Hierarchically Multifunctional Polyimide Composite Films with Strongly Enhanced Thermal Conductivity
Corresponding Author: Junwei Gu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 26
Abstract
The development of lightweight and integration for electronics requires flexible films with high thermal conductivity and electromagnetic interference (EMI) shielding to overcome heat accumulation and electromagnetic radiation pollution. Herein, the hierarchical design and assembly strategy was adopted to fabricate hierarchically multifunctional polyimide composite films, with graphene oxide/expanded graphite (GO/EG) as the top thermally conductive and EMI shielding layer, Fe3O4/polyimide (Fe3O4/PI) as the middle EMI shielding enhancement layer and electrospun PI fibers as the substrate layer for mechanical improvement. PI composite films with 61.0 wt% of GO/EG and 23.8 wt% of Fe3O4/PI exhibits high in-plane thermal conductivity coefficient (95.40 W (m K)−1), excellent EMI shielding effectiveness (34.0 dB), good tensile strength (93.6 MPa) and fast electric-heating response (5 s). The test in the central processing unit verifies PI composite films present broad application prospects in electronics fields.
Highlights:
1 Hierarchically multifunctional polyimide composite films were fabricated by hierarchical design and assembly strategy.
2 Polyimide composite films have three functional layers and integrates high thermal conductivity (95.40 W (m K)−1), excellent EMI shielding (34.0 dB) and good tensile strength (93.6 MPa).
3 Polyimide composite films present broad application prospects in electronics fields according to the test results in the central processing unit.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Shtein, R. Nadiv, M. Buzaglo, O. Regev, Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Appl. Mater. Interfaces 7(42), 23725–23730 (2015). https://doi.org/10.1021/acsami.5b07866
- S.J. Kang, H. Hong, C. Jeong, J.S. Lee, H. Ryu et al., Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands. Nano Res. 14(9), 3253–3259 (2021). https://doi.org/10.1007/s12274-021-3400-5
- X. Qian, J. Zhou, G. Chen, Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021). https://doi.org/10.1038/s41563-021-00918-3
- L. Yu, D. Yang, Q. Wei, L. Zhang, Constructing of strawberry-like core–shell structured Al2O3 nanoparticles for improving thermal conductivity of nitrile butadiene rubber composites. Compos. Sci. Technol. 209, 108786 (2021). https://doi.org/10.1016/j.compscitech.2021.108786
- J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
- F. Jiang, X. Cui, N. Song, L. Shi, P. Ding, Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites. Compos. Commun. 20, 100350 (2020). https://doi.org/10.1016/j.coco.2020.04.016
- H. Yu, Y. Feng, C. Chen, Z. Zhang, Y. Cai et al., Thermally conductive, self-healing, and elastic polyimide@vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon 179, 348–357 (2021). https://doi.org/10.1016/j.carbon.2021.04.055
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- D. Wang, Y. Lin, D. Hu, P. Jiang, X. Huang, Multifunctional 3D-MXene/PDMS nanocomposites for electrical, thermal and triboelectric applications. Compos. Part A Appl. Sci. Manuf. 130, 105754 (2020). https://doi.org/10.1016/j.compositesa.2019.105754
- C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11, 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
- K. Ruan, X. Zhong, X. Shi, J. Dang, J. Gu, Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: a mini-review. Mater. Today Phys. 20, 100456 (2021). https://doi.org/10.1016/j.mtphys.2021.100456
- F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
- W. Yu, C. Liu, S. Fan, Advances of CNT-based systems in thermal management. Nano Res. 14(8), 2471–2490 (2021). https://doi.org/10.1007/s12274-020-3255-1
- N. Kozak, L. Matzui, L. Vovchenko, L. Kosyanchuk, V. Oliynyk et al., Influence of coordination complexes of transition metals on EMI-shielding properties and permeability of polymer blend/carbon nanotube/nickel composites. Compos. Sci. Technol. 200, 108420 (2020). https://doi.org/10.1016/j.compscitech.2020.108420
- L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
- Y.Y. Wang, W.J. Sun, D.X. Yan, K. Dai, Z.M. Li, Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon 176, 118–125 (2021). https://doi.org/10.1016/j.carbon.2020.12.028
- R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
- J. Yang, X. Liao, G. Wang, J. Chen, P. Song et al., Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding. Compos. Sci. Technol. 206, 108663 (2021). https://doi.org/10.1016/j.compscitech.2021.108663
- W. Liu, T. Yao, K. Jia, J. Gu, D. Wang et al., Flexible and thermal conducting multi-walled carbon nanotubes/waterborne polyurethane composite film from in situ polymerization for efficient electromagnetic interference shielding. J. Mater. Sci. Mater. Electron. 32(4), 4393–4403 (2021). https://doi.org/10.1007/s10854-020-05182-w
- W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu et al., Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 5(15), 3748–3756 (2017). https://doi.org/10.1039/c7tc00400a
- K. Ruan, Y. Guo, C. Lu, X. Shi, T. Ma et al., Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal. Research 2021, 8438614 (2021). https://doi.org/10.34133/2021/8438614
- K. Ruan, Y. Guo, J. Gu, Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 54(10), 4934–4944 (2021). https://doi.org/10.1021/acs.macromol.1c00686
- H. Liu, R. Fu, X. Su, B. Wu, H. Wang et al., Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application. Compos. Commun. 23, 100593 (2021). https://doi.org/10.1016/j.coco.2020.100593
- W. Wang, X. Ma, Y. Shao, X. Qi, J. Yang et al., Flexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistance. J. Mater. Chem. A 9(8), 5033–5044 (2021). https://doi.org/10.1039/D0TA11040J
- L. Li, Z. Ma, P. Xu, B. Zhou, Q. Li et al., Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 139, 106134 (2020). https://doi.org/10.1016/j.compositesa.2020.106134
- Q. Wei, D. Yang, L. Yu, L. Zhang, Grafting of epoxidized natural rubber chains with BN platelets to obtain flexible and thermally conductive papers. Compos. Sci. Technol. 212, 108881 (2021). https://doi.org/10.1016/j.compscitech.2021.108881
- Y. Chen, L. Sui, H. Fang, C. Ding, Z. Li et al., Superior mechanical enhancement of epoxy composites reinforced by polyimide nanofibers via a vacuum-assisted hot-pressing. Compos. Sci. Technol. 174, 20–26 (2019). https://doi.org/10.1016/j.compscitech.2019.02.012
- C. Liang, P. Song, H. Qiu, Y. Huangfu, Y. Lu et al., Superior electromagnetic interference shielding performances of epoxy composites by introducing highly aligned reduced graphene oxide films. Compos. Part A Appl. Sci. Manuf. 124, 105512 (2019). https://doi.org/10.1016/j.compositesa.2019.105512
- B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014). https://doi.org/10.1002/adfm.201400079
- Y. Liu, J. Zeng, D. Han, K. Wu, B. Yu et al., Graphene enhanced flexible expanded graphite film with high electric, thermal conductivities and EMI shielding at low content. Carbon 133, 435–445 (2018). https://doi.org/10.1016/j.carbon.2018.03.047
- W.B. Zhang, Z.X. Zhang, J.H. Yang, T. Huang, N. Zhang et al., Largely enhanced thermal conductivity of poly(vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide. Carbon 90, 242–254 (2015). https://doi.org/10.1016/j.carbon.2015.04.040
- L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao et al., Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 1(3), 413–431 (2021). https://doi.org/10.1002/sus2.21
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
- Y. Zhang, K. Ruan, J. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42), 2101951 (2021). https://doi.org/10.1002/smll.202101951
- Y. Liu, B. Qu, X. Wu, Y. Tian, K. Wu et al., Utilizing ammonium persulfate assisted expansion to fabricate flexible expanded graphite films with excellent thermal conductivity by introducing wrinkles. Carbon 153, 565–574 (2019). https://doi.org/10.1016/j.carbon.2019.07.079
- Y. Guo, K. Ruan, J. Gu, Controllable thermal conductivity in composites by constructing thermal conduction networks. Mater. Today Phys. 20, 100449 (2021). https://doi.org/10.1016/j.mtphys.2021.100449
- B. Qi, X. He, G. Zeng, Y. Pan, G. Li et al., Strict molecular sieving over electrodeposited 2D-interspacing-narrowed graphene oxide membranes. Nat. Commun. 8(1), 825 (2017). https://doi.org/10.1038/s41467-017-00990-x
- J.Y. Wang, S.Y. Yang, Y.L. Huang, H.W. Tien, W.K. Chin et al., Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situpolymerization. J. Mater. Chem. 21(35), 13569–13575 (2011). https://doi.org/10.1039/C1JM11766A
- N. Song, D. Jiao, S. Cui, X. Hou, P. Ding et al., Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management. ACS Appl. Mater. Interfaces 9(3), 2924–2932 (2017). https://doi.org/10.1021/acsami.6b11979
- M. Niwa, H. Kawakami, T. Kanamori, T. Shinbo, A. Kaito et al., Gas separation of asymmetric 6FDA polyimide membrane with oriented surface skin layer. Macromolecules 34(26), 9039–9044 (2001). https://doi.org/10.1021/ma0113778
- H.C. Yuan, C.Y. Lee, N.H. Tai, Extremely high thermal conductivity of nanodiamond-polydopamine/thin-layer graphene composite films. Compos. Sci. Technol. 167, 313–322 (2018). https://doi.org/10.1016/j.compscitech.2018.08.010
- Z. Wang, B. Mao, Q. Wang, J. Yu, J. Dai et al., Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness. Small 14(20), 1704332 (2018). https://doi.org/10.1002/smll.201704332
- Z. Wang, P. Li, R. Song, W. Qian, H. Zhou et al., High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors. Sci. Bull. 65(16), 1363–1370 (2020). https://doi.org/10.1016/j.scib.2020.05.002
- H. Fang, H. Guo, Y. Hu, Y. Ren, P.C. Hsu et al., In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Compos. Sci. Technol. 188, 107975 (2020). https://doi.org/10.1016/j.compscitech.2019.107975
- Z. Deng, P. Tang, X. Wu, H.B. Zhang, Z.Z. Yu, Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(17), 20539–20547 (2021). https://doi.org/10.1021/acsami.1c02059
- A. Gupta, V. Choudhary, Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos. Sci. Technol. 71(13), 1563–1568 (2011). https://doi.org/10.1016/j.compscitech.2011.06.014
- P. Cataldi, D.G. Papageorgiou, G. Pinter, A.V. Kretinin, W.W. Sampson et al., Graphene–polyurethane coatings for deformable conductors and electromagnetic interference shielding. Adv. Electron. Mater. 6(9), 2000429 (2020). https://doi.org/10.1002/aelm.202000900
- J. Hong, P. Xu, H. Xia, Z. Xu, Q.Q. Ni, Electromagnetic interference shielding anisotropy enhanced by CFRP laminated structures. Compos. Sci. Technol. 203, 108616 (2021). https://doi.org/10.1016/j.compscitech.2020.108616
- B. Zhao, S. Zeng, X. Li, X. Guo, Z. Bai et al., Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. J. Mater. Chem. C 8(2), 500–509 (2020). https://doi.org/10.1039/C9TC05462F
- Y. Wang, H.K. Peng, T.T. Li, B.C. Shiu, X. Zhang et al., Lightweight, flexible and superhydrophobic conductive composite films based on layer-by-layer self-assembly for high-performance electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 141, 106199 (2021). https://doi.org/10.1016/j.compositesa.2020.106199
- S. Das, S. Sharma, T. Yokozeki, S. Dhakate, Conductive layer-based multifunctional structural composites for electromagnetic interference shielding. Compos. Struct. 261, 113293 (2021). https://doi.org/10.1016/j.compstruct.2020.113293
- K.Y. Chen, S. Gupta, N.H. Tai, Reduced graphene oxide/Fe2O3 hollow microspheres coated sponges for flexible electromagnetic interference shielding composites. Compos. Commun. 23, 100572 (2021). https://doi.org/10.1016/j.coco.2020.100572
- S. Mondal, S. Ganguly, M. Rahaman, A. Aldalbahi, T.K. Chaki et al., A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix. Phys. Chem. Chem. Phys. 18(35), 24591–24599 (2016). https://doi.org/10.1039/C6CP04274K
- Y. Zhan, M. Oliviero, J. Wang, A. Sorrentino, G.G. Buonocore et al., Enhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networks. Nanoscale 11(3), 1011–1020 (2019). https://doi.org/10.1039/C8NR07351A
- Q. Yuchang, W. Qinlong, L. Fa, Z. Wancheng, Z. Dongmei, Graphene nanosheets/BaTiO3 ceramics as highly efficient electromagnetic interference shielding materials in the X-band. J. Mater. Chem. C 4(2), 371–375 (2016). https://doi.org/10.1039/C5TC03035H
- W.L. Song, M.S. Cao, B. Wen, Z.L. Hou, J. Cheng et al., Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: dielectric properties, electromagnetic interference shielding and microwave absorption. Mater. Res. Bull. 47(7), 1747–1754 (2012). https://doi.org/10.1016/j.materresbull.2012.03.045
- J. Jing, Y. Xiong, S. Shi, H. Pei, Y. Chen et al., Facile fabrication of lightweight porous FDM-Printed polyethylene/graphene nanocomposites with enhanced interfacial strength for electromagnetic interference shielding. Compos. Sci. Technol. 207, 108732 (2021). https://doi.org/10.1016/j.compscitech.2021.108732
- T. Zheng, S.M. Sabet, S. Pilla, Polydopamine coating improves electromagnetic interference shielding of delignified wood-derived carbon scaffold. J. Mater. Sci. 56(18), 10915–10925 (2021). https://doi.org/10.1007/s10853-021-06007-9
- R. Kumar, S.R. Dhakate, T. Gupta, P. Saini, B.P. Singh et al., Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes. J. Mater. Chem. A 1(18), 5727–5735 (2013). https://doi.org/10.1039/C3TA10604G
- O. Lozitsky, L. Vovchenko, L. Matzui, V. Oliynyk, V. Zagorodnii, Microwave properties of epoxy composites with mixed filler carbon nanotubes/BaTiO3. Appl. Nanosci. 10(8), 2759–2767 (2020). https://doi.org/10.1007/s13204-020-01402-1
- Z. Ma, S. Kang, J. Ma, L. Shao, A. Wei et al., High-performance and rapid-response electrical heaters based on ultraflexible, heat-resistant, and mechanically strong aramid nanofiber/Ag nanowire nanocomposite papers. ACS Nano 13(7), 7578–7590 (2019). https://doi.org/10.1021/acsnano.9b00434
- L. Zhang, H. Deng, Q. Fu, Recent progress on thermal conductive and electrical insulating polymer composites. Compos. Commun. 8, 74–82 (2018). https://doi.org/10.1016/j.coco.2017.11.004
References
M. Shtein, R. Nadiv, M. Buzaglo, O. Regev, Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Appl. Mater. Interfaces 7(42), 23725–23730 (2015). https://doi.org/10.1021/acsami.5b07866
S.J. Kang, H. Hong, C. Jeong, J.S. Lee, H. Ryu et al., Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands. Nano Res. 14(9), 3253–3259 (2021). https://doi.org/10.1007/s12274-021-3400-5
X. Qian, J. Zhou, G. Chen, Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021). https://doi.org/10.1038/s41563-021-00918-3
L. Yu, D. Yang, Q. Wei, L. Zhang, Constructing of strawberry-like core–shell structured Al2O3 nanoparticles for improving thermal conductivity of nitrile butadiene rubber composites. Compos. Sci. Technol. 209, 108786 (2021). https://doi.org/10.1016/j.compscitech.2021.108786
J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
F. Jiang, X. Cui, N. Song, L. Shi, P. Ding, Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites. Compos. Commun. 20, 100350 (2020). https://doi.org/10.1016/j.coco.2020.04.016
H. Yu, Y. Feng, C. Chen, Z. Zhang, Y. Cai et al., Thermally conductive, self-healing, and elastic polyimide@vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon 179, 348–357 (2021). https://doi.org/10.1016/j.carbon.2021.04.055
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
D. Wang, Y. Lin, D. Hu, P. Jiang, X. Huang, Multifunctional 3D-MXene/PDMS nanocomposites for electrical, thermal and triboelectric applications. Compos. Part A Appl. Sci. Manuf. 130, 105754 (2020). https://doi.org/10.1016/j.compositesa.2019.105754
C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11, 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
K. Ruan, X. Zhong, X. Shi, J. Dang, J. Gu, Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: a mini-review. Mater. Today Phys. 20, 100456 (2021). https://doi.org/10.1016/j.mtphys.2021.100456
F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
W. Yu, C. Liu, S. Fan, Advances of CNT-based systems in thermal management. Nano Res. 14(8), 2471–2490 (2021). https://doi.org/10.1007/s12274-020-3255-1
N. Kozak, L. Matzui, L. Vovchenko, L. Kosyanchuk, V. Oliynyk et al., Influence of coordination complexes of transition metals on EMI-shielding properties and permeability of polymer blend/carbon nanotube/nickel composites. Compos. Sci. Technol. 200, 108420 (2020). https://doi.org/10.1016/j.compscitech.2020.108420
L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
Y.Y. Wang, W.J. Sun, D.X. Yan, K. Dai, Z.M. Li, Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon 176, 118–125 (2021). https://doi.org/10.1016/j.carbon.2020.12.028
R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
J. Yang, X. Liao, G. Wang, J. Chen, P. Song et al., Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding. Compos. Sci. Technol. 206, 108663 (2021). https://doi.org/10.1016/j.compscitech.2021.108663
W. Liu, T. Yao, K. Jia, J. Gu, D. Wang et al., Flexible and thermal conducting multi-walled carbon nanotubes/waterborne polyurethane composite film from in situ polymerization for efficient electromagnetic interference shielding. J. Mater. Sci. Mater. Electron. 32(4), 4393–4403 (2021). https://doi.org/10.1007/s10854-020-05182-w
W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu et al., Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 5(15), 3748–3756 (2017). https://doi.org/10.1039/c7tc00400a
K. Ruan, Y. Guo, C. Lu, X. Shi, T. Ma et al., Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal. Research 2021, 8438614 (2021). https://doi.org/10.34133/2021/8438614
K. Ruan, Y. Guo, J. Gu, Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 54(10), 4934–4944 (2021). https://doi.org/10.1021/acs.macromol.1c00686
H. Liu, R. Fu, X. Su, B. Wu, H. Wang et al., Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application. Compos. Commun. 23, 100593 (2021). https://doi.org/10.1016/j.coco.2020.100593
W. Wang, X. Ma, Y. Shao, X. Qi, J. Yang et al., Flexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistance. J. Mater. Chem. A 9(8), 5033–5044 (2021). https://doi.org/10.1039/D0TA11040J
L. Li, Z. Ma, P. Xu, B. Zhou, Q. Li et al., Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 139, 106134 (2020). https://doi.org/10.1016/j.compositesa.2020.106134
Q. Wei, D. Yang, L. Yu, L. Zhang, Grafting of epoxidized natural rubber chains with BN platelets to obtain flexible and thermally conductive papers. Compos. Sci. Technol. 212, 108881 (2021). https://doi.org/10.1016/j.compscitech.2021.108881
Y. Chen, L. Sui, H. Fang, C. Ding, Z. Li et al., Superior mechanical enhancement of epoxy composites reinforced by polyimide nanofibers via a vacuum-assisted hot-pressing. Compos. Sci. Technol. 174, 20–26 (2019). https://doi.org/10.1016/j.compscitech.2019.02.012
C. Liang, P. Song, H. Qiu, Y. Huangfu, Y. Lu et al., Superior electromagnetic interference shielding performances of epoxy composites by introducing highly aligned reduced graphene oxide films. Compos. Part A Appl. Sci. Manuf. 124, 105512 (2019). https://doi.org/10.1016/j.compositesa.2019.105512
B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014). https://doi.org/10.1002/adfm.201400079
Y. Liu, J. Zeng, D. Han, K. Wu, B. Yu et al., Graphene enhanced flexible expanded graphite film with high electric, thermal conductivities and EMI shielding at low content. Carbon 133, 435–445 (2018). https://doi.org/10.1016/j.carbon.2018.03.047
W.B. Zhang, Z.X. Zhang, J.H. Yang, T. Huang, N. Zhang et al., Largely enhanced thermal conductivity of poly(vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide. Carbon 90, 242–254 (2015). https://doi.org/10.1016/j.carbon.2015.04.040
L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao et al., Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 1(3), 413–431 (2021). https://doi.org/10.1002/sus2.21
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
Y. Zhang, K. Ruan, J. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42), 2101951 (2021). https://doi.org/10.1002/smll.202101951
Y. Liu, B. Qu, X. Wu, Y. Tian, K. Wu et al., Utilizing ammonium persulfate assisted expansion to fabricate flexible expanded graphite films with excellent thermal conductivity by introducing wrinkles. Carbon 153, 565–574 (2019). https://doi.org/10.1016/j.carbon.2019.07.079
Y. Guo, K. Ruan, J. Gu, Controllable thermal conductivity in composites by constructing thermal conduction networks. Mater. Today Phys. 20, 100449 (2021). https://doi.org/10.1016/j.mtphys.2021.100449
B. Qi, X. He, G. Zeng, Y. Pan, G. Li et al., Strict molecular sieving over electrodeposited 2D-interspacing-narrowed graphene oxide membranes. Nat. Commun. 8(1), 825 (2017). https://doi.org/10.1038/s41467-017-00990-x
J.Y. Wang, S.Y. Yang, Y.L. Huang, H.W. Tien, W.K. Chin et al., Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situpolymerization. J. Mater. Chem. 21(35), 13569–13575 (2011). https://doi.org/10.1039/C1JM11766A
N. Song, D. Jiao, S. Cui, X. Hou, P. Ding et al., Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management. ACS Appl. Mater. Interfaces 9(3), 2924–2932 (2017). https://doi.org/10.1021/acsami.6b11979
M. Niwa, H. Kawakami, T. Kanamori, T. Shinbo, A. Kaito et al., Gas separation of asymmetric 6FDA polyimide membrane with oriented surface skin layer. Macromolecules 34(26), 9039–9044 (2001). https://doi.org/10.1021/ma0113778
H.C. Yuan, C.Y. Lee, N.H. Tai, Extremely high thermal conductivity of nanodiamond-polydopamine/thin-layer graphene composite films. Compos. Sci. Technol. 167, 313–322 (2018). https://doi.org/10.1016/j.compscitech.2018.08.010
Z. Wang, B. Mao, Q. Wang, J. Yu, J. Dai et al., Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness. Small 14(20), 1704332 (2018). https://doi.org/10.1002/smll.201704332
Z. Wang, P. Li, R. Song, W. Qian, H. Zhou et al., High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors. Sci. Bull. 65(16), 1363–1370 (2020). https://doi.org/10.1016/j.scib.2020.05.002
H. Fang, H. Guo, Y. Hu, Y. Ren, P.C. Hsu et al., In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Compos. Sci. Technol. 188, 107975 (2020). https://doi.org/10.1016/j.compscitech.2019.107975
Z. Deng, P. Tang, X. Wu, H.B. Zhang, Z.Z. Yu, Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(17), 20539–20547 (2021). https://doi.org/10.1021/acsami.1c02059
A. Gupta, V. Choudhary, Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos. Sci. Technol. 71(13), 1563–1568 (2011). https://doi.org/10.1016/j.compscitech.2011.06.014
P. Cataldi, D.G. Papageorgiou, G. Pinter, A.V. Kretinin, W.W. Sampson et al., Graphene–polyurethane coatings for deformable conductors and electromagnetic interference shielding. Adv. Electron. Mater. 6(9), 2000429 (2020). https://doi.org/10.1002/aelm.202000900
J. Hong, P. Xu, H. Xia, Z. Xu, Q.Q. Ni, Electromagnetic interference shielding anisotropy enhanced by CFRP laminated structures. Compos. Sci. Technol. 203, 108616 (2021). https://doi.org/10.1016/j.compscitech.2020.108616
B. Zhao, S. Zeng, X. Li, X. Guo, Z. Bai et al., Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. J. Mater. Chem. C 8(2), 500–509 (2020). https://doi.org/10.1039/C9TC05462F
Y. Wang, H.K. Peng, T.T. Li, B.C. Shiu, X. Zhang et al., Lightweight, flexible and superhydrophobic conductive composite films based on layer-by-layer self-assembly for high-performance electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 141, 106199 (2021). https://doi.org/10.1016/j.compositesa.2020.106199
S. Das, S. Sharma, T. Yokozeki, S. Dhakate, Conductive layer-based multifunctional structural composites for electromagnetic interference shielding. Compos. Struct. 261, 113293 (2021). https://doi.org/10.1016/j.compstruct.2020.113293
K.Y. Chen, S. Gupta, N.H. Tai, Reduced graphene oxide/Fe2O3 hollow microspheres coated sponges for flexible electromagnetic interference shielding composites. Compos. Commun. 23, 100572 (2021). https://doi.org/10.1016/j.coco.2020.100572
S. Mondal, S. Ganguly, M. Rahaman, A. Aldalbahi, T.K. Chaki et al., A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix. Phys. Chem. Chem. Phys. 18(35), 24591–24599 (2016). https://doi.org/10.1039/C6CP04274K
Y. Zhan, M. Oliviero, J. Wang, A. Sorrentino, G.G. Buonocore et al., Enhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networks. Nanoscale 11(3), 1011–1020 (2019). https://doi.org/10.1039/C8NR07351A
Q. Yuchang, W. Qinlong, L. Fa, Z. Wancheng, Z. Dongmei, Graphene nanosheets/BaTiO3 ceramics as highly efficient electromagnetic interference shielding materials in the X-band. J. Mater. Chem. C 4(2), 371–375 (2016). https://doi.org/10.1039/C5TC03035H
W.L. Song, M.S. Cao, B. Wen, Z.L. Hou, J. Cheng et al., Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: dielectric properties, electromagnetic interference shielding and microwave absorption. Mater. Res. Bull. 47(7), 1747–1754 (2012). https://doi.org/10.1016/j.materresbull.2012.03.045
J. Jing, Y. Xiong, S. Shi, H. Pei, Y. Chen et al., Facile fabrication of lightweight porous FDM-Printed polyethylene/graphene nanocomposites with enhanced interfacial strength for electromagnetic interference shielding. Compos. Sci. Technol. 207, 108732 (2021). https://doi.org/10.1016/j.compscitech.2021.108732
T. Zheng, S.M. Sabet, S. Pilla, Polydopamine coating improves electromagnetic interference shielding of delignified wood-derived carbon scaffold. J. Mater. Sci. 56(18), 10915–10925 (2021). https://doi.org/10.1007/s10853-021-06007-9
R. Kumar, S.R. Dhakate, T. Gupta, P. Saini, B.P. Singh et al., Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes. J. Mater. Chem. A 1(18), 5727–5735 (2013). https://doi.org/10.1039/C3TA10604G
O. Lozitsky, L. Vovchenko, L. Matzui, V. Oliynyk, V. Zagorodnii, Microwave properties of epoxy composites with mixed filler carbon nanotubes/BaTiO3. Appl. Nanosci. 10(8), 2759–2767 (2020). https://doi.org/10.1007/s13204-020-01402-1
Z. Ma, S. Kang, J. Ma, L. Shao, A. Wei et al., High-performance and rapid-response electrical heaters based on ultraflexible, heat-resistant, and mechanically strong aramid nanofiber/Ag nanowire nanocomposite papers. ACS Nano 13(7), 7578–7590 (2019). https://doi.org/10.1021/acsnano.9b00434
L. Zhang, H. Deng, Q. Fu, Recent progress on thermal conductive and electrical insulating polymer composites. Compos. Commun. 8, 74–82 (2018). https://doi.org/10.1016/j.coco.2017.11.004