. Gedanken et al., Mussel-inspired polynorepinephrine/MXene-based magnetic nanohybrid for electromagnetic interference shielding in X-band and strain-sensing performance. Langmuir 38, 3936–3950 (2022). https://doi.org/10.1021/acs.langmuir.2c00278
- S. Ganguly, S. Ghosh, P. Das, T.K. Das, S.K. Ghosh et al., Poly (N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly (ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polym. Bull. 77, 2923–2943 (2020). https://doi.org/10.1007/s00289-019-02892-y
- P. Das, S. Ganguly, I. Perelshtein, S. Margel, A. Gedanken, Acoustic green synthesis of graphene-gallium nanops and PEDOT: PSS hybrid coating for textile to mitigate electromagnetic radiation pollution. ACS Appl. Nano Mater. 5, 1644–1655 (2022). https://doi.org/10.1021/acsanm.1c04425
- J.M. Yang, Y.J. Chen, B. Wang, Y.G. Zhou, X.Z. Chai et al., Gradient structure silicone rubber composites for selective electromagnetic interference shielding enhancement and low reflection. Compos. Sci. Technol. 229, 109688 (2022). https://doi.org/10.1016/j.compscitech.2022.109688
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1002/9783527829828
- C.B. Liang, J. He, Y.L. Zhang, W. Zhang, C.L. Liu et al., MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci. Technol. 224, 109445 (2022). https://doi.org/10.1016/j.compscitech.2022.109445
- C.H. Wei, L.Z. Shi, M.Q. Li, M.K. He, M.J. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
- J. Li, H. Sun, S.Q. Yi, K.K. Zou, D. Zhang et al., Flexible polydimethylsiloxane composite with multi-scale conductive network for ultra-strong electromagnetic interference protection. Nano-Micro Lett. 15, 15 (2023). https://doi.org/10.1007/s40820-022-00990-7
- M.L. Huang, C.L. Luo, C. Sun, K.Y. Zhao, Y.X. Weng et al., Achieving absorption-type microwave shielding performance in polydimethylsiloxane/carbon nanotube sandwiched composites via regulating microwave interference effect. Compos. A 169, 107532 (2023). https://doi.org/10.1016/j.compositesa.2023.107532
- J. Zhao, Z. Gu, Q. Zhang, Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res. (2023). https://doi.org/10.1007/s12274-023-6090-3
- Y.Q. Guo, K.P. Ruan, G.S. Wang, J.W. Gu, Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 68, 1195–1212 (2023). https://doi.org/10.1016/j.scib.2023.04.036
- X.X. Wang, Q. Zheng, Y.J. Zheng, M.S. Cao, Green EMI shielding: dielectric/magnetic “genes” and design philosophy. Carbon 206, 124–141 (2023). https://doi.org/10.1016/j.carbon.2023.02.012
- X.C. Jia, Y. Li, B. Shen, W.G. Zheng, Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: a review. Compos. Part B Eng. 233, 109652 (2022). https://doi.org/10.1016/j.compositesb.2022.109652
- L. Ma, M. Hamidinejad, B. Zhao, C. Liang, C. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2022). https://doi.org/10.1007/s40820-021-00759-4
- Y.L. Zhang, J. Kong, J.W. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67, 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
- Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu et al., An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl. Mater. Inter. 12, 36567–36577 (2020). https://doi.org/10.1021/acsami.0c10600
- Q.M. He, J.R. Tao, Y. Yang, D. Yang, K. Zhang et al., Effect surface micro-wrinkles and micro-cracks on microwave shielding performance of copper-coated carbon nanotubes/polydimethylsiloxane composites. Carbon 213, 118216 (2023). https://doi.org/10.1016/j.carbon.2023.118216
- H.Z. Liu, Y. Xu, H.Y. Yong, Y. Huang, D. Han et al., Studies on electromagnetic interference shielding effect mechanisms of leaf-like three-dimensional carbon nanotubes/graphene aerogel film and the composites with polydimethylsiloxane. Carbon 207, 261–269 (2023). https://doi.org/10.1016/j.carbon.2023.03.006
- T.C. Zuo, C.L. Xue, W. Wang, D. Yu, Ti3C2Tx MXene-ferroferric oxide/carbon nanotubes/waterborne polyurethane-based asymmetric composite aerogels for absorption-dominated electromagnetic interference shielding. ACS Appl. Nano Mater. 6, 4716–4725 (2023). https://doi.org/10.1021/acsanm.3c00204
- Y.H. Zhan, Y. Cheng, N. Yan, Y.C. Li, Y.Y. Meng et al., Lightweight and self-healing carbon nanotube/acrylic copolymer foams: toward the simultaneous enhancement of electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 417, 129339 (2021). https://doi.org/10.1016/j.cej.2021.129339
- X. Fan, F. Wang, Q. Gao, Y. Zhang, F. Huang et al., Nature inspired hierarchical structures in nano-cellular epoxy/graphene-Fe3O4 nanocomposites with ultra-efficient EMI and robust mechanical strength. J. Mater. Sci. Technol. 103, 177–185 (2022). https://doi.org/10.1016/j.jmst.2021.06.030
- H. Duan, H. Zhu, J. Gao, D. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8, 9146–9159 (2020). https://doi.org/10.1039/d0ta01393e
- Q.M. He, J.R. Tao, D. Yang, Y. Yang, M. Wang, Surface wrinkles enhancing electromagnetic interference shielding of copper coated polydimethylsiloxane: a simulation and experimental study. Chem. Eng. J. 454, 140162 (2023). https://doi.org/10.1016/j.cej.2022.140162
- J. Chen, X. Liao, W. Xiao, J.M. Yang, Q.Y. Jiang et al., Facile and green method to structure ultralow-threshold and lightweight polystyrene/MWCNT composites with segregated conductive networks for efficient electromagnetic interference shielding. ACS Sustain. Chem. Eng. 7, 9904–9915 (2019). https://doi.org/10.1021/acssuschemeng.9b00678
- Z.Y. Jiang, Y.J. Gao, Z.H. Pan, M.M. Zhang, J.H. Guo et al., Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 174, 195–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.013
- Y. Wang, F.M. Guo, X. Liao, S.J. Li, Z.H. Yan et al., High-expansion-ratio PLLA/PDLA/HNT composite foams with good thermally insulating property and enhanced compression performance via supercritical CO2. Int. J. Biol. Macromol. 236, 123961 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123961
- Y.G. Yang, X. Liao, C.F. Lv, B. Wang, F.F. Zou et al., Ultrasound and H2O assisted scCO2 foaming technology for preparation of PS/PMMA composite foams with ultra-lightweight and super thermal-insulation. Compos. A 169, 107527 (2023). https://doi.org/10.1016/j.compositesa.2023.107527
- T.R. Kuang, L.Q. Chang, F. Chen, Y. Sheng, D.J. Fu et al., Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305–313 (2016). https://doi.org/10.1016/j.carbon.2016.04.052
- Y.H. Zhan, M. Oliviero, J. Wang, A. Sorrentino, M. Lavorgna et al., Enhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networks. Nanoscale 11, 1011–1020 (2019). https://doi.org/10.1039/c8nr07351a
- J.M. Yang, Y.J. Chen, X. Yan, X. Liao, H.X. Zhang et al., Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. Compos. Sci. Technol. 240, 110093 (2023). https://doi.org/10.1016/j.compscitech.2023.110093
- M.K. Li, Y.Y. Sun, D.Y. Feng, K.P. Ruan, X. Liu et al., Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 16, 7820–7828 (2023). https://doi.org/10.1007/s12274-023-5594-1
- Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu et al., An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl. Mater. Inter. 12, 36568–36577 (2020). https://doi.org/10.1021/acsami.0c10600
- X.Y. Zhao, Y.J. Hu, X.Q. Xu, M.K. Li, Y.X. Han et al., Sound absorption polyimide composite aerogels for ancient architectures protection. Adv. Compos. Hybrid Mater. 6, 137 (2023). https://doi.org/10.1007/s42114-023-00716-2
- Y. Zhan, J. Wang, K. Zhang, Y. Lia, Y. Meng et al., Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 344, 184–193 (2018). https://doi.org/10.1016/j.cej.2018.03.085
- Q. Song, B. Chen, Z. Zhou, C. Lu, Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance. Sci. China Mater. 64, 1437–1448 (2021). https://doi.org/10.1007/s40843-020-1539-2
- Y.D. Xu, Z.Q. Lin, R. Krishnamoorthy, T. Zhao, P.L. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 (2022). https://doi.org/10.1007/s40820-021-00766-5
- B. Shen, W.T. Zhai, M.M. Tao, J.Q. Ling, W.G. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Inter. 5, 11383–11391 (2013). https://doi.org/10.1021/am4036527
- R. Li, L. Ding, Q. Gao, H. Zhang, D. Zeng et al., Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chem. Eng. J. 415, 128930 (2021). https://doi.org/10.1016/j.cej.2021.128930
- S. Gong, X.X. Sheng, X.L. Li, M.J. Sheng, H. Wu et al., A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick–mortar” sandwich structure. Adv. Funct. Mater. 32, 2200570 (2022). https://doi.org/10.1002/adfm.202200570
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- J.L. Chen, D. Yi, X.C. Jia, G.Q. Wang, Z.P. Sun et al., Biomass-based aligned carbon networks with double-layer construction for tunable electromagnetic shielding with ultra-low reflectivity. J. Mater. Sci. Technol. 103, 98–104 (2022). https://doi.org/10.1016/j.jmst.2021.06.039
- R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang, Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27, 170280 (2017). https://doi.org/10.1002/adfm.201702807
- Y.H. Zhan, J. Wang, K.Y. Zhang, Y.C. Li, H.S. Xia, Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 344, 184–193 (2018). https://doi.org/10.1016/j.cej.2018.03.085
- Y.L. Zhang, J.W. Gu, A Perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
- W.Y. Tang, X. Liao, S.Z. Shi, B. Wang, C.F. Lv et al., Significantly enhanced porosity of silicone rubber nanocomposite foams via cross-linking structure regulation and heterogeneous nucleation by CNTs for promising ultralow-k dielectrics. Ind. Eng. Chem. Res. 61, 14251–14259 (2022). https://doi.org/10.1021/acs.iecr.2c01865
- M.Z. Li, L.C. Jia, X.P. Zhang, D.X. Yan, Q.C. Zhang et al., Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption. J. Colloid Interface Sci. 530, 113–119 (2018). https://doi.org/10.1016/j.jcis.2018.06.052
- W. Yu, T. Wang, G. Zhang, Z. Wang, H. Yin et al., Largely enhanced mechanical property of segregated carbon nanotube/poly (vinylidene fluoride) composites with high electromagnetic interference shielding performance. Compos. Sci. Technol. 167, 260–267 (2018). https://doi.org/10.1016/j.compscitech.2018.08.013
- H. Zhu, Y. Yang, A. Sheng, H. Duan, G. Zhao et al., Layered structural design of flexible waterborne polyurethane conductive film for excellent electromagnetic interference shielding and low microwave reflectivity. Appl. Surf. Sci. 469, 1–9 (2019). https://doi.org/10.1016/j.apsusc.2018.11.007
- H. Zhang, G. Zhang, Q. Gao, M. Tang, Z. Ma et al., Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 379, 122304 (2020). https://doi.org/10.1016/j.cej.2019.122304
- Y. Fei, M. Liang, Y. Chen, H. Zou, Sandwich-like magnetic graphene papers prepared with MOF-derived Fe3O4–C for absorption-dominated electromagnetic interference shielding. Ind. Eng. Chem. Res. 59, 154–165 (2020). https://doi.org/10.1021/acs.iecr.9b04416
- R. Sun, H. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27, 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong et al., Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 14, 1800534 (2018). https://doi.org/10.1002/smll.201800534
- S.T. Li, Z.B. Xu, Y. Dong, D.Y. Liu, G.X. Sui, Ni@nylon mesh/PP composites with a novel tree-ring structure for enhancing electromagnetic shielding. Compos. A 131, 105798 (2020). https://doi.org/10.1016/j.compositesa.2020.105798
- A. Sheng, W. Ren, Y.Q. Yang, D.X. Yan, H.J. Duan et al., Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption dominated electromagnetic interference shielding. Compos. A 129, 105692 (2020). https://doi.org/10.1016/j.compositesa.2019.105692
- B. Sun, S. Sun, P. He, H.Y. Mi, B. Dong et al., Asymmetric layered structural design with segregated conductive network for absorption-dominated high- performance electromagnetic interference shielding. Chem. Eng. J. 416, 129083 (2021). https://doi.org/10.1016/j.cej.2021.129083
- Y.Y. Wang, Z.H. Zhou, C.G. Zhou, W.J. Sun, Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Inter. 12, 8704–8712 (2020). https://doi.org/10.1021/acsami.9b21048
- Y.P. Zhang, C.G. Zhou, W.J. Sun, T. Wang, L.C. Jia et al., Injection molding of segregated carbon nanotube/polypropylene composite with enhanced electromagnetic interference shielding and mechanical performance. Compos. Sci. Technol. 197, 108253 (2020). https://doi.org/10.1016/j.compscitech.2020.108253
References
X.F. Ma, J. Pan, H.T. Guo, J.W. Wang, C.M. Zhang et al., Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Mater. 33, 2213431 (2023). https://doi.org/10.1002/adfm.202213431
Y.L. Zhang, K.P. Ruan, Y.Q. Guo, J.W. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photon. Res. (2023). https://doi.org/10.1002/adpr.202300224
J.C. Shu, M.S. Cao, Y.L. Zhang, Y.Z. Wang, Q.L. Zhao et al., Atomic-molecular engineering tailoring graphene microlaminates to tune multifunctional antennas. Adv. Funct. Mater. 33, 2212379 (2023). https://doi.org/10.1002/adfm.202212379
X.F. Ma, J.J. Pan, H.T. Guo, J.W. Wang, C.M. Zhang et al., Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 33, 2213431 (2023). https://doi.org/10.1002/adfm.202213431
Y.L. Zhang, K.P. Ruan, K. Zhou, J.W. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
S. Ganguly, P. Das, A. Saha, M. Noked, A. Gedanken et al., Mussel-inspired polynorepinephrine/MXene-based magnetic nanohybrid for electromagnetic interference shielding in X-band and strain-sensing performance. Langmuir 38, 3936–3950 (2022). https://doi.org/10.1021/acs.langmuir.2c00278
S. Ganguly, S. Ghosh, P. Das, T.K. Das, S.K. Ghosh et al., Poly (N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly (ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polym. Bull. 77, 2923–2943 (2020). https://doi.org/10.1007/s00289-019-02892-y
P. Das, S. Ganguly, I. Perelshtein, S. Margel, A. Gedanken, Acoustic green synthesis of graphene-gallium nanops and PEDOT: PSS hybrid coating for textile to mitigate electromagnetic radiation pollution. ACS Appl. Nano Mater. 5, 1644–1655 (2022). https://doi.org/10.1021/acsanm.1c04425
J.M. Yang, Y.J. Chen, B. Wang, Y.G. Zhou, X.Z. Chai et al., Gradient structure silicone rubber composites for selective electromagnetic interference shielding enhancement and low reflection. Compos. Sci. Technol. 229, 109688 (2022). https://doi.org/10.1016/j.compscitech.2022.109688
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1002/9783527829828
C.B. Liang, J. He, Y.L. Zhang, W. Zhang, C.L. Liu et al., MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci. Technol. 224, 109445 (2022). https://doi.org/10.1016/j.compscitech.2022.109445
C.H. Wei, L.Z. Shi, M.Q. Li, M.K. He, M.J. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
J. Li, H. Sun, S.Q. Yi, K.K. Zou, D. Zhang et al., Flexible polydimethylsiloxane composite with multi-scale conductive network for ultra-strong electromagnetic interference protection. Nano-Micro Lett. 15, 15 (2023). https://doi.org/10.1007/s40820-022-00990-7
M.L. Huang, C.L. Luo, C. Sun, K.Y. Zhao, Y.X. Weng et al., Achieving absorption-type microwave shielding performance in polydimethylsiloxane/carbon nanotube sandwiched composites via regulating microwave interference effect. Compos. A 169, 107532 (2023). https://doi.org/10.1016/j.compositesa.2023.107532
J. Zhao, Z. Gu, Q. Zhang, Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res. (2023). https://doi.org/10.1007/s12274-023-6090-3
Y.Q. Guo, K.P. Ruan, G.S. Wang, J.W. Gu, Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 68, 1195–1212 (2023). https://doi.org/10.1016/j.scib.2023.04.036
X.X. Wang, Q. Zheng, Y.J. Zheng, M.S. Cao, Green EMI shielding: dielectric/magnetic “genes” and design philosophy. Carbon 206, 124–141 (2023). https://doi.org/10.1016/j.carbon.2023.02.012
X.C. Jia, Y. Li, B. Shen, W.G. Zheng, Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: a review. Compos. Part B Eng. 233, 109652 (2022). https://doi.org/10.1016/j.compositesb.2022.109652
L. Ma, M. Hamidinejad, B. Zhao, C. Liang, C. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2022). https://doi.org/10.1007/s40820-021-00759-4
Y.L. Zhang, J. Kong, J.W. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67, 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu et al., An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl. Mater. Inter. 12, 36567–36577 (2020). https://doi.org/10.1021/acsami.0c10600
Q.M. He, J.R. Tao, Y. Yang, D. Yang, K. Zhang et al., Effect surface micro-wrinkles and micro-cracks on microwave shielding performance of copper-coated carbon nanotubes/polydimethylsiloxane composites. Carbon 213, 118216 (2023). https://doi.org/10.1016/j.carbon.2023.118216
H.Z. Liu, Y. Xu, H.Y. Yong, Y. Huang, D. Han et al., Studies on electromagnetic interference shielding effect mechanisms of leaf-like three-dimensional carbon nanotubes/graphene aerogel film and the composites with polydimethylsiloxane. Carbon 207, 261–269 (2023). https://doi.org/10.1016/j.carbon.2023.03.006
T.C. Zuo, C.L. Xue, W. Wang, D. Yu, Ti3C2Tx MXene-ferroferric oxide/carbon nanotubes/waterborne polyurethane-based asymmetric composite aerogels for absorption-dominated electromagnetic interference shielding. ACS Appl. Nano Mater. 6, 4716–4725 (2023). https://doi.org/10.1021/acsanm.3c00204
Y.H. Zhan, Y. Cheng, N. Yan, Y.C. Li, Y.Y. Meng et al., Lightweight and self-healing carbon nanotube/acrylic copolymer foams: toward the simultaneous enhancement of electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 417, 129339 (2021). https://doi.org/10.1016/j.cej.2021.129339
X. Fan, F. Wang, Q. Gao, Y. Zhang, F. Huang et al., Nature inspired hierarchical structures in nano-cellular epoxy/graphene-Fe3O4 nanocomposites with ultra-efficient EMI and robust mechanical strength. J. Mater. Sci. Technol. 103, 177–185 (2022). https://doi.org/10.1016/j.jmst.2021.06.030
H. Duan, H. Zhu, J. Gao, D. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8, 9146–9159 (2020). https://doi.org/10.1039/d0ta01393e
Q.M. He, J.R. Tao, D. Yang, Y. Yang, M. Wang, Surface wrinkles enhancing electromagnetic interference shielding of copper coated polydimethylsiloxane: a simulation and experimental study. Chem. Eng. J. 454, 140162 (2023). https://doi.org/10.1016/j.cej.2022.140162
J. Chen, X. Liao, W. Xiao, J.M. Yang, Q.Y. Jiang et al., Facile and green method to structure ultralow-threshold and lightweight polystyrene/MWCNT composites with segregated conductive networks for efficient electromagnetic interference shielding. ACS Sustain. Chem. Eng. 7, 9904–9915 (2019). https://doi.org/10.1021/acssuschemeng.9b00678
Z.Y. Jiang, Y.J. Gao, Z.H. Pan, M.M. Zhang, J.H. Guo et al., Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 174, 195–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.013
Y. Wang, F.M. Guo, X. Liao, S.J. Li, Z.H. Yan et al., High-expansion-ratio PLLA/PDLA/HNT composite foams with good thermally insulating property and enhanced compression performance via supercritical CO2. Int. J. Biol. Macromol. 236, 123961 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123961
Y.G. Yang, X. Liao, C.F. Lv, B. Wang, F.F. Zou et al., Ultrasound and H2O assisted scCO2 foaming technology for preparation of PS/PMMA composite foams with ultra-lightweight and super thermal-insulation. Compos. A 169, 107527 (2023). https://doi.org/10.1016/j.compositesa.2023.107527
T.R. Kuang, L.Q. Chang, F. Chen, Y. Sheng, D.J. Fu et al., Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305–313 (2016). https://doi.org/10.1016/j.carbon.2016.04.052
Y.H. Zhan, M. Oliviero, J. Wang, A. Sorrentino, M. Lavorgna et al., Enhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networks. Nanoscale 11, 1011–1020 (2019). https://doi.org/10.1039/c8nr07351a
J.M. Yang, Y.J. Chen, X. Yan, X. Liao, H.X. Zhang et al., Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. Compos. Sci. Technol. 240, 110093 (2023). https://doi.org/10.1016/j.compscitech.2023.110093
M.K. Li, Y.Y. Sun, D.Y. Feng, K.P. Ruan, X. Liu et al., Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 16, 7820–7828 (2023). https://doi.org/10.1007/s12274-023-5594-1
Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu et al., An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl. Mater. Inter. 12, 36568–36577 (2020). https://doi.org/10.1021/acsami.0c10600
X.Y. Zhao, Y.J. Hu, X.Q. Xu, M.K. Li, Y.X. Han et al., Sound absorption polyimide composite aerogels for ancient architectures protection. Adv. Compos. Hybrid Mater. 6, 137 (2023). https://doi.org/10.1007/s42114-023-00716-2
Y. Zhan, J. Wang, K. Zhang, Y. Lia, Y. Meng et al., Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 344, 184–193 (2018). https://doi.org/10.1016/j.cej.2018.03.085
Q. Song, B. Chen, Z. Zhou, C. Lu, Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance. Sci. China Mater. 64, 1437–1448 (2021). https://doi.org/10.1007/s40843-020-1539-2
Y.D. Xu, Z.Q. Lin, R. Krishnamoorthy, T. Zhao, P.L. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 (2022). https://doi.org/10.1007/s40820-021-00766-5
B. Shen, W.T. Zhai, M.M. Tao, J.Q. Ling, W.G. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Inter. 5, 11383–11391 (2013). https://doi.org/10.1021/am4036527
R. Li, L. Ding, Q. Gao, H. Zhang, D. Zeng et al., Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chem. Eng. J. 415, 128930 (2021). https://doi.org/10.1016/j.cej.2021.128930
S. Gong, X.X. Sheng, X.L. Li, M.J. Sheng, H. Wu et al., A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick–mortar” sandwich structure. Adv. Funct. Mater. 32, 2200570 (2022). https://doi.org/10.1002/adfm.202200570
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
J.L. Chen, D. Yi, X.C. Jia, G.Q. Wang, Z.P. Sun et al., Biomass-based aligned carbon networks with double-layer construction for tunable electromagnetic shielding with ultra-low reflectivity. J. Mater. Sci. Technol. 103, 98–104 (2022). https://doi.org/10.1016/j.jmst.2021.06.039
R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang, Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27, 170280 (2017). https://doi.org/10.1002/adfm.201702807
Y.H. Zhan, J. Wang, K.Y. Zhang, Y.C. Li, H.S. Xia, Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 344, 184–193 (2018). https://doi.org/10.1016/j.cej.2018.03.085
Y.L. Zhang, J.W. Gu, A Perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
W.Y. Tang, X. Liao, S.Z. Shi, B. Wang, C.F. Lv et al., Significantly enhanced porosity of silicone rubber nanocomposite foams via cross-linking structure regulation and heterogeneous nucleation by CNTs for promising ultralow-k dielectrics. Ind. Eng. Chem. Res. 61, 14251–14259 (2022). https://doi.org/10.1021/acs.iecr.2c01865
M.Z. Li, L.C. Jia, X.P. Zhang, D.X. Yan, Q.C. Zhang et al., Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption. J. Colloid Interface Sci. 530, 113–119 (2018). https://doi.org/10.1016/j.jcis.2018.06.052
W. Yu, T. Wang, G. Zhang, Z. Wang, H. Yin et al., Largely enhanced mechanical property of segregated carbon nanotube/poly (vinylidene fluoride) composites with high electromagnetic interference shielding performance. Compos. Sci. Technol. 167, 260–267 (2018). https://doi.org/10.1016/j.compscitech.2018.08.013
H. Zhu, Y. Yang, A. Sheng, H. Duan, G. Zhao et al., Layered structural design of flexible waterborne polyurethane conductive film for excellent electromagnetic interference shielding and low microwave reflectivity. Appl. Surf. Sci. 469, 1–9 (2019). https://doi.org/10.1016/j.apsusc.2018.11.007
H. Zhang, G. Zhang, Q. Gao, M. Tang, Z. Ma et al., Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 379, 122304 (2020). https://doi.org/10.1016/j.cej.2019.122304
Y. Fei, M. Liang, Y. Chen, H. Zou, Sandwich-like magnetic graphene papers prepared with MOF-derived Fe3O4–C for absorption-dominated electromagnetic interference shielding. Ind. Eng. Chem. Res. 59, 154–165 (2020). https://doi.org/10.1021/acs.iecr.9b04416
R. Sun, H. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27, 1702807 (2017). https://doi.org/10.1002/adfm.201702807
Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong et al., Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 14, 1800534 (2018). https://doi.org/10.1002/smll.201800534
S.T. Li, Z.B. Xu, Y. Dong, D.Y. Liu, G.X. Sui, Ni@nylon mesh/PP composites with a novel tree-ring structure for enhancing electromagnetic shielding. Compos. A 131, 105798 (2020). https://doi.org/10.1016/j.compositesa.2020.105798
A. Sheng, W. Ren, Y.Q. Yang, D.X. Yan, H.J. Duan et al., Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption dominated electromagnetic interference shielding. Compos. A 129, 105692 (2020). https://doi.org/10.1016/j.compositesa.2019.105692
B. Sun, S. Sun, P. He, H.Y. Mi, B. Dong et al., Asymmetric layered structural design with segregated conductive network for absorption-dominated high- performance electromagnetic interference shielding. Chem. Eng. J. 416, 129083 (2021). https://doi.org/10.1016/j.cej.2021.129083
Y.Y. Wang, Z.H. Zhou, C.G. Zhou, W.J. Sun, Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Inter. 12, 8704–8712 (2020). https://doi.org/10.1021/acsami.9b21048
Y.P. Zhang, C.G. Zhou, W.J. Sun, T. Wang, L.C. Jia et al., Injection molding of segregated carbon nanotube/polypropylene composite with enhanced electromagnetic interference shielding and mechanical performance. Compos. Sci. Technol. 197, 108253 (2020). https://doi.org/10.1016/j.compscitech.2020.108253