High Capacity and Fast Kinetics of Potassium-Ion Batteries Boosted by Nitrogen-Doped Mesoporous Carbon Spheres
Corresponding Author: Hongyan Li
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 174
Abstract
In view of rich potassium resources and their working potential, potassium-ion batteries (PIBs) are deemed as next generation rechargeable batteries. Owing to carbon materials with the preponderance of durability and economic price, they are widely employed in PIBs anode materials. Currently, porosity design and heteroatom doping as efficacious improvement strategies have been applied to the structural design of carbon materials to improve their electrochemical performances. Herein, nitrogen-doped mesoporous carbon spheres (MCS) are synthesized by a facile hard template method. The MCS demonstrate larger interlayer spacing in a short range, high specific surface area, abundant mesoporous structures and active sites, enhancing K-ion migration and diffusion. Furthermore, we screen out the pyrolysis temperature of 900 °C and the pore diameter of 7 nm as optimized conditions for MCS to improve performances. In detail, the optimized MCS-7-900 electrode achieves high rate capacity (107.9 mAh g−1 at 5000 mA g−1) and stably brings about 3600 cycles at 1000 mA g−1. According to electrochemical kinetic analysis, the capacitive-controlled effects play dominant roles in total storage mechanism. Additionally, the full-cell equipped MCS-7-900 as anode is successfully constructed to evaluate the practicality of MCS.
Highlights:
1 Nitrogen-doped mesoporous carbon spheres (MCS) are prepared as anode materials of potassium-ion batteries by a facile method.
2 The MCS have larger interlayer spacing, high specific surface area, abundant mesoporous structures and nitrogen-doped active sites, achieving high-rate and long-cycle performances as anodes.
3 The capacitive-controlled effects play dominant role in total storage mechanism and the MCS anodes are successfully applied to K-ion full-cells achieving high rate capacities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Yan, W.-P. Wang, Y.-X. Yin, L.-J. Wan, Y.-G. Guo, Interfacial design for lithium-sulfur batteries: from liquid to solid. EnergyChem 1(1), 100002 (2019). https://doi.org/10.1016/j.enchem.2019.100002
- R. Zhu, H. Duan, Z. Zhao, H. Pang, Recent progress of dimensionally designed electrode nanomaterials in aqueous electrochemical energy storage. J. Mater. Chem. A 9(15), 9535–9572 (2021). https://doi.org/10.1039/D1TA00204J
- Y. Ding, Y. Chen, N. Xu, X. Lian, L. Li et al., Facile Synthesis of FePS3 nanosheets@MXene composite as a high-performance anode material for sodium storage. Nano-Micro Lett. 12(1), 54 (2020). https://doi.org/10.1007/s40820-020-0381-y
- Y. Sun, L. Jiao, D. Han, F. Wang, P. Zhang et al., Hierarchical architecture of polyaniline nanoneedle arrays on electrochemically exfoliated graphene for supercapacitors and sodium batteries cathode. Mater. Des. 188, 108440 (2020). https://doi.org/10.1016/j.matdes.2019.108440
- J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13(1), 12 (2020). https://doi.org/10.1007/s40820-020-00541-y
- X. Wu, D.P. Leonard, X. Ji, Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem. Mater. 29(12), 5031–5042 (2017). https://doi.org/10.1021/acs.chemmater.7b01764
- Y. Wu, Y. Sun, Y. Tong, X. Liu, J. Zheng et al., Recent advances in potassium-ion hybrid capacitors: electrode materials, storage mechanisms and performance evaluation. Energy Storage Mater. 41, 108–132 (2021). https://doi.org/10.1016/j.ensm.2021.05.045
- X. Liu, Y. Sun, Y. Tong, X. Wang, J. Zheng et al., Exploration in materials, electrolytes and performance towards metal ion (Li, Na, K, Zn and Mg)-based hybrid capacitors: a review. Nano Energy 86, 106070 (2021). https://doi.org/10.1016/j.nanoen.2021.106070
- R. Rajagopalan, Y. Tang, X. Ji, C. Jia, H. Wang, Advancements and challenges in potassium ion batteries: a comprehensive review. Adv. Funct. Mater. 30(12), 1909486 (2020). https://doi.org/10.1002/adfm.201909486
- X. Chang, X. Zhou, X. Ou, C.-S. Lee, J. Zhou et al., Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 9(47), 1902672 (2019). https://doi.org/10.1002/aenm.201902672
- Y. Wu, Y. Sun, J. Zheng, J. Rong, H. Li et al., MXenes: advanced materials in potassium ion batteries. Chem. Eng. J. 404, 126565 (2021). https://doi.org/10.1016/j.cej.2020.126565
- J. Ke, F. He, H. Wu, S. Lyu, J. Liu et al., Nanocarbon-enhanced 2D photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. 13(1), 24 (2020). https://doi.org/10.1007/s40820-020-00545-8
- Y. Wu, Y. Sun, J. Zheng, J. Rong, H. Li et al., Exploring MXene-based materials for next-generation rechargeable batteries. J. Phys. Energy 3(3), 032009 (2021). https://doi.org/10.1088/2515-7655/abf14d
- J. Zheng, Y. Sun, Y. Wu, J. Rong, Z. Wang et al., Ultralong cycle life and high rate potassium ion batteries enabled by multi-level porous carbon. J. Power Sources 492, 229614 (2021). https://doi.org/10.1016/j.jpowsour.2021.229614
- Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- Y. An, H. Fei, G. Zeng, L. Ci, B. Xi et al., Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte. J. Power Sources 378, 66–72 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.033
- J. Chen, Y. Cheng, Q. Zhang, C. Luo, H.-Y. Li et al., Designing and understanding the superior potassium storage performance of nitrogen/phosphorus co-doped hollow porous bowl-like carbon anodes. Adv. Funct. Mater. 31(1), 2007158 (2021). https://doi.org/10.1002/adfm.202007158
- Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016). https://doi.org/10.1002/aenm.201501874
- M. Chen, W. Wang, X. Liang, S. Gong, J. Liu et al., Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8(19), 1800171 (2018). https://doi.org/10.1002/aenm.201800171
- Y. Li, J. Li, J. Huang, J. Chen, Y. Kong et al., Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew. Chem. In. Ed. 60(16), 9078–9085 (2021). https://doi.org/10.1002/anie.202100526
- M. Du, Q. Li, H. Pang, Oxalate-derived porous prismatic nickel/nickel oxide nanocomposites toward lithium-ion battery. J. Colloid Interface Sci. 580, 614–622 (2020). https://doi.org/10.1016/j.jcis.2020.07.009
- X. Wang, Y. Wang, X. Sang, W. Zheng, S. Zhang et al., Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem. In. Ed. 60(8), 4192–4198 (2021). https://doi.org/10.1002/anie.202013427
- Y. Sun, J. Zheng, Y. Yang, J. Zhao, J. Rong et al., Design advanced porous polyaniline-PEDOT: PSS composite as high performance cathode for sodium ion batteries. Compos. Commun. 24, 100674 (2021). https://doi.org/10.1016/j.coco.2021.100674
- D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 8(34), 1802386 (2018). https://doi.org/10.1002/aenm.201802386
- D. Xie, D. Yu, Y. Hao, S. Han, G. Li et al., Dual-active sites engineering of N-doped hollow carbon nanocubes confining bimetal alloys as bifunctional oxygen electrocatalysts for flexible metal-air batteries. Small 17(10), 2007239 (2021). https://doi.org/10.1002/smll.202007239
- S. Han, Y. Hao, Z. Guo, D. Yu, H. Huang et al., Self-supported N-doped NiSe2 hierarchical porous nanoflake arrays for efficient oxygen electrocatalysis in flexible zinc-air batteries. Chem. Eng. J. 401, 126088 (2020). https://doi.org/10.1016/j.cej.2020.126088
- W. Zheng, J. Yang, H. Chen, Y. Hou, Q. Wang et al., Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 30(4), 1907658 (2020). https://doi.org/10.1002/adfm.201907658
- W. Zheng, Y. Wang, L. Shuai, X. Wang, F. He et al., Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants. Adv. Funct. Mater. 31(15), 2008146 (2021). https://doi.org/10.1002/adfm.202008146
- X. Guo, N. Li, Y. Cheng, G. Wang, Y. Zhang et al., General synthesis of nitrogen-doped metal (M = Co2+, Mn2+, Ni2+, or Cu2+) phosphates. Chem. Eng. J. 411, 128544 (2021). https://doi.org/10.1016/j.cej.2021.128544
- X. Wang, X. Sang, C.-L. Dong, S. Yao, L. Shuai et al., Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites**. Angew. Chem. In. Ed. 60(21), 11959–11965 (2021). https://doi.org/10.1002/anie.202100011
- G. Wang, Y. Sun, D. Li, H.-W. Liang, R. Dong et al., Controlled synthesis of N-doped carbon nanospheres with tailored mesopores through self-assembly of colloidal silica. Angew. Chem. In. Ed. 54(50), 15191–15196 (2015). https://doi.org/10.1002/anie.201507735
- K. Zhang, Q. He, F. Xiong, J. Zhou, Y. Zhao et al., Active sites enriched hard carbon porous nanobelts for stable and high-capacity potassium-ion storage. Nano Energy 77, 105018 (2020). https://doi.org/10.1016/j.nanoen.2020.105018
- Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
- H. Li, Z. Cheng, A. Natan, A.M. Hafez, D. Cao et al., Dual-function, tunable, nitrogen-doped carbon for high-performance Li metal-sulfur full-cell. Small 15(5), 1804609 (2019). https://doi.org/10.1002/smll.201804609
- J. Li, Y. Li, X. Ma, K. Zhang, J. Hu et al., A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries. Chem. Eng. J. 384, 123328 (2020). https://doi.org/10.1016/j.cej.2019.123328
- W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang et al., Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 12(5), 1605–1612 (2019). https://doi.org/10.1039/C9EE00536F
- J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi et al., Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
- Y. Wang, Z. Wang, Y. Chen, H. Zhang, M. Yousaf et al., Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode. Adv. Mater. 30(32), 1802074 (2018). https://doi.org/10.1002/adma.201802074
- D. Qiu, J. Guan, M. Li, C. Kang, J. Wei et al., Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 29(32), 1903496 (2019). https://doi.org/10.1002/adfm.201903496
- C. Chen, Z. Wang, B. Zhang, L. Miao, J. Cai et al., Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 8, 161–168 (2017). https://doi.org/10.1016/j.ensm.2017.05.010
- F. Xie, L. Zhang, D. Su, M. Jaroniec, S.-Z. Qiao, Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance. Adv. Mater. 29(24), 1700989 (2017). https://doi.org/10.1002/adma.201700989
- T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013). https://doi.org/10.1038/nmat3601
- H. Li, Z. Cheng, Q. Zhang, A. Natan, Y. Yang et al., Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 18(11), 7407–7413 (2018). https://doi.org/10.1021/acs.nanolett.8b03845
- G. Wang, M. Yu, J. Wang, D. Li, D. Tan et al., Self-activating, capacitive anion intercalation enables high-power graphite cathodes. Adv. Mater. 30(20), 1800533 (2018). https://doi.org/10.1002/adma.201800533
- K. Lee, S. Shin, T. Degen, W. Lee, Y.S. Yoon, In situ analysis of SnO2/Fe2O3/RGO to unravel the structural collapse mechanism and enhanced electrical conductivity for lithium-ion batteries. Nano Energy 32, 397–407 (2017). https://doi.org/10.1016/j.nanoen.2016.12.058
- Q. Li, L. Li, P. Wu, N. Xu, L. Wang et al., Silica restricting the sulfur volatilization of nickel sulfide for high-performance lithium-Ion batteries. Adv. Energy Mater. 9(43), 1901153 (2019). https://doi.org/10.1002/aenm.201901153
- P. Li, J.-Y. Hwang, S.-M. Park, Y.-K. Sun, Superior lithium/potassium storage capability of nitrogen-rich porous carbon nanosheets derived from petroleum coke. J. Mater. Chem. A 6(26), 12551–12558 (2018). https://doi.org/10.1039/C8TA03340D
- Q. Wang, X. Zhu, Y. Liu, Y. Fang, X. Zhou et al., Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon 127, 658–666 (2018). https://doi.org/10.1016/j.carbon.2017.11.054
- X. Hu, G. Zhong, J. Li, Y. Liu, J. Yuan et al., Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 13(8), 2431–2440 (2020). https://doi.org/10.1039/D0EE00477D
- Y. Zhao, Z. Sun, Y. Yi, C. Lu, M. Wang et al., Precise synthesis of N-doped graphitic carbon via chemical vapor deposition to unravel the dopant functions on potassium storage toward practical K-ion batteries. Nano Res. 14(5), 1413–1420 (2021). https://doi.org/10.1007/s12274-020-3191-0
- L.-J. Zhou, Z.F. Hou, L.-M. Wu, First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C 116(41), 21780–21787 (2012). https://doi.org/10.1021/jp304861d
- Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan et al., Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 29(35), 1702268 (2017). https://doi.org/10.1002/adma.201702268
- X. Liu, G.A. Elia, B. Qin, H. Zhang, P. Ruschhaupt et al., High-power Na-ion and K-ion hybrid capacitors exploiting cointercalation in graphite negative electrodes. ACS Energy Lett. 4(11), 2675–2682 (2019). https://doi.org/10.1021/acsenergylett.9b01675
- S. Zhao, L. Dong, B. Sun, K. Yan, J. Zhang et al., K2Ti2O5@C microspheres with enhanced K+ intercalation pseudocapacitance ensuring fast potassium storage and long-term cycling stability. Small 16(4), 1906131 (2020). https://doi.org/10.1002/smll.201906131
- F. Huang, W. Liu, Q. Wang, F. Wang, Q. Yao et al., Natural N/O-doped hard carbon for high performance K-ion hybrid capacitors. Electrochim. Acta 354, 136701 (2020). https://doi.org/10.1016/j.electacta.2020.136701
- S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji et al., Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces 10(18), 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
- H.V. Ramasamy, B. Senthilkumar, P. Barpanda, Y.-S. Lee, Superior potassium-ion hybrid capacitor based on novel P3-type layered K0.45Mn0.5Co0.5O2 as high capacity cathode. Chem. Eng. J. 368, 235–243 (2019). https://doi.org/10.1016/j.cej.2019.02.172
- K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao et al., High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ. Sci. 10(2), 552–557 (2017). https://doi.org/10.1039/C6EE03185D
References
M. Yan, W.-P. Wang, Y.-X. Yin, L.-J. Wan, Y.-G. Guo, Interfacial design for lithium-sulfur batteries: from liquid to solid. EnergyChem 1(1), 100002 (2019). https://doi.org/10.1016/j.enchem.2019.100002
R. Zhu, H. Duan, Z. Zhao, H. Pang, Recent progress of dimensionally designed electrode nanomaterials in aqueous electrochemical energy storage. J. Mater. Chem. A 9(15), 9535–9572 (2021). https://doi.org/10.1039/D1TA00204J
Y. Ding, Y. Chen, N. Xu, X. Lian, L. Li et al., Facile Synthesis of FePS3 nanosheets@MXene composite as a high-performance anode material for sodium storage. Nano-Micro Lett. 12(1), 54 (2020). https://doi.org/10.1007/s40820-020-0381-y
Y. Sun, L. Jiao, D. Han, F. Wang, P. Zhang et al., Hierarchical architecture of polyaniline nanoneedle arrays on electrochemically exfoliated graphene for supercapacitors and sodium batteries cathode. Mater. Des. 188, 108440 (2020). https://doi.org/10.1016/j.matdes.2019.108440
J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13(1), 12 (2020). https://doi.org/10.1007/s40820-020-00541-y
X. Wu, D.P. Leonard, X. Ji, Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem. Mater. 29(12), 5031–5042 (2017). https://doi.org/10.1021/acs.chemmater.7b01764
Y. Wu, Y. Sun, Y. Tong, X. Liu, J. Zheng et al., Recent advances in potassium-ion hybrid capacitors: electrode materials, storage mechanisms and performance evaluation. Energy Storage Mater. 41, 108–132 (2021). https://doi.org/10.1016/j.ensm.2021.05.045
X. Liu, Y. Sun, Y. Tong, X. Wang, J. Zheng et al., Exploration in materials, electrolytes and performance towards metal ion (Li, Na, K, Zn and Mg)-based hybrid capacitors: a review. Nano Energy 86, 106070 (2021). https://doi.org/10.1016/j.nanoen.2021.106070
R. Rajagopalan, Y. Tang, X. Ji, C. Jia, H. Wang, Advancements and challenges in potassium ion batteries: a comprehensive review. Adv. Funct. Mater. 30(12), 1909486 (2020). https://doi.org/10.1002/adfm.201909486
X. Chang, X. Zhou, X. Ou, C.-S. Lee, J. Zhou et al., Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 9(47), 1902672 (2019). https://doi.org/10.1002/aenm.201902672
Y. Wu, Y. Sun, J. Zheng, J. Rong, H. Li et al., MXenes: advanced materials in potassium ion batteries. Chem. Eng. J. 404, 126565 (2021). https://doi.org/10.1016/j.cej.2020.126565
J. Ke, F. He, H. Wu, S. Lyu, J. Liu et al., Nanocarbon-enhanced 2D photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. 13(1), 24 (2020). https://doi.org/10.1007/s40820-020-00545-8
Y. Wu, Y. Sun, J. Zheng, J. Rong, H. Li et al., Exploring MXene-based materials for next-generation rechargeable batteries. J. Phys. Energy 3(3), 032009 (2021). https://doi.org/10.1088/2515-7655/abf14d
J. Zheng, Y. Sun, Y. Wu, J. Rong, Z. Wang et al., Ultralong cycle life and high rate potassium ion batteries enabled by multi-level porous carbon. J. Power Sources 492, 229614 (2021). https://doi.org/10.1016/j.jpowsour.2021.229614
Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
Y. An, H. Fei, G. Zeng, L. Ci, B. Xi et al., Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte. J. Power Sources 378, 66–72 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.033
J. Chen, Y. Cheng, Q. Zhang, C. Luo, H.-Y. Li et al., Designing and understanding the superior potassium storage performance of nitrogen/phosphorus co-doped hollow porous bowl-like carbon anodes. Adv. Funct. Mater. 31(1), 2007158 (2021). https://doi.org/10.1002/adfm.202007158
Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016). https://doi.org/10.1002/aenm.201501874
M. Chen, W. Wang, X. Liang, S. Gong, J. Liu et al., Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8(19), 1800171 (2018). https://doi.org/10.1002/aenm.201800171
Y. Li, J. Li, J. Huang, J. Chen, Y. Kong et al., Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew. Chem. In. Ed. 60(16), 9078–9085 (2021). https://doi.org/10.1002/anie.202100526
M. Du, Q. Li, H. Pang, Oxalate-derived porous prismatic nickel/nickel oxide nanocomposites toward lithium-ion battery. J. Colloid Interface Sci. 580, 614–622 (2020). https://doi.org/10.1016/j.jcis.2020.07.009
X. Wang, Y. Wang, X. Sang, W. Zheng, S. Zhang et al., Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem. In. Ed. 60(8), 4192–4198 (2021). https://doi.org/10.1002/anie.202013427
Y. Sun, J. Zheng, Y. Yang, J. Zhao, J. Rong et al., Design advanced porous polyaniline-PEDOT: PSS composite as high performance cathode for sodium ion batteries. Compos. Commun. 24, 100674 (2021). https://doi.org/10.1016/j.coco.2021.100674
D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 8(34), 1802386 (2018). https://doi.org/10.1002/aenm.201802386
D. Xie, D. Yu, Y. Hao, S. Han, G. Li et al., Dual-active sites engineering of N-doped hollow carbon nanocubes confining bimetal alloys as bifunctional oxygen electrocatalysts for flexible metal-air batteries. Small 17(10), 2007239 (2021). https://doi.org/10.1002/smll.202007239
S. Han, Y. Hao, Z. Guo, D. Yu, H. Huang et al., Self-supported N-doped NiSe2 hierarchical porous nanoflake arrays for efficient oxygen electrocatalysis in flexible zinc-air batteries. Chem. Eng. J. 401, 126088 (2020). https://doi.org/10.1016/j.cej.2020.126088
W. Zheng, J. Yang, H. Chen, Y. Hou, Q. Wang et al., Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 30(4), 1907658 (2020). https://doi.org/10.1002/adfm.201907658
W. Zheng, Y. Wang, L. Shuai, X. Wang, F. He et al., Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants. Adv. Funct. Mater. 31(15), 2008146 (2021). https://doi.org/10.1002/adfm.202008146
X. Guo, N. Li, Y. Cheng, G. Wang, Y. Zhang et al., General synthesis of nitrogen-doped metal (M = Co2+, Mn2+, Ni2+, or Cu2+) phosphates. Chem. Eng. J. 411, 128544 (2021). https://doi.org/10.1016/j.cej.2021.128544
X. Wang, X. Sang, C.-L. Dong, S. Yao, L. Shuai et al., Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites**. Angew. Chem. In. Ed. 60(21), 11959–11965 (2021). https://doi.org/10.1002/anie.202100011
G. Wang, Y. Sun, D. Li, H.-W. Liang, R. Dong et al., Controlled synthesis of N-doped carbon nanospheres with tailored mesopores through self-assembly of colloidal silica. Angew. Chem. In. Ed. 54(50), 15191–15196 (2015). https://doi.org/10.1002/anie.201507735
K. Zhang, Q. He, F. Xiong, J. Zhou, Y. Zhao et al., Active sites enriched hard carbon porous nanobelts for stable and high-capacity potassium-ion storage. Nano Energy 77, 105018 (2020). https://doi.org/10.1016/j.nanoen.2020.105018
Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
H. Li, Z. Cheng, A. Natan, A.M. Hafez, D. Cao et al., Dual-function, tunable, nitrogen-doped carbon for high-performance Li metal-sulfur full-cell. Small 15(5), 1804609 (2019). https://doi.org/10.1002/smll.201804609
J. Li, Y. Li, X. Ma, K. Zhang, J. Hu et al., A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries. Chem. Eng. J. 384, 123328 (2020). https://doi.org/10.1016/j.cej.2019.123328
W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang et al., Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 12(5), 1605–1612 (2019). https://doi.org/10.1039/C9EE00536F
J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi et al., Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
Y. Wang, Z. Wang, Y. Chen, H. Zhang, M. Yousaf et al., Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode. Adv. Mater. 30(32), 1802074 (2018). https://doi.org/10.1002/adma.201802074
D. Qiu, J. Guan, M. Li, C. Kang, J. Wei et al., Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 29(32), 1903496 (2019). https://doi.org/10.1002/adfm.201903496
C. Chen, Z. Wang, B. Zhang, L. Miao, J. Cai et al., Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 8, 161–168 (2017). https://doi.org/10.1016/j.ensm.2017.05.010
F. Xie, L. Zhang, D. Su, M. Jaroniec, S.-Z. Qiao, Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance. Adv. Mater. 29(24), 1700989 (2017). https://doi.org/10.1002/adma.201700989
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013). https://doi.org/10.1038/nmat3601
H. Li, Z. Cheng, Q. Zhang, A. Natan, Y. Yang et al., Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 18(11), 7407–7413 (2018). https://doi.org/10.1021/acs.nanolett.8b03845
G. Wang, M. Yu, J. Wang, D. Li, D. Tan et al., Self-activating, capacitive anion intercalation enables high-power graphite cathodes. Adv. Mater. 30(20), 1800533 (2018). https://doi.org/10.1002/adma.201800533
K. Lee, S. Shin, T. Degen, W. Lee, Y.S. Yoon, In situ analysis of SnO2/Fe2O3/RGO to unravel the structural collapse mechanism and enhanced electrical conductivity for lithium-ion batteries. Nano Energy 32, 397–407 (2017). https://doi.org/10.1016/j.nanoen.2016.12.058
Q. Li, L. Li, P. Wu, N. Xu, L. Wang et al., Silica restricting the sulfur volatilization of nickel sulfide for high-performance lithium-Ion batteries. Adv. Energy Mater. 9(43), 1901153 (2019). https://doi.org/10.1002/aenm.201901153
P. Li, J.-Y. Hwang, S.-M. Park, Y.-K. Sun, Superior lithium/potassium storage capability of nitrogen-rich porous carbon nanosheets derived from petroleum coke. J. Mater. Chem. A 6(26), 12551–12558 (2018). https://doi.org/10.1039/C8TA03340D
Q. Wang, X. Zhu, Y. Liu, Y. Fang, X. Zhou et al., Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon 127, 658–666 (2018). https://doi.org/10.1016/j.carbon.2017.11.054
X. Hu, G. Zhong, J. Li, Y. Liu, J. Yuan et al., Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 13(8), 2431–2440 (2020). https://doi.org/10.1039/D0EE00477D
Y. Zhao, Z. Sun, Y. Yi, C. Lu, M. Wang et al., Precise synthesis of N-doped graphitic carbon via chemical vapor deposition to unravel the dopant functions on potassium storage toward practical K-ion batteries. Nano Res. 14(5), 1413–1420 (2021). https://doi.org/10.1007/s12274-020-3191-0
L.-J. Zhou, Z.F. Hou, L.-M. Wu, First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C 116(41), 21780–21787 (2012). https://doi.org/10.1021/jp304861d
Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan et al., Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 29(35), 1702268 (2017). https://doi.org/10.1002/adma.201702268
X. Liu, G.A. Elia, B. Qin, H. Zhang, P. Ruschhaupt et al., High-power Na-ion and K-ion hybrid capacitors exploiting cointercalation in graphite negative electrodes. ACS Energy Lett. 4(11), 2675–2682 (2019). https://doi.org/10.1021/acsenergylett.9b01675
S. Zhao, L. Dong, B. Sun, K. Yan, J. Zhang et al., K2Ti2O5@C microspheres with enhanced K+ intercalation pseudocapacitance ensuring fast potassium storage and long-term cycling stability. Small 16(4), 1906131 (2020). https://doi.org/10.1002/smll.201906131
F. Huang, W. Liu, Q. Wang, F. Wang, Q. Yao et al., Natural N/O-doped hard carbon for high performance K-ion hybrid capacitors. Electrochim. Acta 354, 136701 (2020). https://doi.org/10.1016/j.electacta.2020.136701
S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji et al., Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces 10(18), 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
H.V. Ramasamy, B. Senthilkumar, P. Barpanda, Y.-S. Lee, Superior potassium-ion hybrid capacitor based on novel P3-type layered K0.45Mn0.5Co0.5O2 as high capacity cathode. Chem. Eng. J. 368, 235–243 (2019). https://doi.org/10.1016/j.cej.2019.02.172
K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao et al., High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ. Sci. 10(2), 552–557 (2017). https://doi.org/10.1039/C6EE03185D