Advanced Anode Materials of Potassium Ion Batteries: from Zero Dimension to Three Dimensions
Corresponding Author: Hongyan Li
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 12
Abstract
Potassium ion batteries (PIBs) with the prominent advantages of sufficient reserves and economical cost are attractive candidates of new rechargeable batteries for large-grid electrochemical energy storage systems (EESs). However, there are still some obstacles like large size of K+ to commercial PIBs applications. Therefore, rational structural design based on appropriate materials is essential to obtain practical PIBs anode with K+ accommodated and fast diffused. Nanostructural design has been considered as one of the effective strategies to solve these issues owing to unique physicochemical properties. Accordingly, quite a few recent anode materials with different dimensions in PIBs have been reported, mainly involving in carbon materials, metal-based chalcogenides (MCs), metal-based oxides (MOs), and alloying materials. Among these anodes, nanostructural carbon materials with shorter ionic transfer path are beneficial for decreasing the resistances of transportation. Besides, MCs, MOs, and alloying materials with nanostructures can effectively alleviate their stress changes. Herein, these materials are classified into 0D, 1D, 2D, and 3D. Particularly, the relationship between different dimensional structures and the corresponding electrochemical performances has been outlined. Meanwhile, some strategies are proposed to deal with the current disadvantages. Hope that the readers are enlightened from this review to carry out further experiments better.
Highlights:
1 This review introduces the recent anode materials of potassium ion batteries classified into 0D, 1D, 2D, and 3D, mainly including carbon materials, metal-based chalcogenides and metal-based oxides, and alloying materials.
2 The advantages, disadvantages, and optimized strategies of different dimensional anode materials are summarized.
3 The relationship between different dimensional anode materials in potassium ion batteries and the corresponding electrochemical performances is outlined. And some strategies are proposed to deal with the current disadvantages of potassium ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Eftekhari, Potassium secondary cell based on Prussian blue cathode. J. Power Sour. 126(1), 221–228 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.007
- R. Rajagopalan, Y. Tang, X. Ji, C. Jia, H. Wang, Advancements and challenges in potassium ion batteries: a comprehensive review. Adv. Funct. Mater. 30(12), 1909486 (2020). https://doi.org/10.1002/adfm.201909486
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi et al., Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011). https://doi.org/10.1021/cr100290v
- N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
- P.W. Gruber, P.A. Medina, G.A. Keoleian, S.E. Kesler, M.P. Everson et al., Global lithium availability. J. Ind. Ecol. 15(5), 760–775 (2011). https://doi.org/10.1111/j.1530-9290.2011.00359.x
- H. Vikström, S. Davidsson, M. Höök, Lithium availability and future production outlooks. Appl. Energy 110, 252–266 (2013). https://doi.org/10.1016/j.apenergy.2013.04.005
- B. Swain, Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172, 388–403 (2017). https://doi.org/10.1016/j.seppur.2016.08.031
- N. Wang, C. Chu, X. Xu, Y. Du, J. Yang et al., Comprehensive new insights and perspectives into Ti-based anodes for next-generation alkaline metal (Na+, K+) ion batteries. Adv. Energy Mater. 8(27), 1801888 (2018). https://doi.org/10.1002/aenm.201801888
- J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 28(43), 1802938 (2018). https://doi.org/10.1002/adfm.201802938
- M.M. Huie, D.C. Bock, E.S. Takeuchi, A.C. Marschilok, K.J. Takeuchi, Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 287, 15–27 (2015). https://doi.org/10.1016/j.ccr.2014.11.005
- D. Selvakumaran, A. Pan, S. Liang, G. Cao, A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A 7(31), 18209–18236 (2019). https://doi.org/10.1039/c9ta05053a
- Y. Zhang, S. Liu, Y. Ji, J. Ma, H. Yu, Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30(38), 1706310 (2018). https://doi.org/10.1002/adma.201706310
- M. Walter, M.V. Kovalenko, K.V. Kravchyk, Challenges and benefits of post-lithium-ion batteries. New J. Chem. 44(5), 1677–1683 (2020). https://doi.org/10.1039/c9nj05682c
- W. Liu, L. Dong, B. Jiang, Y. Huang, X. Wang et al., Layered vanadium oxides with proton and zinc ion insertion for zinc ion batteries. Electrochim. Acta 320, 134565 (2019). https://doi.org/10.1016/j.electacta.2019.134565
- M. Xu, S. Lei, J. Qi, Q. Dou, L. Liu et al., Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 12(4), 3733–3740 (2018). https://doi.org/10.1021/acsnano.8b00959
- F. Wu, H. Yang, Y. Bai, C. Wu, Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 31(16), 1806510 (2019). https://doi.org/10.1002/adma.201806510
- Z. Li, B. Niu, J. Liu, J. Li, F. Kang, Rechargeable aluminum-ion battery based on MoS2 microsphere cathode. ACS Appl. Mater. Interfaces 10(11), 9451–9459 (2018). https://doi.org/10.1021/acsami.8b00100
- F. Liu, Y. Liu, X. Zhao, K. Liu, H. Yin et al., Prelithiated V2C MXene: a high-performance electrode for hybrid magnesium/lithium-ion batteries by ion cointercalation. Small 16(8), 1906076 (2020). https://doi.org/10.1002/smll.201906076
- B. Jiang, C. Xu, C. Wu, L. Dong, J. Li et al., Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 229, 422–428 (2017). https://doi.org/10.1016/j.electacta.2017.01.163
- S. Liu, J.J. Hu, N.F. Yan, G.L. Pan, G.R. Li et al., Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries. Energy Environ. Sci. 5(12), 9743–9746 (2012). https://doi.org/10.1039/c2ee22987k
- S. Lee, J. Cho, Critical requirements for rapid charging of rechargeable Al- and Li-ion batteries. Angew. Chem. Int. Ed. 54(33), 9452–9455 (2015). https://doi.org/10.1002/anie.201504466
- Y. Tian, Y. An, H. Wei, C. Wei, Y. Tao et al., Micron-sized nanoporous vanadium pentoxide arrays for high-performance gel zinc-ion batteries and potassium batteries. Chem. Mater. 32(9), 4054–4064 (2020). https://doi.org/10.1021/acs.chemmater.0c00787
- Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
- M. Zoidl, C. God, P. Handel, R. Fischer, C. Lenardt et al., Communication-imidazole based magnesium salt as conductive salt for rechargeable magnesium-ion batteries. J. Electrochem. Soc. 163(10), A2461–A2463 (2016). https://doi.org/10.1149/2.0101613jes
- L. Bin, R. Masse, C. Liu, Y. Hu, W. Li et al., Kinetic surface control for improved magnesium-electrolyte interfaces for magnesium ion batteries. Energy Storage Mater. 22, 96–104 (2019). https://doi.org/10.1016/j.ensm.2019.06.035
- R.A. Adams, A. Varma, V.G. Pol, Carbon anodes for nonaqueous alkali metal-ion batteries and their thermal safety aspects. Adv. Energy Mater. 9(35), 1900550 (2019). https://doi.org/10.1002/aenm.201900550
- Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015). https://doi.org/10.1016/j.elecom.2015.09.002
- C. Vaalma, G.A. Giffin, D. Buchholz, S. Passerini, Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J. Electrochem. Soc. 163(7), A1295–A1299 (2016). https://doi.org/10.1149/2.0921607jes
- Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016). https://doi.org/10.1002/aenm.201501874
- J. Zhao, X. Zou, Y. Zhu, Y. Xu, C. Wang, Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 26(44), 8103–8110 (2016). https://doi.org/10.1002/adfm.201602248
- I. Sultana, M.M. Rahman, T. Ramireddy, Y. Chen, A.M. Glushenkov, High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 5(45), 23506–23512 (2017). https://doi.org/10.1039/C7TA02483E
- X. Wu, D.P. Leonard, X. Ji, Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem. Mater. 29(12), 5031–5042 (2017). https://doi.org/10.1021/acs.chemmater.7b01764
- M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, H. Nakai, Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 164(2), A54–A60 (2016). https://doi.org/10.1149/2.0211702jes
- C. Zhang, H. Zhao, Y. Lei, Recent research progress of anode materials for potassium-ion batteries. Energy Environ. Mater. 3(2), 105–120 (2020). https://doi.org/10.1002/eem2.12059
- H. Li, Z. Cheng, A. Natan, A.M. Hafez, D. Cao et al., Dual-function, tunable, nitrogen-doped carbon for high-performance Li metal-sulfur full cell. Small 15(5), 1804609 (2019). https://doi.org/10.1002/smll.201804609
- Y. Lu, J. Chen, Robust self-supported anode by integrating Sb2S3 nanoparticles with S, N-codoped graphene to enhance K-storage performance. Sci. China Chem. 60(12), 1533–1539 (2017). https://doi.org/10.1007/s11426-017-9166-0
- I. Sultana, M.M. Rahman, S. Mateti, V.G. Ahmadabadi, A.M. Glushenkov et al., K-ion and Na-ion storage performances of Co3O4-Fe2O3 nanoparticle-decorated super P carbon black prepared by a ball milling process. Nanoscale 9(10), 3646–3654 (2017). https://doi.org/10.1039/C6NR09613A
- W. Zhang, J. Mao, S. Li, Z. Chen, Z. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139(9), 3316–3319 (2017). https://doi.org/10.1021/jacs.6b12185
- H. Gao, T. Zhou, Y. Zheng, Q. Zhang, Y. Liu et al., CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 27(43), 1702634 (2017). https://doi.org/10.1002/adfm.201702634
- B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassium-Ion Batteries. Adv. Energy Mater. 8(25), 1801149 (2018). https://doi.org/10.1002/aenm.201801149
- W. Wang, B. Jiang, C. Qian, F. Lv, J. Feng et al., Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 30(30), 1801812 (2018). https://doi.org/10.1002/adma.201801812
- Q. Liu, L. Fan, R. Ma, S. Chen, X. Yu et al., Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem. Commun. 54(83), 11773–11776 (2018). https://doi.org/10.1039/C8CC05257C
- X. Wu, W. Zhao, H. Wang, X. Qi, Z. Xing et al., Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J. Power Sour. 378, 460–467 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.077
- C. Liu, S. Luo, H. Huang, Y. Zhai, Z. Wang, Direct growth of MoO2/reduced graphene oxide hollow sphere composites as advanced anode materials for potassium-ion batteries. Chemsuschem 12(4), 873–880 (2019). https://doi.org/10.1002/cssc.201802494
- C. Nithya, P. Vishnuprakash, S. Gopukumar, A Mn3O4 nanospheres@rGO architecture with capacitive effects on high potassium storage capability. Nanoscale Adv. 1(11), 4347–4358 (2019). https://doi.org/10.1039/C9NA00425D
- R. Verma, P.N. Didwal, H.-S. Ki, G. Cao, C.-J. Park, SnP3/carbon nanocomposite as an anode material for potassium-ion batteries. ACS Appl. Mater. Interfaces 11(30), 26976–26984 (2019). https://doi.org/10.1021/acsami.9b08088
- H. Qiu, L. Zhao, M. Asif, X. Huang, T. Tang et al., SnO2 nanoparticles anchored on carbon foam as a freestanding anode for high performance potassium-ion batteries. Energy Environ. Sci. 13(2), 571–578 (2020). https://doi.org/10.1039/C9EE03682B
- D. Liu, X. Huang, D. Qu, D. Zheng, G. Wang et al., Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy 52, 1–10 (2018). https://doi.org/10.1016/j.nanoen.2018.07.023
- Q. Yu, B. Jiang, J. Hu, C.-Y. Lao, Y. Gao et al., Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: a flexible framework for high-performance potassium-ion batteries. Adv. Sci. 5(10), 1800782 (2018). https://doi.org/10.1002/advs.201800782
- P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang et al., Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
- R. Hao, H. Lan, C. Kuang, H. Wang, L. Guo, Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 128, 224–230 (2018). https://doi.org/10.1016/j.carbon.2017.11.064
- Y. Liu, C. Yang, Q. Pan, Y. Li, G. Wang et al., Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries. J. Mater. Chem. A 6(31), 15162–15169 (2018). https://doi.org/10.1039/C8TA04694H
- P. Xiong, X. Zhao, Y. Xu, Nitrogen-doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes. Chemsuschem 11(1), 202–208 (2018). https://doi.org/10.1002/cssc.201701759
- W.-C. Chang, J.-H. Wu, K.-T. Chen, H.-Y. Tuan, Red phosphorus potassium-ion battery anodes. Adv. Sci. 6(9), 1801354 (2019). https://doi.org/10.1002/advs.201801354
- W. Luo, F. Li, W. Zhang, K. Han, J.-J. Gaumet et al., Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 12(5), 1025–1031 (2019). https://doi.org/10.1007/s12274-019-2335-6
- K. Cao, H. Liu, W. Li, C. Xu, Q. Han et al., K2Ti6O13 nanorods for potassium-ion battery anodes. J. Electroanal. Chem. 841, 51–55 (2019). https://doi.org/10.1016/j.jelechem.2019.04.020
- X. Xiang, D. Liu, X. Zhu, K. Fang, K. Zhou et al., Evaporation-induced formation of hollow bismuth@N-doped carbon nanorods for enhanced electrochemical potassium storage. Appl. Surf. Sci. 514, 145947 (2020). https://doi.org/10.1016/j.apsusc.2020.145947
- M. Naguib, R.A. Adams, Y. Zhao, D. Zemlyanov, A. Varma et al., Electrochemical performance of MXenes as K-ion battery anodes. Chem. Commun. 53(51), 6883–6886 (2017). https://doi.org/10.1039/C7CC02026K
- K. Xie, K. Yuan, X. Li, W. Lu, C. Shen et al., Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene. Small 13(42), 1701471 (2017). https://doi.org/10.1002/smll.201701471
- Z. Chen, D. Yin, M. Zhang, Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small 14(17), 1703818 (2018). https://doi.org/10.1002/smll.201703818
- C. Yang, J. Feng, F. Lv, J. Zhou, C. Lin et al., Metallic graphene-like VSe2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism. Adv. Mater. 30(27), 1800036 (2018). https://doi.org/10.1002/adma.201800036
- L. Fang, J. Xu, S. Sun, B. Lin, Q. Guo et al., Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small 15(10), 1804806 (2019). https://doi.org/10.1002/smll.201804806
- Z. Ju, P. Li, G. Ma, Z. Xing, Q. Zhuang et al., Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 11, 38–46 (2018). https://doi.org/10.1016/j.ensm.2017.09.009
- G. Ma, K. Huang, J.-S. Ma, Z. Ju, Z. Xing et al., Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 5(17), 7854–7861 (2017). https://doi.org/10.1039/C7TA01108C
- J. Ge, L. Fan, J. Wang, Q. Zhang, Z. Liu et al., MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 8(29), 1801477 (2018). https://doi.org/10.1002/aenm.201801477
- H. Tian, X. Yu, H. Shao, L. Dong, Y. Chen et al., Unlocking few-layered ternary chalcogenides for high-performance potassium-ion storage. Adv. Energy Mater. 9(29), 1901560 (2019). https://doi.org/10.1002/aenm.201901560
- R. Jain, P. Hundekar, T. Deng, X. Fan, Y. Singh et al., Reversible alloying of phosphorene with potassium and its stabilization using reduced graphene oxide buffer layers. ACS Nano 13(12), 14094–14106 (2019). https://doi.org/10.1021/acsnano.9b06680
- X. Ren, Q. Zhao, W.D. McCulloch, Y. Wu, MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 10(4), 1313–1321 (2017). https://doi.org/10.1007/s12274-016-1419-9
- S.-M. Xu, Y.-C. Ding, X. Liu, Q. Zhang, K.-X. Wang et al., Boosting potassium storage capacity based on stress-induced size-dependent solid-solution behavior. Adv. Energy Mater. 8(32), 1802175 (2018). https://doi.org/10.1002/aenm.201802175
- Y. An, Y. Tian, L. Ci, S. Xiong, J. Feng et al., Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 12(12), 12932–12940 (2018). https://doi.org/10.1021/acsnano.8b08740
- Q. Yang, Z. Wang, W. Xi, G. He, Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem. Commun. 101, 68–72 (2019). https://doi.org/10.1016/j.elecom.2019.02.016
- Z. Tai, Q. Zhang, Y. Liu, H. Liu, S. Dou, Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 123, 54–61 (2017). https://doi.org/10.1016/j.carbon.2017.07.041
- L. Deng, Z. Yang, L. Tan, L. Zeng, Y. Zhu et al., Investigation of the prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv. Mater. 30(31), 1802510 (2018). https://doi.org/10.1002/adma.201802510
- K. Huang, Z. Xing, L. Wang, X. Wu, W. Zhao et al., Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 6(2), 434–442 (2018). https://doi.org/10.1039/C7TA08171E
- J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi et al., Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
- L. Liu, Z. Lin, J.-Y. Chane-Ching, H. Shao, P.-L. Taberna et al., 3D rGO aerogel with superior electrochemical performance for K-Ion battery. Energy Storage Mater. 19, 306–313 (2019). https://doi.org/10.1016/j.ensm.2019.03.013
- W. Zhang, J. Ming, W. Zhao, X. Dong, M.N. Hedhili et al., Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 29(35), 1903641 (2019). https://doi.org/10.1002/adfm.201903641
- Y. Zhang, L. Yang, Y. Tian, L. Li, J. Li et al., Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Mater. Chem. Phys. 229, 303–309 (2019). https://doi.org/10.1016/j.matchemphys.2019.03.021
- Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
- C. Shen, T. Cheng, C. Liu, L. Huang, M. Cao et al., Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries. J. Mater. Chem. A 8(1), 453–460 (2020). https://doi.org/10.1039/C9TA11000C
- V. Gabaudan, R. Berthelot, L. Stievano, L. Monconduit, Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries. J. Phys. Chem. C 122(32), 18266–18273 (2018). https://doi.org/10.1021/acs.jpcc.8b04575
- I. Sultana, M.M. Rahman, Y. Chen, A.M. Glushenkov, Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv. Funct. Mater. 28(5), 1703857 (2018). https://doi.org/10.1002/adfm.201703857
- B. Wang, Z. Deng, Y. Xia, J. Hu, H. Li et al., Anode materials: realizing reversible conversion-alloying of Sb(V) in polyantimonic acid for fast and durable lithium- and potassium-ion storage. Adv. Energy Mater. 10(1), 2070002 (2020). https://doi.org/10.1002/aenm.202070002
- H. Huang, J. Wang, X. Yang, R. Hu, J. Liu et al., Unveiling the advances of nanostructure design for alloy-type potassium-ion battery anodes via in situ TEM. Angew. Chem. Int. Ed. 59(34), 14504–14510 (2020). https://doi.org/10.1002/anie.202004193
- X. Ge, S. Liu, M. Qiao, Y. Du, Y. Li et al., Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew. Chem. Int. Ed. 58(41), 14578–14583 (2019). https://doi.org/10.1002/anie.201908918
- J. Lang, J. Li, X. Ou, F. Zhang, K. Shin et al., A flexible potassium-ion hybrid capacitor with superior rate performance and long cycling life. ACS Appl. Mater. Interfaces 12(2), 2424–2431 (2020). https://doi.org/10.1021/acsami.9b17635
- D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 8(34), 1802386 (2018). https://doi.org/10.1002/aenm.201802386
- J. Zheng, Y. Yang, X. Fan, G. Ji, X. Ji et al., Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 12(2), 615–623 (2019). https://doi.org/10.1039/C8EE02836B
- H. Li, C. Zhao, Y. Yin, Y. Zou, Y. Xia et al., N-doped carbon coated bismuth nanorods with a hollow structure as an anode for superior-performance potassium-ion batteries. Nanoscale 12(7), 4309–4313 (2020). https://doi.org/10.1039/C9NR09867D
- Y. Dong, Z.-S. Wu, S. Zheng, X. Wang, J. Qin et al., Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11(5), 4792–4800 (2017). https://doi.org/10.1021/acsnano.7b01165
- P. Li, W. Wang, S. Gong, F. Lv, H. Huang et al., Hydrogenated Na2Ti3O7 epitaxially grown on flexible n-doped carbon sponge for potassium-ion batteries. ACS Appl. Mater. Interfaces 10(44), 37974–37980 (2018). https://doi.org/10.1021/acsami.8b11354
- J. Jiang, Y. Zhang, P. Nie, G. Xu, M. Shi et al., Progress of nanostructured electrode materials for supercapacitors. Adv. Sustain. Syst. 2(1), 1700110 (2018). https://doi.org/10.1002/adsu.201700110
- Y. Ai, Y. You, F. Wei, X. Jiang, Z. Han et al., Hollow bio-derived polymer nanospheres with ordered mesopores for sodium-ion battery. Nano-Micro Lett. 12(1), 31 (2020). https://doi.org/10.1007/s40820-020-0370-1
- H. Wang, X. Wu, X. Qi, W. Zhao, Z. Ju, Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater. Res. Bull. 103, 32–37 (2018). https://doi.org/10.1016/j.materresbull.2018.03.018
- C. Yan, X. Gu, L. Zhang, Y. Wang, L. Yan et al., Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: promising anode materials for sodium and potassium ion batteries. J. Mater. Chem. A 6(36), 17371–17377 (2018). https://doi.org/10.1039/C8TA05297B
- W. Zhang, W. Miao, X. Liu, L. Li, Z. Yu et al., High-rate and ultralong-stable potassium-ion batteries based on antimony-nanoparticles encapsulated in nitrogen and phosphorus co-doped mesoporous carbon nanofibers as an anode material. J. Alloys Compd. 769, 141–148 (2018). https://doi.org/10.1016/j.jallcom.2018.07.369
- Z. Liu, K. Han, P. Li, W. Wang, D. He et al., Tuning metallic Co0.85Se quantum dots/carbon hollow polyhedrons with tertiary hierarchical structure for high-performance potassium ion batteries. Nano-Micro Lett. 11(1), 96 (2019). https://doi.org/10.1007/s40820-019-0326-5
- A. Mahmood, S. Li, Z. Ali, H. Tabassum, B. Zhu et al., Ultrafast sodium/potassium-ion intercalation into hierarchically porous thin carbon shells. Adv. Mater. 31(2), 1805430 (2019). https://doi.org/10.1002/adma.201805430
- Q. Tan, P. Li, K. Han, Z. Liu, Y. Li et al., Chemically bubbled hollow FexO nanospheres anchored on 3D N-doped few-layer graphene architecture as a performance-enhanced anode material for potassium-ion batteries. J. Mater. Chem. A 7(2), 744–754 (2019). https://doi.org/10.1039/C8TA09797F
- M. Tao, G. Du, Y. Zhang, W. Gao, D. Liu et al., TiOxNy nanoparticles/C composites derived from MXene as anode material for potassium-ion batteries. Chem. Eng. J. 369, 828–833 (2019). https://doi.org/10.1016/j.cej.2019.03.144
- Z. Wang, K. Dong, D. Wang, S. Luo, Y. Liu et al., Ultrafine SnO2 nanoparticles encapsulated in 3D porous carbon as a high-performance anode material for potassium-ion batteries. J. Power Sour. 441, 227191 (2019). https://doi.org/10.1016/j.jpowsour.2019.227191
- H. Wu, Q. Yu, C.-Y. Lao, M. Qin, W. Wang et al., Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage. Energy Storage Mater. 18, 43–50 (2019). https://doi.org/10.1016/j.ensm.2018.09.025
- Y. Han, W. Li, K. Zhou, X. Wu, H. Wu et al., Bimetallic sulfide Co9S8/N-C@MoS2 dodecahedral heterogeneous nanocages for boosted Li/K storage. ChemNanoMat 6(1), 132–138 (2020). https://doi.org/10.1002/cnma.201900601
- G. Ma, X. Xu, Z. Feng, C. Hu, Y. Zhu et al., Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Res. 13(3), 802–809 (2020). https://doi.org/10.1007/s12274-020-2699-7
- Q. Gan, J. Xie, Y. Zhu, F. Zhang, P. Zhang et al., Sub-20 nm carbon nanoparticles with expanded interlayer spacing for high-performance potassium storage. ACS Appl. Mater. Interfaces 11(1), 930–939 (2019). https://doi.org/10.1021/acsami.8b18553
- Z. Xing, Y. Qi, Z. Jian, X. Ji, Polynanocrystalline graphite: a new carbon anode with superior cycling performance for K-ion batteries. ACS Appl. Mater. Interfaces 9(5), 4343–4351 (2017). https://doi.org/10.1021/acsami.6b06767
- Y. An, H. Fei, G. Zeng, L. Ci, B. Xi et al., Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte. J. Power Sour. 378, 66–72 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.033
- S. Liu, J. Mao, Q. Zhang, Z. Wang, W.K. Pang et al., An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew. Chem. Int. Ed. 59(9), 3638–3644 (2020). https://doi.org/10.1002/anie.201913174
- Z. Li, N. Sun, R.A. Soomro, Z. Guan, L. Ma et al., Structurally engineered hollow graphitized carbon nanocages as high-performance anodes for potassium ion batteries. ACS Nano (2020). https://doi.org/10.1021/acsnano.0c01150
- H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3d porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(472D Materials), 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
- M. Jing, J. Wang, H. Hou, Y. Yang, Y. Zhang et al., Carbon quantum dot coated Mn3O4 with enhanced performances for lithium-ion batteries. J. Mater. Chem. A 3(32), 16824–16830 (2015). https://doi.org/10.1039/C5TA03610K
- L. Ruiyi, J. Yuanyuan, Z. Xiaoyan, L. Zaijun, G. Zhiguo et al., Significantly enhanced electrochemical performance of lithium titanate anode for lithium ion battery by the hybrid of nitrogen and sulfur co-doped graphene quantum dots. Electrochim. Acta 178, 303–311 (2015). https://doi.org/10.1016/j.electacta.2015.08.018
- Y. Yang, X. Ji, M. Jing, H. Hou, Y. Zhu et al., Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J. Mater. Chem. A 3(10), 5648–5655 (2015). https://doi.org/10.1039/C4TA05611F
- Y. Zhang, C.W. Foster, C.E. Banks, L. Shao, H. Hou et al., Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv. Mater. 28(42), 9391–9399 (2016). https://doi.org/10.1002/adma.201601621
- D. Kong, Y. Wang, S. Huang, Y.V. Lim, J. Zhang et al., Surface modification of Na2Ti3O7 nanofibre arrays using N-doped graphene quantum dots as advanced anodes for sodium-ion batteries with ultra-stable and high-rate capability. J. Mater. Chem. A 7(20), 12751–12762 (2019). https://doi.org/10.1039/C9TA01641D
- H. Nan, Y. Zhang, H. Wei, H. Chen, C. Xue et al., Low-cost and environmentally friendly synthesis of an Al3+ and Mn4+ co-doped Li4Ti5O12 composite with carbon quantum dots as an anode for lithium-ion batteries. RSC Adv. 9(38), 22101–22105 (2019). https://doi.org/10.1039/C9RA03897C
- X. Yin, C. Zhi, W. Sun, L.-P. Lv, Y. Wang, Multilayer NiO@Co3O4@graphene quantum dots hollow spheres for high-performance lithium-ion batteries and supercapacitors. J. Mater. Chem. A 7(13), 7800–7814 (2019). https://doi.org/10.1039/C8TA11982A
- Y. Zhang, K. Zhang, K. Jia, G. Liu, S. Ren et al., Preparation of coal-based graphene quantum dots/α-Fe2O3 nanocomposites and their lithium-ion storage properties. Fuel 241, 646–652 (2019). https://doi.org/10.1016/j.fuel.2018.12.030
- Y. Fang, R. Hu, B. Liu, Y. Zhang, K. Zhu et al., MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 7(10), 5363–5372 (2019). https://doi.org/10.1039/C8TA12069B
- P. Xiong, P. Bai, S. Tu, M. Cheng, J. Zhang et al., Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small 14(33), 1802140 (2018). https://doi.org/10.1002/smll.201802140
- S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). https://doi.org/10.1038/354056a0
- H. Li, D. Li, H. Zhou, One-Dimensional Nanostructured Metal Oxides for Lithium Ion Batteries, vol. 13 (Wiley, Hoboken, 2012), pp. 295–320
- T. Jin, Q. Han, Y. Wang, L. Jiao, 1D nanomaterials: design, synthesis, and applications in sodium-ion batteries. Small 14(2), 1703086 (2018). https://doi.org/10.1002/smll.201703086
- S. Chong, Y. Wu, C. Liu, Y. Chen, S. Guo et al., Cryptomelane-type MnO2/carbon nanotube hybrids as bifunctional electrode material for high capacity potassium-ion full batteries. Nano Energy 54, 106–115 (2018). https://doi.org/10.1016/j.nanoen.2018.09.072
- X. Zhao, Y. Tang, C. Ni, J. Wang, A. Star et al., Free-standing nitrogen-doped cup-stacked carbon nanotube mats for potassium-ion battery anodes. ACS Appl. Energy Mater. 1(4), 1703–1707 (2018). https://doi.org/10.1021/acsaem.8b00182
- W. Miao, Y. Zhang, H. Li, Z. Zhang, L. Li et al., ZIF-8/ZIF-67-derived 3D amorphous carbon-encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode. J. Mater. Chem. A 7(10), 5504–5512 (2019). https://doi.org/10.1039/C8TA12457D
- W. Miao, X. Zhao, R. Wang, Y. Liu, L. Li et al., Carbon shell encapsulated cobalt phosphide nanoparticles embedded in carbon nanotubes supported on carbon nanofibers: a promising anode for potassium ion battery. J. Colloid Interface Sci. 556, 432–440 (2019). https://doi.org/10.1016/j.jcis.2019.08.090
- C. Shen, K. Yuan, T. Tian, M. Bai, J.-G. Wang et al., Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries. ACS Appl. Mater. Interfaces 11(5), 5015–5021 (2019). https://doi.org/10.1021/acsami.8b18834
- W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang et al., Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 12(5), 1605–1612 (2019). https://doi.org/10.1039/C9EE00536F
- T. Jiao, S. Wu, J. Cheng, D. Chen, D. Shen et al., Bismuth nanorod networks confined in a robust carbon matrix as long-cycling and high-rate potassium-ion battery anodes. J. Mater. Chem. A 8, 8440–8446 (2020). https://doi.org/10.1039/D0TA02414G
- S. Peng, L. Wang, Z. Zhu, K. Han, Electrochemical performance of reduced graphene oxide/carbon nanotube hybrid papers as binder-free anodes for potassium-ion batteries. J. Phys. Chem. Solids 138, 109296 (2020). https://doi.org/10.1016/j.jpcs.2019.109296
- J. Wang, B. Wang, X. Liu, J. Bai, H. Wang et al., Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem. Eng. J. 382, 123050 (2020). https://doi.org/10.1016/j.cej.2019.123050
- X. Wang, J. Ma, J. Wang, X. Li, N-doped hollow carbon nanofibers anchored hierarchical FeP nanosheets as high-performance anode for potassium-ion batteries. J. Alloys Compd. 821, 153268 (2020). https://doi.org/10.1016/j.jallcom.2019.153268
- B.I. Yakobson, R.E. Smalley, Fullerene nanotubes: C1,000,000 and beyond: some unusual new molecules-long, hollow fibers with tantalizing electronic and mechanical properties-have joined diamonds and graphite in the carbon family. Am. Sci. Sci. Res. Honor Soc. 85(4), 324–337 (1997)
- B.Q. Wei, R. Vajtai, P.M. Ajayan, Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79(8), 1172–1174 (2001). https://doi.org/10.1063/1.1396632
- H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500(1), 218–241 (2002). https://doi.org/10.1016/S0039-6028(01)01558-8
- Q. Zhao, M.B. Nardelli, J. Bernholc, Ultimate strength of carbon nanotubes: a theoretical study. Phys. Rev. B 65(14), 144105 (2002). https://doi.org/10.1103/PhysRevB.65.144105
- C. Liu, H. Wang, S. Zhang, M. Han, Y. Cao et al., K2Ti6O13/carbon core-shell nanorods as a superior anode material for high-rate potassium-ion batteries. Nanoscale 12(21), 11427–11434 (2020). https://doi.org/10.1039/D0NR00898B
- B. Kishore, V.G.N. Munichandraiah, K2Ti4O9: a promising anode material for potassium ion batteries. J. Electrochem. Soc. 163(13), A2551–A2554 (2016). https://doi.org/10.1149/2.0421613jes
- S. Qi, X. Xie, X. Peng, D.H.L. Ng, M. Wu et al., Mesoporous carbon-coated bismuth nanorods as anode for potassium-ion batteries. Phys. Status Solidi RRL 13(10), 1900209 (2019). https://doi.org/10.1002/pssr.201900209
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- H. Li, Y. Hou, F. Wang, M.R. Lohe, X. Zhuang et al., Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable mxene and electrochemically exfoliated graphene. Adv. Energy Mater. 7(4), 1601847 (2017). https://doi.org/10.1002/aenm.201601847
- X. Liu, M.C. Hersam, Interface characterization and control of 2d materials and heterostructures. Adv. Mater. 30(39), 1801586 (2018). https://doi.org/10.1002/adma.201801586
- S. Das, D. Pandey, J. Thomas, T. Roy, The role of graphene and other 2d materials in solar photovoltaics. Adv. Mater. 31(1), 1802722 (2019). https://doi.org/10.1002/adma.201802722
- Y. Sun, L. Jiao, D. Han, F. Wang, P. Zhang et al., Hierarchical architecture of polyaniline nanoneedle arrays on electrochemically exfoliated graphene for supercapacitors and sodium batteries cathode. Mater. Des. 188, 108440 (2020). https://doi.org/10.1016/j.matdes.2019.108440
- P. Xiong, B. Sun, N. Sakai, R. Ma, T. Sasaki et al., 2D superlattices for efficient energy storage and conversion. Adv. Mater. 32(18), 1902654 (2020). https://doi.org/10.1002/adma.201902654
- X. Zhao, H. Li, F. Han, M. Dai, Y. Sun et al., Electrochemical exfoliation of graphene as an anode material for ultra-long cycle lithium ion batteries. J. Phys. Chem. Solids 139, 109301 (2020). https://doi.org/10.1016/j.jpcs.2019.109301
- Y. Wu, Y. Sun, J. Zheng, J. Rong, H. Li et al., MXenes: advanced materials in potassium ion batteries. Chem. Eng. J. 404, 126565 (2021). https://doi.org/10.1016/j.cej.2020.126565
- H. Li, S. Gan, H. Wang, D. Han, L. Niu, Intercorrelated superhybrid of AgBr supported on graphitic-C3N4-decorated nitrogen-doped graphene: high engineering photocatalytic activities for water purification and CO2 reduction. Adv. Mater. 27(43), 6906–6913 (2015). https://doi.org/10.1002/adma.201502755
- H. Cui, Y. Guo, W. Ma, Z. Zhou, 2 D materials for electrochemical energy storage: design, preparation, and application. Chemsuschem 13(6), 1155–1171 (2020). https://doi.org/10.1002/cssc.201903095
- V. Lakshmi, Y. Chen, A.A. Mikhaylov, A.G. Medvedev, I. Sultana et al., Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 53(59), 8272–8275 (2017). https://doi.org/10.1039/C7CC03998K
- B. Jia, Y. Zhao, M. Qin, W. Wang, Z. Liu et al., Multirole organic-induced scalable synthesis of a mesoporous MoS2-monolayer/carbon composite for high-performance lithium and potassium storage. J. Mater. Chem. A 6(24), 11147–11153 (2018). https://doi.org/10.1039/C8TA03166E
- L. Liu, Y. Chen, Y. Xie, P. Tao, Q. Li et al., Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 28(29), 1801989 (2018). https://doi.org/10.1002/adfm.201801989
- Q. Yu, J. Hu, Y. Gao, J. Gao, G. Suo et al., Iron sulfide/carbon hybrid cluster as an anode for potassium-ion storage. J. Alloys Compd. 766, 1086–1091 (2018). https://doi.org/10.1016/j.jallcom.2018.07.065
- D.-S. Bin, S.-Y. Duan, X.-J. Lin, L. Liu, Y. Liu et al., Structural engineering of SnS2/Graphene nanocomposite for high-performance K-ion battery anode. Nano Energy 60, 912–918 (2019). https://doi.org/10.1016/j.nanoen.2019.04.032
- K. Cao, H. Liu, W. Li, Q. Han, Z. Zhang et al., CuO nanoplates for high-performance potassium-ion batteries. Small 15(36), 1901775 (2019). https://doi.org/10.1002/smll.201901775
- D. Li, X. Cheng, R. Xu, Y. Wu, X. Zhou et al., Manipulation of 2D carbon nanoplates with a core-shell structure for high-performance potassium-ion batteries. J. Mater. Chem. A 7(34), 19929–19938 (2019). https://doi.org/10.1039/C9TA04663A
- D. Li, Q. Sun, Y. Zhang, L. Chen, Z. Wang et al., Surface-confined SnS2@C@rGO as high-performance anode materials for sodium- and potassium-ion batteries. Chemsuschem 12(12), 2689–2700 (2019). https://doi.org/10.1002/cssc.201900719
- Y. Li, C. Yang, F. Zheng, Q. Pan, Y. Liu et al., Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy 59, 582–590 (2019). https://doi.org/10.1016/j.nanoen.2019.03.002
- C. Nithya, J.H. Lee, N.H. Kim, Hydrothermal fabrication of MnCO3@rGO: a promising anode material for potassium-ion batteries. Appl. Surf. Sci. 484, 1161–1167 (2019). https://doi.org/10.1016/j.apsusc.2019.04.181
- W. Qiu, H. Xiao, Y. Li, X. Lu, Y. Tong, Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries. Small 15(23), 1901285 (2019). https://doi.org/10.1002/smll.201901285
- Q. Yao, J. Zhang, X. Shi, B. Deng, K. Hou et al., Rational synthesis of two-dimensional G@porous FeS2@C composite as high-rate anode materials for sodium/potassium ion batteries. Electrochim. Acta 307, 118–128 (2019). https://doi.org/10.1016/j.electacta.2019.03.184
- X. Zhao, W. Wang, Z. Hou, G. Wei, Y. Yu et al., SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. Chem. Eng. J. 370, 677–683 (2019). https://doi.org/10.1016/j.cej.2019.03.250
- B. Lee, M. Kim, S. Kim, J. Nanda, S.J. Kwon et al., High capacity adsorption—dominated potassium and sodium ion storage in activated crumpled graphene. Adv. Energy Mater. 10(17), 1903280 (2020). https://doi.org/10.1002/aenm.201903280
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
- M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). https://doi.org/10.1021/nl802558y
- W. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen et al., Potassium ion batteries with graphitic materials. Nano Lett. 15(11), 7671–7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667
- K. Share, A.P. Cohn, R. Carter, B. Rogers, C.L. Pint, Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 10(10), 9738–9744 (2016). https://doi.org/10.1021/acsnano.6b05998
- Y. Luan, R. Hu, Y. Fang, K. Zhu, K. Cheng et al., Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors. Nano-Micro Lett. 11(1), 30 (2019). https://doi.org/10.1007/s40820-019-0260-6
- X. Wu, Y. Chen, Z. Xing, C.W.K. Lam, S.-S. Pang et al., Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9(21), 1900343 (2019). https://doi.org/10.1002/aenm.201900343
- J. Xu, J. Zhang, W. Zhang, C.-S. Lee, Interlayer nanoarchitectonics of two-dimensional transition-metal dichalcogenides nanosheets for energy storage and conversion applications. Adv. Energy Mater. 7(23), 1700571 (2017). https://doi.org/10.1002/aenm.201700571
- Z. Ali, M. Asif, X. Huang, T. Tang, Y. Hou, Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv. Mater. 30(36), 1802745 (2018). https://doi.org/10.1002/adma.201802745
- L. Shen, Y. Wang, H. Lv, S. Chen, P.A. van Aken et al., Ultrathin Ti2Nb2O9 nanosheets with pseudocapacitive properties as superior anode for sodium-ion batteries. Adv. Mater. 30(51), 1804378 (2018). https://doi.org/10.1002/adma.201804378
- Q. Zhang, C. Didier, W.K. Pang, Y. Liu, Z. Wang et al., Structural insight into layer gliding and lattice distortion in layered manganese oxide electrodes for potassium-ion batteries. Adv. Energy Mater. 9(30), 1900568 (2019). https://doi.org/10.1002/aenm.201900568
- J. Li, N. Zhuang, J. Xie, X. Li, W. Zhuo et al., K-ion storage enhancement in Sb2O3/reduced graphene oxide using ether-based electrolyte. Adv. Energy Mater. 10(5), 1903455 (2020). https://doi.org/10.1002/aenm.201903455
- L. Wei, H.E. Karahan, S. Zhai, H. Liu, X. Chen et al., Amorphous bimetallic oxide-graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Adv. Mater. 29(38), 1701410 (2017). https://doi.org/10.1002/adma.201701410
- Y. Huang, Z. Wang, Y. Jiang, S. Li, M. Wang et al., Conductivity and pseudocapacitance optimization of bimetallic antimony-indium sulfide anodes for sodium-ion batteries with favorable kinetics. Adv. Sci. 5(10), 1800613 (2018). https://doi.org/10.1002/advs.201800613
- Z. Liang, C. Qu, W. Zhou, R. Zhao, H. Zhang et al., Synergistic effect of Co-Ni hybrid phosphide nanocages for ultrahigh capacity fast energy storage. Adv. Sci. 6(8), 1802005 (2019). https://doi.org/10.1002/advs.201802005
- J. Wang, L. Fan, Z. Liu, S. Chen, Q. Zhang et al., In situ alloying strategy for exceptional potassium ion batteries. ACS Nano 13(3), 3703–3713 (2019). https://doi.org/10.1021/acsnano.9b00634
- J. Wang, B. Wang, Z. Liu, L. Fan, Q. Zhang et al., Nature of bimetallic oxide Sb2MoO6/rGO anode for high-performance potassium-ion batteries. Adv. Sci. 6(17), 1900904 (2019). https://doi.org/10.1002/advs.201900904
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu et al., Phosphorene: an unexplored 2d semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z
- S.P. Koenig, R.A. Doganov, H. Schmidt, A.H.C. Neto, B. Özyilmaz, Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104(10), 103106 (2014). https://doi.org/10.1063/1.4868132
- Y. Cai, Q. Ke, G. Zhang, Y.-W. Zhang, Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene. J. Phys. Chem. C 119(6), 3102–3110 (2015). https://doi.org/10.1021/jp510863p
- C. He, J.H. Zhang, W.X. Zhang, T.T. Li, GeSe/BP van der Waals heterostructures as promising anode materials for potassium-ion batteries. J. Phys. Chem. C 123(9), 5157–5163 (2019). https://doi.org/10.1021/acs.jpcc.8b08909
- J. Hao, Z. Wang, Y. Wang, Sulfur-doped phosphorene as a promising anode for Na and K-ion batteries. Phys. Status Solidi B 256(8), 1800418 (2019). https://doi.org/10.1002/pssb.201800418
- Y. Tao, T. Huang, C. Ding, F. Yu, D. Tan et al., Few-layer phosphorene: an emerging electrode material for electrochemical energy storage. Appl. Mater. Today 15, 18–33 (2019). https://doi.org/10.1016/j.apmt.2018.12.008
- S. Chabi, C. Peng, D. Hu, Y. Zhu, Ideal three-dimensional electrode structures for electrochemical energy storage. Adv. Mater. 26(15), 2440–2445 (2014). https://doi.org/10.1002/adma.201305095
- J. Xu, X. Wang, X. Wang, D. Chen, X. Chen et al., Three-dimensional structural engineering for energy-storage devices: from microscope to macroscope. ChemElectroChem 1(6), 975–1002 (2014). https://doi.org/10.1002/celc.201400001
- Z. Liu, X. Yuan, S. Zhang, J. Wang, Q. Huang et al., Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 11(1), 12 (2019). https://doi.org/10.1038/s41427-019-0112-3
- L.-F. Chen, Y. Feng, H.-W. Liang, Z.-Y. Wu, S.-H. Yu, Macroscopic-scale three-dimensional carbon nanofiber architectures for electrochemical energy storage devices. Adv. Energy Mater. 7(23), 1700826 (2017). https://doi.org/10.1002/aenm.201700826
- K.T. Alali, J. Liu, Q. Liu, R. Li, K. Aljebawi et al., Grown carbon nanotubes on electrospun carbon nanofibers as a 3d carbon nanomaterial for high energy storage performance. ChemistrySelect 4(19), 5437–5458 (2019). https://doi.org/10.1002/slct.201803828
- S. Zhou, L. Zhou, Y. Zhang, J. Sun, J. Wen et al., Upgrading earth-abundant biomass into three-dimensional carbon materials for energy and environmental applications. J. Mater. Chem. A 7(9), 4217–4229 (2019). https://doi.org/10.1039/C8TA12159A
- S. Zhu, N. Zhao, J. Li, X. Deng, J. Sha et al., Hard-template synthesis of three-dimensional interconnected carbon networks: rational design, hybridization and energy-related applications. Nano Today 29, 100796 (2019). https://doi.org/10.1016/j.nantod.2019.100796
- R.A. Adams, J.-M. Syu, Y. Zhao, C.-T. Lo, A. Varma et al., Binder-free N- and O-rich carbon nanofiber anodes for long cycle life K-ion batteries. ACS Appl. Mater. Interfaces 9(21), 17872–17881 (2017). https://doi.org/10.1021/acsami.7b02476
- C. Li, X. Hu, B. Hu, Cobalt(II) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochim. Acta 253, 439–444 (2017). https://doi.org/10.1016/j.electacta.2017.09.090
- Y. Li, R.A. Adams, A. Arora, V.G. Pol, A.M. Levine et al., Sustainable potassium-ion battery anodes derived from waste-tire rubber. J. Electrochem. Soc. 164(6), A1234–A1238 (2017). https://doi.org/10.1149/2.1391706jes
- S.J.R. Prabakar, S.C. Han, C. Park, I.A. Bhairuba, M.J. Reece et al., Spontaneous formation of interwoven porous channels in hard-wood-based hard-carbon for high-performance anodes in potassium-ion batteries. J. Electrochem. Soc. 164(9), A2012–A2016 (2017). https://doi.org/10.1149/2.1251709jes
- X. Zhao, P. Xiong, J. Meng, Y. Liang, J. Wang et al., High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. J. Mater. Chem. A. 5(36), 19237–19244 (2017). https://doi.org/10.1039/C7TA04264G
- M. Chen, W. Wang, X. Liang, S. Gong, J. Liu et al., Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8(19), 1800171 (2018). https://doi.org/10.1002/aenm.201800171
- X. He, J. Liao, Z. Tang, L. Xiao, X. Ding et al., Highly disordered hard carbon derived from skimmed cotton as a high-performance anode material for potassium-ion batteries. J. Power Sour. 396, 533–541 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.073
- Z. Huang, Z. Chen, S. Ding, C. Chen, M. Zhang, Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification. Mater. Lett. 219, 19–22 (2018). https://doi.org/10.1016/j.matlet.2018.02.053
- B. Jia, Q. Yu, Y. Zhao, M. Qin, W. Wang et al., Bamboo-like hollow tubes with MoS2/N-doped-c interfaces boost potassium-ion storage. Adv. Funct. Mater. 28(40), 1803409 (2018). https://doi.org/10.1002/adfm.201803409
- Y. Li, C. Yang, F. Zheng, X. Ou, Q. Pan et al., High pyridine N-doped porous carbon derived from metal-organic frameworks for boosting potassium-ion storage. J. Mater. Chem. A 6(37), 17959–17966 (2018). https://doi.org/10.1039/C8TA06652C
- Z. Liu, P. Li, G. Suo, S. Gong, W. Wang et al., Zero-strain K0.6Mn1F2.7 hollow nanocubes for ultrastable potassium ion storage. Energy Environ. Sci. 11(10), 3033–3042 (2018). https://doi.org/10.1039/C8EE01611A
- X. Qi, K. Huang, X. Wu, W. Zhao, H. Wang et al., Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon 131, 79–85 (2018). https://doi.org/10.1016/j.carbon.2018.01.094
- Z. Wei, D. Wang, M. Li, Y. Gao, C. Wang et al., Fabrication of hierarchical potassium titanium phosphate spheroids: a host material for sodium-ion and potassium-ion storage. Adv. Energy Mater. 8(27), 1801102 (2018). https://doi.org/10.1002/aenm.201801102
- W. Zhang, W.K. Pang, V. Sencadas, Z. Guo, Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2(8), 1534–1547 (2018). https://doi.org/10.1016/j.joule.2018.04.022
- X. Cheng, D. Li, Y. Wu, R. Xu, Y. Yu, Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J. Mater. Chem. A 7(9), 4913–4921 (2019). https://doi.org/10.1039/C8TA11947C
- C. Gao, Q. Wang, S. Luo, Z. Wang, Y. Zhang et al., High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. J. Power Sour. 415, 165–171 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.073
- H. Lin, M. Li, X. Yang, D. Yu, Y. Zeng et al., Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv. Energy Mater. 9(20), 1900323 (2019). https://doi.org/10.1002/aenm.201900323
- H. Tan, X. Du, J.-Q. Huang, B. Zhang, KVPO4F as a novel insertion-type anode for potassium ion batteries. Chem. Commun. 55(75), 11311–11314 (2019). https://doi.org/10.1039/C9CC05368A
- Y. Tian, Y. An, S. Xiong, J. Feng, Y. Qian, A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J. Mater. Chem. A 7(16), 9716–9725 (2019). https://doi.org/10.1039/C9TA02233C
- Y. Wu, S. Hu, R. Xu, J. Wang, Z. Peng et al., Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 19(2), 1351–1358 (2019). https://doi.org/10.1021/acs.nanolett.8b04957
- G. Xia, C. Wang, P. Jiang, J. Lu, J. Diao et al., Nitrogen/oxygen co-doped mesoporous carbon octahedrons for high-performance potassium-ion batteries. J. Mater. Chem. A 7(19), 12317–12324 (2019). https://doi.org/10.1039/C8TA12504J
- F. Yang, H. Gao, J. Hao, S. Zhang, P. Li et al., Yolk–shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 29(16), 1808291 (2019). https://doi.org/10.1002/adfm.201808291
- H. Yang, R. Xu, Y. Yao, S. Ye, X. Zhou et al., Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv. Funct. Mater. 29(13), 1809195 (2019). https://doi.org/10.1002/adfm.201809195
- C. Liu, N. Xiao, H. Li, Q. Dong, Y. Wang et al., Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode. Chem. Eng. J. 382, 121759 (2020). https://doi.org/10.1016/j.cej.2019.05.120
- Z.-J. Fan, J. Yan, T. Wei, G.-Q. Ning, L.-J. Zhi et al., Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries. ACS Nano 5(4), 2787–2794 (2011). https://doi.org/10.1021/nn200195k
- H. Jiang, P.S. Lee, C. Li, 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6(1), 41–53 (2013). https://doi.org/10.1039/C2EE23284G
- X. Han, C. Yu, S. Zhou, C. Zhao, H. Huang et al., Ultrasensitive iron-triggered nanosized Fe-CoOOH integrated with graphene for highly efficient oxygen evolution. Adv. Energy Mater. 7(14), 1602148 (2017). https://doi.org/10.1002/aenm.201602148
- H. Li, Z. Cheng, Q. Zhang, A. Natan, Y. Yang et al., Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 18(11), 7407–7413 (2018). https://doi.org/10.1021/acs.nanolett.8b03845
- D.-S. Bin, X.-J. Lin, Y.-G. Sun, Y.-S. Xu, K. Zhang et al., Engineering hollow carbon architecture for high-performance K-ion battery anode. J. Am. Chem. Soc. 140(23), 7127–7134 (2018). https://doi.org/10.1021/jacs.8b02178
- Y. Sun, Y. Zhang, Z. Xing, D. Wei, Z. Ju et al., A hollow neuronal carbon skeleton with ultrahigh pyridinic N content as a self-supporting potassium-ion battery anode. Sustain. Energy Fuels 4(3), 1216–1224 (2020). https://doi.org/10.1039/C9SE00889F
- N. Li, F. Zhang, Y. Tang, Hierarchical T-Nb2O5 nanostructure with hybrid mechanisms of intercalation and pseudocapacitance for potassium storage and high-performance potassium dual-ion batteries. J. Mater. Chem. A 6(37), 17889–17895 (2018). https://doi.org/10.1039/C8TA07987K
- K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu et al., A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57(17), 4687–4691 (2018). https://doi.org/10.1002/anie.201801389
- Y. Fang, X.-Y. Yu, X.W. Lou, Nanostructured electrode materials for advanced sodium-ion batteries. Matter 1(1), 90–114 (2019). https://doi.org/10.1016/j.matt.2019.05.007
- X. Wei, X. Wang, X. Tan, Q. An, L. Mai, Nanostructured conversion-type negative electrode materials for low-cost and high-performance sodium-ion batteries. Adv. Funct. Mater. 28(46), 1804458 (2018). https://doi.org/10.1002/adfm.201804458
- P. Kumar, K.-H. Kim, V. Bansal, P. Kumar, Nanostructured materials: a progressive assessment and future direction for energy device applications. Coord. Chem. Rev. 353, 113–141 (2017). https://doi.org/10.1016/j.ccr.2017.10.005
- A. Manthiram, A. VadivelMurugan, A. Sarkar, T. Muraliganth, Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1(6), 621–638 (2008). https://doi.org/10.1039/B811802G
- J. Hongjun, H. Ling, W. Yunhong, W. Boya, W. Hao et al., Bio-derived hierarchical multicore-shell Fe2N-nanoparticle-impregnated N-doped carbon nanofiber bundles: a host material for lithium-/potassium-ion storage. Nano-Micro Lett. 11, 56 (2019). https://doi.org/10.1007/s40820-019-0290-0
- J. Mao, T. Zhou, Y. Zheng, H. Gao, H.K. Liu et al., Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A 6(8), 3284–3303 (2018). https://doi.org/10.1039/C7TA10500B
- H. Hou, G. Shao, W. Yang, W.-Y. Wong, One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption. Prog. Mater Sci. 113, 100671 (2020). https://doi.org/10.1016/j.pmatsci.2020.100671
- L. Mai, J. Sheng, L. Xu, S. Tan, J. Meng, One-dimensional hetero-nanostructures for rechargeable batteries. Acc. Chem. Res. 51(4), 950–959 (2018). https://doi.org/10.1021/acs.accounts.8b00031
- W. Zhang, Y. Liu, Z. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5(5), 7412 (2019). https://doi.org/10.1126/sciadv.aav7412
- Y. Wu, Y. Yu, 2D material as anode for sodium ion batteries: recent progress and perspectives. Energy Storage Mater. 16, 323–343 (2019). https://doi.org/10.1016/j.ensm.2018.05.026
- X. Chen, C. Li, M. Grätzel, R. Kostecki, S.S. Mao, Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41(23), 7909–7937 (2012). https://doi.org/10.1039/C2CS35230C
- I. Hasa, J. Hassoun, S. Passerini, Nanostructured Na-ion and Li-ion anodes for battery application: a comparative overview. Nano Res. 10(12), 3942–3969 (2017). https://doi.org/10.1007/s12274-017-1513-7
- G. Chen, L. Yan, H. Luo, S. Guo, Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv. Mater. 28(35), 7580–7602 (2016). https://doi.org/10.1002/adma.201600164
- X. Chang, X. Zhou, X. Ou, C.-S. Lee, J. Zhou et al., Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 9(47), 1902672 (2019). https://doi.org/10.1002/aenm.201902672
- P. Trogadas, V. Ramani, P. Strasser, T.F. Fuller, M.-O. Coppens, Hierarchically structured nanomaterials for electrochemical energy conversion. Angew. Chem. Int. Ed. 55(1), 122–148 (2016). https://doi.org/10.1002/anie.201506394
- Y. Lu, L. Yu, X.W. Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4(5), 972–996 (2018). https://doi.org/10.1016/j.chempr.2018.01.003
- N.-W. Li, Y.-X. Yin, S. Xin, J.-Y. Li, Y.-G. Guo, Methods for the stabilization of nanostructured electrode materials for advanced rechargeable batteries. Small Methods 1(6), 1700094 (2017). https://doi.org/10.1002/smtd.201700094
- Y. Wang, Z. Wang, Y. Chen, H. Zhang, M. Yousaf et al., Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode. Adv. Mater. 30(32), 1802074 (2018). https://doi.org/10.1002/adma.201802074
- J. Li, W. Qin, J. Xie, H. Lei, Y. Zhu et al., Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 53, 415–424 (2018). https://doi.org/10.1016/j.nanoen.2018.08.075
- A. Yu, Q. Pan, M. Zhang, D. Xie, Y. Tang, Fast rate and long life potassium-ion based dual-ion battery through 3d porous organic negative electrode. Adv. Funct. Mater. 30(24), 2001440 (2020). https://doi.org/10.1002/adfm.202001440
- J. Wu, Q. Zhang, S. Liu, J. Long, Z. Wu et al., Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy 77, 105118 (2020). https://doi.org/10.1016/j.nanoen.2020.105118
- Y. Ai, Z. Han, X. Jiang, H. Luo, J. Cui et al., General construction of 2D ordered mesoporous iron-based metal-organic nanomeshes. Small (2020). https://doi.org/10.1002/smll.202002701
- Z. Han, Y. Ai, X. Jiang, Y. You, F. Wei et al., Pre-polymerization enables controllable synthesis of nanosheet-based porphyrin polymers towards high-performance li-ion batteries. Chem. Eur. J. 26(46), 10433–10438 (2020). https://doi.org/10.1002/chem.202001943
- G. Chang, Y. Zhao, L. Dong, D.P. Wilkinson, L. Zhang et al., A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. J. Mater. Chem. A 8(10), 4996–5048 (2020). https://doi.org/10.1039/C9TA12169B
- H. Huang, R. Xu, Y. Feng, S. Zeng, Y. Jiang et al., Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 32(8), 1904320 (2020). https://doi.org/10.1002/adma.201904320
- Q. Zhang, J. Mao, W.K. Pang, T. Zheng, V. Sencadas et al., Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 8(15), 1703288 (2018). https://doi.org/10.1002/aenm.201703288
- H. Li, S. Gan, D. Han, W. Ma, B. Cai et al., High performance Pd nanocrystals supported on SnO2-decorated graphene for aromatic nitro compound reduction. J. Mater. Chem. A 2(10), 3461–3467 (2014). https://doi.org/10.1039/C3TA14506A
- J. Cai, R. Cai, Z. Sun, X. Wang, N. Wei et al., Confining TiO2 nanotubes in pecvd-enabled graphene capsules toward ultrafast K-Ion storage: in situ TEM/XRD study and DFT analysis. Nano-Micro Lett. 12(1), 123 (2020). https://doi.org/10.1007/s40820-020-00460-y
References
A. Eftekhari, Potassium secondary cell based on Prussian blue cathode. J. Power Sour. 126(1), 221–228 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.007
R. Rajagopalan, Y. Tang, X. Ji, C. Jia, H. Wang, Advancements and challenges in potassium ion batteries: a comprehensive review. Adv. Funct. Mater. 30(12), 1909486 (2020). https://doi.org/10.1002/adfm.201909486
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi et al., Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011). https://doi.org/10.1021/cr100290v
N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
P.W. Gruber, P.A. Medina, G.A. Keoleian, S.E. Kesler, M.P. Everson et al., Global lithium availability. J. Ind. Ecol. 15(5), 760–775 (2011). https://doi.org/10.1111/j.1530-9290.2011.00359.x
H. Vikström, S. Davidsson, M. Höök, Lithium availability and future production outlooks. Appl. Energy 110, 252–266 (2013). https://doi.org/10.1016/j.apenergy.2013.04.005
B. Swain, Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172, 388–403 (2017). https://doi.org/10.1016/j.seppur.2016.08.031
N. Wang, C. Chu, X. Xu, Y. Du, J. Yang et al., Comprehensive new insights and perspectives into Ti-based anodes for next-generation alkaline metal (Na+, K+) ion batteries. Adv. Energy Mater. 8(27), 1801888 (2018). https://doi.org/10.1002/aenm.201801888
J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 28(43), 1802938 (2018). https://doi.org/10.1002/adfm.201802938
M.M. Huie, D.C. Bock, E.S. Takeuchi, A.C. Marschilok, K.J. Takeuchi, Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 287, 15–27 (2015). https://doi.org/10.1016/j.ccr.2014.11.005
D. Selvakumaran, A. Pan, S. Liang, G. Cao, A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A 7(31), 18209–18236 (2019). https://doi.org/10.1039/c9ta05053a
Y. Zhang, S. Liu, Y. Ji, J. Ma, H. Yu, Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30(38), 1706310 (2018). https://doi.org/10.1002/adma.201706310
M. Walter, M.V. Kovalenko, K.V. Kravchyk, Challenges and benefits of post-lithium-ion batteries. New J. Chem. 44(5), 1677–1683 (2020). https://doi.org/10.1039/c9nj05682c
W. Liu, L. Dong, B. Jiang, Y. Huang, X. Wang et al., Layered vanadium oxides with proton and zinc ion insertion for zinc ion batteries. Electrochim. Acta 320, 134565 (2019). https://doi.org/10.1016/j.electacta.2019.134565
M. Xu, S. Lei, J. Qi, Q. Dou, L. Liu et al., Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 12(4), 3733–3740 (2018). https://doi.org/10.1021/acsnano.8b00959
F. Wu, H. Yang, Y. Bai, C. Wu, Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 31(16), 1806510 (2019). https://doi.org/10.1002/adma.201806510
Z. Li, B. Niu, J. Liu, J. Li, F. Kang, Rechargeable aluminum-ion battery based on MoS2 microsphere cathode. ACS Appl. Mater. Interfaces 10(11), 9451–9459 (2018). https://doi.org/10.1021/acsami.8b00100
F. Liu, Y. Liu, X. Zhao, K. Liu, H. Yin et al., Prelithiated V2C MXene: a high-performance electrode for hybrid magnesium/lithium-ion batteries by ion cointercalation. Small 16(8), 1906076 (2020). https://doi.org/10.1002/smll.201906076
B. Jiang, C. Xu, C. Wu, L. Dong, J. Li et al., Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 229, 422–428 (2017). https://doi.org/10.1016/j.electacta.2017.01.163
S. Liu, J.J. Hu, N.F. Yan, G.L. Pan, G.R. Li et al., Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries. Energy Environ. Sci. 5(12), 9743–9746 (2012). https://doi.org/10.1039/c2ee22987k
S. Lee, J. Cho, Critical requirements for rapid charging of rechargeable Al- and Li-ion batteries. Angew. Chem. Int. Ed. 54(33), 9452–9455 (2015). https://doi.org/10.1002/anie.201504466
Y. Tian, Y. An, H. Wei, C. Wei, Y. Tao et al., Micron-sized nanoporous vanadium pentoxide arrays for high-performance gel zinc-ion batteries and potassium batteries. Chem. Mater. 32(9), 4054–4064 (2020). https://doi.org/10.1021/acs.chemmater.0c00787
Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
M. Zoidl, C. God, P. Handel, R. Fischer, C. Lenardt et al., Communication-imidazole based magnesium salt as conductive salt for rechargeable magnesium-ion batteries. J. Electrochem. Soc. 163(10), A2461–A2463 (2016). https://doi.org/10.1149/2.0101613jes
L. Bin, R. Masse, C. Liu, Y. Hu, W. Li et al., Kinetic surface control for improved magnesium-electrolyte interfaces for magnesium ion batteries. Energy Storage Mater. 22, 96–104 (2019). https://doi.org/10.1016/j.ensm.2019.06.035
R.A. Adams, A. Varma, V.G. Pol, Carbon anodes for nonaqueous alkali metal-ion batteries and their thermal safety aspects. Adv. Energy Mater. 9(35), 1900550 (2019). https://doi.org/10.1002/aenm.201900550
Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015). https://doi.org/10.1016/j.elecom.2015.09.002
C. Vaalma, G.A. Giffin, D. Buchholz, S. Passerini, Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J. Electrochem. Soc. 163(7), A1295–A1299 (2016). https://doi.org/10.1149/2.0921607jes
Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016). https://doi.org/10.1002/aenm.201501874
J. Zhao, X. Zou, Y. Zhu, Y. Xu, C. Wang, Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 26(44), 8103–8110 (2016). https://doi.org/10.1002/adfm.201602248
I. Sultana, M.M. Rahman, T. Ramireddy, Y. Chen, A.M. Glushenkov, High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 5(45), 23506–23512 (2017). https://doi.org/10.1039/C7TA02483E
X. Wu, D.P. Leonard, X. Ji, Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem. Mater. 29(12), 5031–5042 (2017). https://doi.org/10.1021/acs.chemmater.7b01764
M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, H. Nakai, Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 164(2), A54–A60 (2016). https://doi.org/10.1149/2.0211702jes
C. Zhang, H. Zhao, Y. Lei, Recent research progress of anode materials for potassium-ion batteries. Energy Environ. Mater. 3(2), 105–120 (2020). https://doi.org/10.1002/eem2.12059
H. Li, Z. Cheng, A. Natan, A.M. Hafez, D. Cao et al., Dual-function, tunable, nitrogen-doped carbon for high-performance Li metal-sulfur full cell. Small 15(5), 1804609 (2019). https://doi.org/10.1002/smll.201804609
Y. Lu, J. Chen, Robust self-supported anode by integrating Sb2S3 nanoparticles with S, N-codoped graphene to enhance K-storage performance. Sci. China Chem. 60(12), 1533–1539 (2017). https://doi.org/10.1007/s11426-017-9166-0
I. Sultana, M.M. Rahman, S. Mateti, V.G. Ahmadabadi, A.M. Glushenkov et al., K-ion and Na-ion storage performances of Co3O4-Fe2O3 nanoparticle-decorated super P carbon black prepared by a ball milling process. Nanoscale 9(10), 3646–3654 (2017). https://doi.org/10.1039/C6NR09613A
W. Zhang, J. Mao, S. Li, Z. Chen, Z. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139(9), 3316–3319 (2017). https://doi.org/10.1021/jacs.6b12185
H. Gao, T. Zhou, Y. Zheng, Q. Zhang, Y. Liu et al., CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 27(43), 1702634 (2017). https://doi.org/10.1002/adfm.201702634
B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassium-Ion Batteries. Adv. Energy Mater. 8(25), 1801149 (2018). https://doi.org/10.1002/aenm.201801149
W. Wang, B. Jiang, C. Qian, F. Lv, J. Feng et al., Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 30(30), 1801812 (2018). https://doi.org/10.1002/adma.201801812
Q. Liu, L. Fan, R. Ma, S. Chen, X. Yu et al., Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem. Commun. 54(83), 11773–11776 (2018). https://doi.org/10.1039/C8CC05257C
X. Wu, W. Zhao, H. Wang, X. Qi, Z. Xing et al., Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J. Power Sour. 378, 460–467 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.077
C. Liu, S. Luo, H. Huang, Y. Zhai, Z. Wang, Direct growth of MoO2/reduced graphene oxide hollow sphere composites as advanced anode materials for potassium-ion batteries. Chemsuschem 12(4), 873–880 (2019). https://doi.org/10.1002/cssc.201802494
C. Nithya, P. Vishnuprakash, S. Gopukumar, A Mn3O4 nanospheres@rGO architecture with capacitive effects on high potassium storage capability. Nanoscale Adv. 1(11), 4347–4358 (2019). https://doi.org/10.1039/C9NA00425D
R. Verma, P.N. Didwal, H.-S. Ki, G. Cao, C.-J. Park, SnP3/carbon nanocomposite as an anode material for potassium-ion batteries. ACS Appl. Mater. Interfaces 11(30), 26976–26984 (2019). https://doi.org/10.1021/acsami.9b08088
H. Qiu, L. Zhao, M. Asif, X. Huang, T. Tang et al., SnO2 nanoparticles anchored on carbon foam as a freestanding anode for high performance potassium-ion batteries. Energy Environ. Sci. 13(2), 571–578 (2020). https://doi.org/10.1039/C9EE03682B
D. Liu, X. Huang, D. Qu, D. Zheng, G. Wang et al., Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy 52, 1–10 (2018). https://doi.org/10.1016/j.nanoen.2018.07.023
Q. Yu, B. Jiang, J. Hu, C.-Y. Lao, Y. Gao et al., Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: a flexible framework for high-performance potassium-ion batteries. Adv. Sci. 5(10), 1800782 (2018). https://doi.org/10.1002/advs.201800782
P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang et al., Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
R. Hao, H. Lan, C. Kuang, H. Wang, L. Guo, Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 128, 224–230 (2018). https://doi.org/10.1016/j.carbon.2017.11.064
Y. Liu, C. Yang, Q. Pan, Y. Li, G. Wang et al., Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries. J. Mater. Chem. A 6(31), 15162–15169 (2018). https://doi.org/10.1039/C8TA04694H
P. Xiong, X. Zhao, Y. Xu, Nitrogen-doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes. Chemsuschem 11(1), 202–208 (2018). https://doi.org/10.1002/cssc.201701759
W.-C. Chang, J.-H. Wu, K.-T. Chen, H.-Y. Tuan, Red phosphorus potassium-ion battery anodes. Adv. Sci. 6(9), 1801354 (2019). https://doi.org/10.1002/advs.201801354
W. Luo, F. Li, W. Zhang, K. Han, J.-J. Gaumet et al., Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 12(5), 1025–1031 (2019). https://doi.org/10.1007/s12274-019-2335-6
K. Cao, H. Liu, W. Li, C. Xu, Q. Han et al., K2Ti6O13 nanorods for potassium-ion battery anodes. J. Electroanal. Chem. 841, 51–55 (2019). https://doi.org/10.1016/j.jelechem.2019.04.020
X. Xiang, D. Liu, X. Zhu, K. Fang, K. Zhou et al., Evaporation-induced formation of hollow bismuth@N-doped carbon nanorods for enhanced electrochemical potassium storage. Appl. Surf. Sci. 514, 145947 (2020). https://doi.org/10.1016/j.apsusc.2020.145947
M. Naguib, R.A. Adams, Y. Zhao, D. Zemlyanov, A. Varma et al., Electrochemical performance of MXenes as K-ion battery anodes. Chem. Commun. 53(51), 6883–6886 (2017). https://doi.org/10.1039/C7CC02026K
K. Xie, K. Yuan, X. Li, W. Lu, C. Shen et al., Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene. Small 13(42), 1701471 (2017). https://doi.org/10.1002/smll.201701471
Z. Chen, D. Yin, M. Zhang, Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small 14(17), 1703818 (2018). https://doi.org/10.1002/smll.201703818
C. Yang, J. Feng, F. Lv, J. Zhou, C. Lin et al., Metallic graphene-like VSe2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism. Adv. Mater. 30(27), 1800036 (2018). https://doi.org/10.1002/adma.201800036
L. Fang, J. Xu, S. Sun, B. Lin, Q. Guo et al., Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small 15(10), 1804806 (2019). https://doi.org/10.1002/smll.201804806
Z. Ju, P. Li, G. Ma, Z. Xing, Q. Zhuang et al., Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 11, 38–46 (2018). https://doi.org/10.1016/j.ensm.2017.09.009
G. Ma, K. Huang, J.-S. Ma, Z. Ju, Z. Xing et al., Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 5(17), 7854–7861 (2017). https://doi.org/10.1039/C7TA01108C
J. Ge, L. Fan, J. Wang, Q. Zhang, Z. Liu et al., MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 8(29), 1801477 (2018). https://doi.org/10.1002/aenm.201801477
H. Tian, X. Yu, H. Shao, L. Dong, Y. Chen et al., Unlocking few-layered ternary chalcogenides for high-performance potassium-ion storage. Adv. Energy Mater. 9(29), 1901560 (2019). https://doi.org/10.1002/aenm.201901560
R. Jain, P. Hundekar, T. Deng, X. Fan, Y. Singh et al., Reversible alloying of phosphorene with potassium and its stabilization using reduced graphene oxide buffer layers. ACS Nano 13(12), 14094–14106 (2019). https://doi.org/10.1021/acsnano.9b06680
X. Ren, Q. Zhao, W.D. McCulloch, Y. Wu, MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 10(4), 1313–1321 (2017). https://doi.org/10.1007/s12274-016-1419-9
S.-M. Xu, Y.-C. Ding, X. Liu, Q. Zhang, K.-X. Wang et al., Boosting potassium storage capacity based on stress-induced size-dependent solid-solution behavior. Adv. Energy Mater. 8(32), 1802175 (2018). https://doi.org/10.1002/aenm.201802175
Y. An, Y. Tian, L. Ci, S. Xiong, J. Feng et al., Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 12(12), 12932–12940 (2018). https://doi.org/10.1021/acsnano.8b08740
Q. Yang, Z. Wang, W. Xi, G. He, Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem. Commun. 101, 68–72 (2019). https://doi.org/10.1016/j.elecom.2019.02.016
Z. Tai, Q. Zhang, Y. Liu, H. Liu, S. Dou, Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 123, 54–61 (2017). https://doi.org/10.1016/j.carbon.2017.07.041
L. Deng, Z. Yang, L. Tan, L. Zeng, Y. Zhu et al., Investigation of the prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv. Mater. 30(31), 1802510 (2018). https://doi.org/10.1002/adma.201802510
K. Huang, Z. Xing, L. Wang, X. Wu, W. Zhao et al., Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 6(2), 434–442 (2018). https://doi.org/10.1039/C7TA08171E
J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi et al., Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
L. Liu, Z. Lin, J.-Y. Chane-Ching, H. Shao, P.-L. Taberna et al., 3D rGO aerogel with superior electrochemical performance for K-Ion battery. Energy Storage Mater. 19, 306–313 (2019). https://doi.org/10.1016/j.ensm.2019.03.013
W. Zhang, J. Ming, W. Zhao, X. Dong, M.N. Hedhili et al., Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 29(35), 1903641 (2019). https://doi.org/10.1002/adfm.201903641
Y. Zhang, L. Yang, Y. Tian, L. Li, J. Li et al., Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Mater. Chem. Phys. 229, 303–309 (2019). https://doi.org/10.1016/j.matchemphys.2019.03.021
Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
C. Shen, T. Cheng, C. Liu, L. Huang, M. Cao et al., Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries. J. Mater. Chem. A 8(1), 453–460 (2020). https://doi.org/10.1039/C9TA11000C
V. Gabaudan, R. Berthelot, L. Stievano, L. Monconduit, Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries. J. Phys. Chem. C 122(32), 18266–18273 (2018). https://doi.org/10.1021/acs.jpcc.8b04575
I. Sultana, M.M. Rahman, Y. Chen, A.M. Glushenkov, Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv. Funct. Mater. 28(5), 1703857 (2018). https://doi.org/10.1002/adfm.201703857
B. Wang, Z. Deng, Y. Xia, J. Hu, H. Li et al., Anode materials: realizing reversible conversion-alloying of Sb(V) in polyantimonic acid for fast and durable lithium- and potassium-ion storage. Adv. Energy Mater. 10(1), 2070002 (2020). https://doi.org/10.1002/aenm.202070002
H. Huang, J. Wang, X. Yang, R. Hu, J. Liu et al., Unveiling the advances of nanostructure design for alloy-type potassium-ion battery anodes via in situ TEM. Angew. Chem. Int. Ed. 59(34), 14504–14510 (2020). https://doi.org/10.1002/anie.202004193
X. Ge, S. Liu, M. Qiao, Y. Du, Y. Li et al., Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew. Chem. Int. Ed. 58(41), 14578–14583 (2019). https://doi.org/10.1002/anie.201908918
J. Lang, J. Li, X. Ou, F. Zhang, K. Shin et al., A flexible potassium-ion hybrid capacitor with superior rate performance and long cycling life. ACS Appl. Mater. Interfaces 12(2), 2424–2431 (2020). https://doi.org/10.1021/acsami.9b17635
D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 8(34), 1802386 (2018). https://doi.org/10.1002/aenm.201802386
J. Zheng, Y. Yang, X. Fan, G. Ji, X. Ji et al., Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 12(2), 615–623 (2019). https://doi.org/10.1039/C8EE02836B
H. Li, C. Zhao, Y. Yin, Y. Zou, Y. Xia et al., N-doped carbon coated bismuth nanorods with a hollow structure as an anode for superior-performance potassium-ion batteries. Nanoscale 12(7), 4309–4313 (2020). https://doi.org/10.1039/C9NR09867D
Y. Dong, Z.-S. Wu, S. Zheng, X. Wang, J. Qin et al., Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11(5), 4792–4800 (2017). https://doi.org/10.1021/acsnano.7b01165
P. Li, W. Wang, S. Gong, F. Lv, H. Huang et al., Hydrogenated Na2Ti3O7 epitaxially grown on flexible n-doped carbon sponge for potassium-ion batteries. ACS Appl. Mater. Interfaces 10(44), 37974–37980 (2018). https://doi.org/10.1021/acsami.8b11354
J. Jiang, Y. Zhang, P. Nie, G. Xu, M. Shi et al., Progress of nanostructured electrode materials for supercapacitors. Adv. Sustain. Syst. 2(1), 1700110 (2018). https://doi.org/10.1002/adsu.201700110
Y. Ai, Y. You, F. Wei, X. Jiang, Z. Han et al., Hollow bio-derived polymer nanospheres with ordered mesopores for sodium-ion battery. Nano-Micro Lett. 12(1), 31 (2020). https://doi.org/10.1007/s40820-020-0370-1
H. Wang, X. Wu, X. Qi, W. Zhao, Z. Ju, Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater. Res. Bull. 103, 32–37 (2018). https://doi.org/10.1016/j.materresbull.2018.03.018
C. Yan, X. Gu, L. Zhang, Y. Wang, L. Yan et al., Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: promising anode materials for sodium and potassium ion batteries. J. Mater. Chem. A 6(36), 17371–17377 (2018). https://doi.org/10.1039/C8TA05297B
W. Zhang, W. Miao, X. Liu, L. Li, Z. Yu et al., High-rate and ultralong-stable potassium-ion batteries based on antimony-nanoparticles encapsulated in nitrogen and phosphorus co-doped mesoporous carbon nanofibers as an anode material. J. Alloys Compd. 769, 141–148 (2018). https://doi.org/10.1016/j.jallcom.2018.07.369
Z. Liu, K. Han, P. Li, W. Wang, D. He et al., Tuning metallic Co0.85Se quantum dots/carbon hollow polyhedrons with tertiary hierarchical structure for high-performance potassium ion batteries. Nano-Micro Lett. 11(1), 96 (2019). https://doi.org/10.1007/s40820-019-0326-5
A. Mahmood, S. Li, Z. Ali, H. Tabassum, B. Zhu et al., Ultrafast sodium/potassium-ion intercalation into hierarchically porous thin carbon shells. Adv. Mater. 31(2), 1805430 (2019). https://doi.org/10.1002/adma.201805430
Q. Tan, P. Li, K. Han, Z. Liu, Y. Li et al., Chemically bubbled hollow FexO nanospheres anchored on 3D N-doped few-layer graphene architecture as a performance-enhanced anode material for potassium-ion batteries. J. Mater. Chem. A 7(2), 744–754 (2019). https://doi.org/10.1039/C8TA09797F
M. Tao, G. Du, Y. Zhang, W. Gao, D. Liu et al., TiOxNy nanoparticles/C composites derived from MXene as anode material for potassium-ion batteries. Chem. Eng. J. 369, 828–833 (2019). https://doi.org/10.1016/j.cej.2019.03.144
Z. Wang, K. Dong, D. Wang, S. Luo, Y. Liu et al., Ultrafine SnO2 nanoparticles encapsulated in 3D porous carbon as a high-performance anode material for potassium-ion batteries. J. Power Sour. 441, 227191 (2019). https://doi.org/10.1016/j.jpowsour.2019.227191
H. Wu, Q. Yu, C.-Y. Lao, M. Qin, W. Wang et al., Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage. Energy Storage Mater. 18, 43–50 (2019). https://doi.org/10.1016/j.ensm.2018.09.025
Y. Han, W. Li, K. Zhou, X. Wu, H. Wu et al., Bimetallic sulfide Co9S8/N-C@MoS2 dodecahedral heterogeneous nanocages for boosted Li/K storage. ChemNanoMat 6(1), 132–138 (2020). https://doi.org/10.1002/cnma.201900601
G. Ma, X. Xu, Z. Feng, C. Hu, Y. Zhu et al., Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Res. 13(3), 802–809 (2020). https://doi.org/10.1007/s12274-020-2699-7
Q. Gan, J. Xie, Y. Zhu, F. Zhang, P. Zhang et al., Sub-20 nm carbon nanoparticles with expanded interlayer spacing for high-performance potassium storage. ACS Appl. Mater. Interfaces 11(1), 930–939 (2019). https://doi.org/10.1021/acsami.8b18553
Z. Xing, Y. Qi, Z. Jian, X. Ji, Polynanocrystalline graphite: a new carbon anode with superior cycling performance for K-ion batteries. ACS Appl. Mater. Interfaces 9(5), 4343–4351 (2017). https://doi.org/10.1021/acsami.6b06767
Y. An, H. Fei, G. Zeng, L. Ci, B. Xi et al., Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte. J. Power Sour. 378, 66–72 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.033
S. Liu, J. Mao, Q. Zhang, Z. Wang, W.K. Pang et al., An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew. Chem. Int. Ed. 59(9), 3638–3644 (2020). https://doi.org/10.1002/anie.201913174
Z. Li, N. Sun, R.A. Soomro, Z. Guan, L. Ma et al., Structurally engineered hollow graphitized carbon nanocages as high-performance anodes for potassium ion batteries. ACS Nano (2020). https://doi.org/10.1021/acsnano.0c01150
H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3d porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(472D Materials), 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
M. Jing, J. Wang, H. Hou, Y. Yang, Y. Zhang et al., Carbon quantum dot coated Mn3O4 with enhanced performances for lithium-ion batteries. J. Mater. Chem. A 3(32), 16824–16830 (2015). https://doi.org/10.1039/C5TA03610K
L. Ruiyi, J. Yuanyuan, Z. Xiaoyan, L. Zaijun, G. Zhiguo et al., Significantly enhanced electrochemical performance of lithium titanate anode for lithium ion battery by the hybrid of nitrogen and sulfur co-doped graphene quantum dots. Electrochim. Acta 178, 303–311 (2015). https://doi.org/10.1016/j.electacta.2015.08.018
Y. Yang, X. Ji, M. Jing, H. Hou, Y. Zhu et al., Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J. Mater. Chem. A 3(10), 5648–5655 (2015). https://doi.org/10.1039/C4TA05611F
Y. Zhang, C.W. Foster, C.E. Banks, L. Shao, H. Hou et al., Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv. Mater. 28(42), 9391–9399 (2016). https://doi.org/10.1002/adma.201601621
D. Kong, Y. Wang, S. Huang, Y.V. Lim, J. Zhang et al., Surface modification of Na2Ti3O7 nanofibre arrays using N-doped graphene quantum dots as advanced anodes for sodium-ion batteries with ultra-stable and high-rate capability. J. Mater. Chem. A 7(20), 12751–12762 (2019). https://doi.org/10.1039/C9TA01641D
H. Nan, Y. Zhang, H. Wei, H. Chen, C. Xue et al., Low-cost and environmentally friendly synthesis of an Al3+ and Mn4+ co-doped Li4Ti5O12 composite with carbon quantum dots as an anode for lithium-ion batteries. RSC Adv. 9(38), 22101–22105 (2019). https://doi.org/10.1039/C9RA03897C
X. Yin, C. Zhi, W. Sun, L.-P. Lv, Y. Wang, Multilayer NiO@Co3O4@graphene quantum dots hollow spheres for high-performance lithium-ion batteries and supercapacitors. J. Mater. Chem. A 7(13), 7800–7814 (2019). https://doi.org/10.1039/C8TA11982A
Y. Zhang, K. Zhang, K. Jia, G. Liu, S. Ren et al., Preparation of coal-based graphene quantum dots/α-Fe2O3 nanocomposites and their lithium-ion storage properties. Fuel 241, 646–652 (2019). https://doi.org/10.1016/j.fuel.2018.12.030
Y. Fang, R. Hu, B. Liu, Y. Zhang, K. Zhu et al., MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 7(10), 5363–5372 (2019). https://doi.org/10.1039/C8TA12069B
P. Xiong, P. Bai, S. Tu, M. Cheng, J. Zhang et al., Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small 14(33), 1802140 (2018). https://doi.org/10.1002/smll.201802140
S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). https://doi.org/10.1038/354056a0
H. Li, D. Li, H. Zhou, One-Dimensional Nanostructured Metal Oxides for Lithium Ion Batteries, vol. 13 (Wiley, Hoboken, 2012), pp. 295–320
T. Jin, Q. Han, Y. Wang, L. Jiao, 1D nanomaterials: design, synthesis, and applications in sodium-ion batteries. Small 14(2), 1703086 (2018). https://doi.org/10.1002/smll.201703086
S. Chong, Y. Wu, C. Liu, Y. Chen, S. Guo et al., Cryptomelane-type MnO2/carbon nanotube hybrids as bifunctional electrode material for high capacity potassium-ion full batteries. Nano Energy 54, 106–115 (2018). https://doi.org/10.1016/j.nanoen.2018.09.072
X. Zhao, Y. Tang, C. Ni, J. Wang, A. Star et al., Free-standing nitrogen-doped cup-stacked carbon nanotube mats for potassium-ion battery anodes. ACS Appl. Energy Mater. 1(4), 1703–1707 (2018). https://doi.org/10.1021/acsaem.8b00182
W. Miao, Y. Zhang, H. Li, Z. Zhang, L. Li et al., ZIF-8/ZIF-67-derived 3D amorphous carbon-encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode. J. Mater. Chem. A 7(10), 5504–5512 (2019). https://doi.org/10.1039/C8TA12457D
W. Miao, X. Zhao, R. Wang, Y. Liu, L. Li et al., Carbon shell encapsulated cobalt phosphide nanoparticles embedded in carbon nanotubes supported on carbon nanofibers: a promising anode for potassium ion battery. J. Colloid Interface Sci. 556, 432–440 (2019). https://doi.org/10.1016/j.jcis.2019.08.090
C. Shen, K. Yuan, T. Tian, M. Bai, J.-G. Wang et al., Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries. ACS Appl. Mater. Interfaces 11(5), 5015–5021 (2019). https://doi.org/10.1021/acsami.8b18834
W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang et al., Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 12(5), 1605–1612 (2019). https://doi.org/10.1039/C9EE00536F
T. Jiao, S. Wu, J. Cheng, D. Chen, D. Shen et al., Bismuth nanorod networks confined in a robust carbon matrix as long-cycling and high-rate potassium-ion battery anodes. J. Mater. Chem. A 8, 8440–8446 (2020). https://doi.org/10.1039/D0TA02414G
S. Peng, L. Wang, Z. Zhu, K. Han, Electrochemical performance of reduced graphene oxide/carbon nanotube hybrid papers as binder-free anodes for potassium-ion batteries. J. Phys. Chem. Solids 138, 109296 (2020). https://doi.org/10.1016/j.jpcs.2019.109296
J. Wang, B. Wang, X. Liu, J. Bai, H. Wang et al., Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem. Eng. J. 382, 123050 (2020). https://doi.org/10.1016/j.cej.2019.123050
X. Wang, J. Ma, J. Wang, X. Li, N-doped hollow carbon nanofibers anchored hierarchical FeP nanosheets as high-performance anode for potassium-ion batteries. J. Alloys Compd. 821, 153268 (2020). https://doi.org/10.1016/j.jallcom.2019.153268
B.I. Yakobson, R.E. Smalley, Fullerene nanotubes: C1,000,000 and beyond: some unusual new molecules-long, hollow fibers with tantalizing electronic and mechanical properties-have joined diamonds and graphite in the carbon family. Am. Sci. Sci. Res. Honor Soc. 85(4), 324–337 (1997)
B.Q. Wei, R. Vajtai, P.M. Ajayan, Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79(8), 1172–1174 (2001). https://doi.org/10.1063/1.1396632
H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500(1), 218–241 (2002). https://doi.org/10.1016/S0039-6028(01)01558-8
Q. Zhao, M.B. Nardelli, J. Bernholc, Ultimate strength of carbon nanotubes: a theoretical study. Phys. Rev. B 65(14), 144105 (2002). https://doi.org/10.1103/PhysRevB.65.144105
C. Liu, H. Wang, S. Zhang, M. Han, Y. Cao et al., K2Ti6O13/carbon core-shell nanorods as a superior anode material for high-rate potassium-ion batteries. Nanoscale 12(21), 11427–11434 (2020). https://doi.org/10.1039/D0NR00898B
B. Kishore, V.G.N. Munichandraiah, K2Ti4O9: a promising anode material for potassium ion batteries. J. Electrochem. Soc. 163(13), A2551–A2554 (2016). https://doi.org/10.1149/2.0421613jes
S. Qi, X. Xie, X. Peng, D.H.L. Ng, M. Wu et al., Mesoporous carbon-coated bismuth nanorods as anode for potassium-ion batteries. Phys. Status Solidi RRL 13(10), 1900209 (2019). https://doi.org/10.1002/pssr.201900209
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
H. Li, Y. Hou, F. Wang, M.R. Lohe, X. Zhuang et al., Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable mxene and electrochemically exfoliated graphene. Adv. Energy Mater. 7(4), 1601847 (2017). https://doi.org/10.1002/aenm.201601847
X. Liu, M.C. Hersam, Interface characterization and control of 2d materials and heterostructures. Adv. Mater. 30(39), 1801586 (2018). https://doi.org/10.1002/adma.201801586
S. Das, D. Pandey, J. Thomas, T. Roy, The role of graphene and other 2d materials in solar photovoltaics. Adv. Mater. 31(1), 1802722 (2019). https://doi.org/10.1002/adma.201802722
Y. Sun, L. Jiao, D. Han, F. Wang, P. Zhang et al., Hierarchical architecture of polyaniline nanoneedle arrays on electrochemically exfoliated graphene for supercapacitors and sodium batteries cathode. Mater. Des. 188, 108440 (2020). https://doi.org/10.1016/j.matdes.2019.108440
P. Xiong, B. Sun, N. Sakai, R. Ma, T. Sasaki et al., 2D superlattices for efficient energy storage and conversion. Adv. Mater. 32(18), 1902654 (2020). https://doi.org/10.1002/adma.201902654
X. Zhao, H. Li, F. Han, M. Dai, Y. Sun et al., Electrochemical exfoliation of graphene as an anode material for ultra-long cycle lithium ion batteries. J. Phys. Chem. Solids 139, 109301 (2020). https://doi.org/10.1016/j.jpcs.2019.109301
Y. Wu, Y. Sun, J. Zheng, J. Rong, H. Li et al., MXenes: advanced materials in potassium ion batteries. Chem. Eng. J. 404, 126565 (2021). https://doi.org/10.1016/j.cej.2020.126565
H. Li, S. Gan, H. Wang, D. Han, L. Niu, Intercorrelated superhybrid of AgBr supported on graphitic-C3N4-decorated nitrogen-doped graphene: high engineering photocatalytic activities for water purification and CO2 reduction. Adv. Mater. 27(43), 6906–6913 (2015). https://doi.org/10.1002/adma.201502755
H. Cui, Y. Guo, W. Ma, Z. Zhou, 2 D materials for electrochemical energy storage: design, preparation, and application. Chemsuschem 13(6), 1155–1171 (2020). https://doi.org/10.1002/cssc.201903095
V. Lakshmi, Y. Chen, A.A. Mikhaylov, A.G. Medvedev, I. Sultana et al., Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 53(59), 8272–8275 (2017). https://doi.org/10.1039/C7CC03998K
B. Jia, Y. Zhao, M. Qin, W. Wang, Z. Liu et al., Multirole organic-induced scalable synthesis of a mesoporous MoS2-monolayer/carbon composite for high-performance lithium and potassium storage. J. Mater. Chem. A 6(24), 11147–11153 (2018). https://doi.org/10.1039/C8TA03166E
L. Liu, Y. Chen, Y. Xie, P. Tao, Q. Li et al., Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 28(29), 1801989 (2018). https://doi.org/10.1002/adfm.201801989
Q. Yu, J. Hu, Y. Gao, J. Gao, G. Suo et al., Iron sulfide/carbon hybrid cluster as an anode for potassium-ion storage. J. Alloys Compd. 766, 1086–1091 (2018). https://doi.org/10.1016/j.jallcom.2018.07.065
D.-S. Bin, S.-Y. Duan, X.-J. Lin, L. Liu, Y. Liu et al., Structural engineering of SnS2/Graphene nanocomposite for high-performance K-ion battery anode. Nano Energy 60, 912–918 (2019). https://doi.org/10.1016/j.nanoen.2019.04.032
K. Cao, H. Liu, W. Li, Q. Han, Z. Zhang et al., CuO nanoplates for high-performance potassium-ion batteries. Small 15(36), 1901775 (2019). https://doi.org/10.1002/smll.201901775
D. Li, X. Cheng, R. Xu, Y. Wu, X. Zhou et al., Manipulation of 2D carbon nanoplates with a core-shell structure for high-performance potassium-ion batteries. J. Mater. Chem. A 7(34), 19929–19938 (2019). https://doi.org/10.1039/C9TA04663A
D. Li, Q. Sun, Y. Zhang, L. Chen, Z. Wang et al., Surface-confined SnS2@C@rGO as high-performance anode materials for sodium- and potassium-ion batteries. Chemsuschem 12(12), 2689–2700 (2019). https://doi.org/10.1002/cssc.201900719
Y. Li, C. Yang, F. Zheng, Q. Pan, Y. Liu et al., Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy 59, 582–590 (2019). https://doi.org/10.1016/j.nanoen.2019.03.002
C. Nithya, J.H. Lee, N.H. Kim, Hydrothermal fabrication of MnCO3@rGO: a promising anode material for potassium-ion batteries. Appl. Surf. Sci. 484, 1161–1167 (2019). https://doi.org/10.1016/j.apsusc.2019.04.181
W. Qiu, H. Xiao, Y. Li, X. Lu, Y. Tong, Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries. Small 15(23), 1901285 (2019). https://doi.org/10.1002/smll.201901285
Q. Yao, J. Zhang, X. Shi, B. Deng, K. Hou et al., Rational synthesis of two-dimensional G@porous FeS2@C composite as high-rate anode materials for sodium/potassium ion batteries. Electrochim. Acta 307, 118–128 (2019). https://doi.org/10.1016/j.electacta.2019.03.184
X. Zhao, W. Wang, Z. Hou, G. Wei, Y. Yu et al., SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. Chem. Eng. J. 370, 677–683 (2019). https://doi.org/10.1016/j.cej.2019.03.250
B. Lee, M. Kim, S. Kim, J. Nanda, S.J. Kwon et al., High capacity adsorption—dominated potassium and sodium ion storage in activated crumpled graphene. Adv. Energy Mater. 10(17), 1903280 (2020). https://doi.org/10.1002/aenm.201903280
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). https://doi.org/10.1021/nl802558y
W. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen et al., Potassium ion batteries with graphitic materials. Nano Lett. 15(11), 7671–7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667
K. Share, A.P. Cohn, R. Carter, B. Rogers, C.L. Pint, Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 10(10), 9738–9744 (2016). https://doi.org/10.1021/acsnano.6b05998
Y. Luan, R. Hu, Y. Fang, K. Zhu, K. Cheng et al., Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors. Nano-Micro Lett. 11(1), 30 (2019). https://doi.org/10.1007/s40820-019-0260-6
X. Wu, Y. Chen, Z. Xing, C.W.K. Lam, S.-S. Pang et al., Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9(21), 1900343 (2019). https://doi.org/10.1002/aenm.201900343
J. Xu, J. Zhang, W. Zhang, C.-S. Lee, Interlayer nanoarchitectonics of two-dimensional transition-metal dichalcogenides nanosheets for energy storage and conversion applications. Adv. Energy Mater. 7(23), 1700571 (2017). https://doi.org/10.1002/aenm.201700571
Z. Ali, M. Asif, X. Huang, T. Tang, Y. Hou, Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv. Mater. 30(36), 1802745 (2018). https://doi.org/10.1002/adma.201802745
L. Shen, Y. Wang, H. Lv, S. Chen, P.A. van Aken et al., Ultrathin Ti2Nb2O9 nanosheets with pseudocapacitive properties as superior anode for sodium-ion batteries. Adv. Mater. 30(51), 1804378 (2018). https://doi.org/10.1002/adma.201804378
Q. Zhang, C. Didier, W.K. Pang, Y. Liu, Z. Wang et al., Structural insight into layer gliding and lattice distortion in layered manganese oxide electrodes for potassium-ion batteries. Adv. Energy Mater. 9(30), 1900568 (2019). https://doi.org/10.1002/aenm.201900568
J. Li, N. Zhuang, J. Xie, X. Li, W. Zhuo et al., K-ion storage enhancement in Sb2O3/reduced graphene oxide using ether-based electrolyte. Adv. Energy Mater. 10(5), 1903455 (2020). https://doi.org/10.1002/aenm.201903455
L. Wei, H.E. Karahan, S. Zhai, H. Liu, X. Chen et al., Amorphous bimetallic oxide-graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Adv. Mater. 29(38), 1701410 (2017). https://doi.org/10.1002/adma.201701410
Y. Huang, Z. Wang, Y. Jiang, S. Li, M. Wang et al., Conductivity and pseudocapacitance optimization of bimetallic antimony-indium sulfide anodes for sodium-ion batteries with favorable kinetics. Adv. Sci. 5(10), 1800613 (2018). https://doi.org/10.1002/advs.201800613
Z. Liang, C. Qu, W. Zhou, R. Zhao, H. Zhang et al., Synergistic effect of Co-Ni hybrid phosphide nanocages for ultrahigh capacity fast energy storage. Adv. Sci. 6(8), 1802005 (2019). https://doi.org/10.1002/advs.201802005
J. Wang, L. Fan, Z. Liu, S. Chen, Q. Zhang et al., In situ alloying strategy for exceptional potassium ion batteries. ACS Nano 13(3), 3703–3713 (2019). https://doi.org/10.1021/acsnano.9b00634
J. Wang, B. Wang, Z. Liu, L. Fan, Q. Zhang et al., Nature of bimetallic oxide Sb2MoO6/rGO anode for high-performance potassium-ion batteries. Adv. Sci. 6(17), 1900904 (2019). https://doi.org/10.1002/advs.201900904
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu et al., Phosphorene: an unexplored 2d semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z
S.P. Koenig, R.A. Doganov, H. Schmidt, A.H.C. Neto, B. Özyilmaz, Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104(10), 103106 (2014). https://doi.org/10.1063/1.4868132
Y. Cai, Q. Ke, G. Zhang, Y.-W. Zhang, Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene. J. Phys. Chem. C 119(6), 3102–3110 (2015). https://doi.org/10.1021/jp510863p
C. He, J.H. Zhang, W.X. Zhang, T.T. Li, GeSe/BP van der Waals heterostructures as promising anode materials for potassium-ion batteries. J. Phys. Chem. C 123(9), 5157–5163 (2019). https://doi.org/10.1021/acs.jpcc.8b08909
J. Hao, Z. Wang, Y. Wang, Sulfur-doped phosphorene as a promising anode for Na and K-ion batteries. Phys. Status Solidi B 256(8), 1800418 (2019). https://doi.org/10.1002/pssb.201800418
Y. Tao, T. Huang, C. Ding, F. Yu, D. Tan et al., Few-layer phosphorene: an emerging electrode material for electrochemical energy storage. Appl. Mater. Today 15, 18–33 (2019). https://doi.org/10.1016/j.apmt.2018.12.008
S. Chabi, C. Peng, D. Hu, Y. Zhu, Ideal three-dimensional electrode structures for electrochemical energy storage. Adv. Mater. 26(15), 2440–2445 (2014). https://doi.org/10.1002/adma.201305095
J. Xu, X. Wang, X. Wang, D. Chen, X. Chen et al., Three-dimensional structural engineering for energy-storage devices: from microscope to macroscope. ChemElectroChem 1(6), 975–1002 (2014). https://doi.org/10.1002/celc.201400001
Z. Liu, X. Yuan, S. Zhang, J. Wang, Q. Huang et al., Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 11(1), 12 (2019). https://doi.org/10.1038/s41427-019-0112-3
L.-F. Chen, Y. Feng, H.-W. Liang, Z.-Y. Wu, S.-H. Yu, Macroscopic-scale three-dimensional carbon nanofiber architectures for electrochemical energy storage devices. Adv. Energy Mater. 7(23), 1700826 (2017). https://doi.org/10.1002/aenm.201700826
K.T. Alali, J. Liu, Q. Liu, R. Li, K. Aljebawi et al., Grown carbon nanotubes on electrospun carbon nanofibers as a 3d carbon nanomaterial for high energy storage performance. ChemistrySelect 4(19), 5437–5458 (2019). https://doi.org/10.1002/slct.201803828
S. Zhou, L. Zhou, Y. Zhang, J. Sun, J. Wen et al., Upgrading earth-abundant biomass into three-dimensional carbon materials for energy and environmental applications. J. Mater. Chem. A 7(9), 4217–4229 (2019). https://doi.org/10.1039/C8TA12159A
S. Zhu, N. Zhao, J. Li, X. Deng, J. Sha et al., Hard-template synthesis of three-dimensional interconnected carbon networks: rational design, hybridization and energy-related applications. Nano Today 29, 100796 (2019). https://doi.org/10.1016/j.nantod.2019.100796
R.A. Adams, J.-M. Syu, Y. Zhao, C.-T. Lo, A. Varma et al., Binder-free N- and O-rich carbon nanofiber anodes for long cycle life K-ion batteries. ACS Appl. Mater. Interfaces 9(21), 17872–17881 (2017). https://doi.org/10.1021/acsami.7b02476
C. Li, X. Hu, B. Hu, Cobalt(II) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochim. Acta 253, 439–444 (2017). https://doi.org/10.1016/j.electacta.2017.09.090
Y. Li, R.A. Adams, A. Arora, V.G. Pol, A.M. Levine et al., Sustainable potassium-ion battery anodes derived from waste-tire rubber. J. Electrochem. Soc. 164(6), A1234–A1238 (2017). https://doi.org/10.1149/2.1391706jes
S.J.R. Prabakar, S.C. Han, C. Park, I.A. Bhairuba, M.J. Reece et al., Spontaneous formation of interwoven porous channels in hard-wood-based hard-carbon for high-performance anodes in potassium-ion batteries. J. Electrochem. Soc. 164(9), A2012–A2016 (2017). https://doi.org/10.1149/2.1251709jes
X. Zhao, P. Xiong, J. Meng, Y. Liang, J. Wang et al., High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. J. Mater. Chem. A. 5(36), 19237–19244 (2017). https://doi.org/10.1039/C7TA04264G
M. Chen, W. Wang, X. Liang, S. Gong, J. Liu et al., Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8(19), 1800171 (2018). https://doi.org/10.1002/aenm.201800171
X. He, J. Liao, Z. Tang, L. Xiao, X. Ding et al., Highly disordered hard carbon derived from skimmed cotton as a high-performance anode material for potassium-ion batteries. J. Power Sour. 396, 533–541 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.073
Z. Huang, Z. Chen, S. Ding, C. Chen, M. Zhang, Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification. Mater. Lett. 219, 19–22 (2018). https://doi.org/10.1016/j.matlet.2018.02.053
B. Jia, Q. Yu, Y. Zhao, M. Qin, W. Wang et al., Bamboo-like hollow tubes with MoS2/N-doped-c interfaces boost potassium-ion storage. Adv. Funct. Mater. 28(40), 1803409 (2018). https://doi.org/10.1002/adfm.201803409
Y. Li, C. Yang, F. Zheng, X. Ou, Q. Pan et al., High pyridine N-doped porous carbon derived from metal-organic frameworks for boosting potassium-ion storage. J. Mater. Chem. A 6(37), 17959–17966 (2018). https://doi.org/10.1039/C8TA06652C
Z. Liu, P. Li, G. Suo, S. Gong, W. Wang et al., Zero-strain K0.6Mn1F2.7 hollow nanocubes for ultrastable potassium ion storage. Energy Environ. Sci. 11(10), 3033–3042 (2018). https://doi.org/10.1039/C8EE01611A
X. Qi, K. Huang, X. Wu, W. Zhao, H. Wang et al., Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon 131, 79–85 (2018). https://doi.org/10.1016/j.carbon.2018.01.094
Z. Wei, D. Wang, M. Li, Y. Gao, C. Wang et al., Fabrication of hierarchical potassium titanium phosphate spheroids: a host material for sodium-ion and potassium-ion storage. Adv. Energy Mater. 8(27), 1801102 (2018). https://doi.org/10.1002/aenm.201801102
W. Zhang, W.K. Pang, V. Sencadas, Z. Guo, Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2(8), 1534–1547 (2018). https://doi.org/10.1016/j.joule.2018.04.022
X. Cheng, D. Li, Y. Wu, R. Xu, Y. Yu, Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J. Mater. Chem. A 7(9), 4913–4921 (2019). https://doi.org/10.1039/C8TA11947C
C. Gao, Q. Wang, S. Luo, Z. Wang, Y. Zhang et al., High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. J. Power Sour. 415, 165–171 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.073
H. Lin, M. Li, X. Yang, D. Yu, Y. Zeng et al., Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv. Energy Mater. 9(20), 1900323 (2019). https://doi.org/10.1002/aenm.201900323
H. Tan, X. Du, J.-Q. Huang, B. Zhang, KVPO4F as a novel insertion-type anode for potassium ion batteries. Chem. Commun. 55(75), 11311–11314 (2019). https://doi.org/10.1039/C9CC05368A
Y. Tian, Y. An, S. Xiong, J. Feng, Y. Qian, A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J. Mater. Chem. A 7(16), 9716–9725 (2019). https://doi.org/10.1039/C9TA02233C
Y. Wu, S. Hu, R. Xu, J. Wang, Z. Peng et al., Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 19(2), 1351–1358 (2019). https://doi.org/10.1021/acs.nanolett.8b04957
G. Xia, C. Wang, P. Jiang, J. Lu, J. Diao et al., Nitrogen/oxygen co-doped mesoporous carbon octahedrons for high-performance potassium-ion batteries. J. Mater. Chem. A 7(19), 12317–12324 (2019). https://doi.org/10.1039/C8TA12504J
F. Yang, H. Gao, J. Hao, S. Zhang, P. Li et al., Yolk–shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 29(16), 1808291 (2019). https://doi.org/10.1002/adfm.201808291
H. Yang, R. Xu, Y. Yao, S. Ye, X. Zhou et al., Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv. Funct. Mater. 29(13), 1809195 (2019). https://doi.org/10.1002/adfm.201809195
C. Liu, N. Xiao, H. Li, Q. Dong, Y. Wang et al., Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode. Chem. Eng. J. 382, 121759 (2020). https://doi.org/10.1016/j.cej.2019.05.120
Z.-J. Fan, J. Yan, T. Wei, G.-Q. Ning, L.-J. Zhi et al., Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries. ACS Nano 5(4), 2787–2794 (2011). https://doi.org/10.1021/nn200195k
H. Jiang, P.S. Lee, C. Li, 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6(1), 41–53 (2013). https://doi.org/10.1039/C2EE23284G
X. Han, C. Yu, S. Zhou, C. Zhao, H. Huang et al., Ultrasensitive iron-triggered nanosized Fe-CoOOH integrated with graphene for highly efficient oxygen evolution. Adv. Energy Mater. 7(14), 1602148 (2017). https://doi.org/10.1002/aenm.201602148
H. Li, Z. Cheng, Q. Zhang, A. Natan, Y. Yang et al., Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 18(11), 7407–7413 (2018). https://doi.org/10.1021/acs.nanolett.8b03845
D.-S. Bin, X.-J. Lin, Y.-G. Sun, Y.-S. Xu, K. Zhang et al., Engineering hollow carbon architecture for high-performance K-ion battery anode. J. Am. Chem. Soc. 140(23), 7127–7134 (2018). https://doi.org/10.1021/jacs.8b02178
Y. Sun, Y. Zhang, Z. Xing, D. Wei, Z. Ju et al., A hollow neuronal carbon skeleton with ultrahigh pyridinic N content as a self-supporting potassium-ion battery anode. Sustain. Energy Fuels 4(3), 1216–1224 (2020). https://doi.org/10.1039/C9SE00889F
N. Li, F. Zhang, Y. Tang, Hierarchical T-Nb2O5 nanostructure with hybrid mechanisms of intercalation and pseudocapacitance for potassium storage and high-performance potassium dual-ion batteries. J. Mater. Chem. A 6(37), 17889–17895 (2018). https://doi.org/10.1039/C8TA07987K
K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu et al., A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57(17), 4687–4691 (2018). https://doi.org/10.1002/anie.201801389
Y. Fang, X.-Y. Yu, X.W. Lou, Nanostructured electrode materials for advanced sodium-ion batteries. Matter 1(1), 90–114 (2019). https://doi.org/10.1016/j.matt.2019.05.007
X. Wei, X. Wang, X. Tan, Q. An, L. Mai, Nanostructured conversion-type negative electrode materials for low-cost and high-performance sodium-ion batteries. Adv. Funct. Mater. 28(46), 1804458 (2018). https://doi.org/10.1002/adfm.201804458
P. Kumar, K.-H. Kim, V. Bansal, P. Kumar, Nanostructured materials: a progressive assessment and future direction for energy device applications. Coord. Chem. Rev. 353, 113–141 (2017). https://doi.org/10.1016/j.ccr.2017.10.005
A. Manthiram, A. VadivelMurugan, A. Sarkar, T. Muraliganth, Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1(6), 621–638 (2008). https://doi.org/10.1039/B811802G
J. Hongjun, H. Ling, W. Yunhong, W. Boya, W. Hao et al., Bio-derived hierarchical multicore-shell Fe2N-nanoparticle-impregnated N-doped carbon nanofiber bundles: a host material for lithium-/potassium-ion storage. Nano-Micro Lett. 11, 56 (2019). https://doi.org/10.1007/s40820-019-0290-0
J. Mao, T. Zhou, Y. Zheng, H. Gao, H.K. Liu et al., Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A 6(8), 3284–3303 (2018). https://doi.org/10.1039/C7TA10500B
H. Hou, G. Shao, W. Yang, W.-Y. Wong, One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption. Prog. Mater Sci. 113, 100671 (2020). https://doi.org/10.1016/j.pmatsci.2020.100671
L. Mai, J. Sheng, L. Xu, S. Tan, J. Meng, One-dimensional hetero-nanostructures for rechargeable batteries. Acc. Chem. Res. 51(4), 950–959 (2018). https://doi.org/10.1021/acs.accounts.8b00031
W. Zhang, Y. Liu, Z. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5(5), 7412 (2019). https://doi.org/10.1126/sciadv.aav7412
Y. Wu, Y. Yu, 2D material as anode for sodium ion batteries: recent progress and perspectives. Energy Storage Mater. 16, 323–343 (2019). https://doi.org/10.1016/j.ensm.2018.05.026
X. Chen, C. Li, M. Grätzel, R. Kostecki, S.S. Mao, Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41(23), 7909–7937 (2012). https://doi.org/10.1039/C2CS35230C
I. Hasa, J. Hassoun, S. Passerini, Nanostructured Na-ion and Li-ion anodes for battery application: a comparative overview. Nano Res. 10(12), 3942–3969 (2017). https://doi.org/10.1007/s12274-017-1513-7
G. Chen, L. Yan, H. Luo, S. Guo, Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv. Mater. 28(35), 7580–7602 (2016). https://doi.org/10.1002/adma.201600164
X. Chang, X. Zhou, X. Ou, C.-S. Lee, J. Zhou et al., Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 9(47), 1902672 (2019). https://doi.org/10.1002/aenm.201902672
P. Trogadas, V. Ramani, P. Strasser, T.F. Fuller, M.-O. Coppens, Hierarchically structured nanomaterials for electrochemical energy conversion. Angew. Chem. Int. Ed. 55(1), 122–148 (2016). https://doi.org/10.1002/anie.201506394
Y. Lu, L. Yu, X.W. Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4(5), 972–996 (2018). https://doi.org/10.1016/j.chempr.2018.01.003
N.-W. Li, Y.-X. Yin, S. Xin, J.-Y. Li, Y.-G. Guo, Methods for the stabilization of nanostructured electrode materials for advanced rechargeable batteries. Small Methods 1(6), 1700094 (2017). https://doi.org/10.1002/smtd.201700094
Y. Wang, Z. Wang, Y. Chen, H. Zhang, M. Yousaf et al., Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode. Adv. Mater. 30(32), 1802074 (2018). https://doi.org/10.1002/adma.201802074
J. Li, W. Qin, J. Xie, H. Lei, Y. Zhu et al., Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 53, 415–424 (2018). https://doi.org/10.1016/j.nanoen.2018.08.075
A. Yu, Q. Pan, M. Zhang, D. Xie, Y. Tang, Fast rate and long life potassium-ion based dual-ion battery through 3d porous organic negative electrode. Adv. Funct. Mater. 30(24), 2001440 (2020). https://doi.org/10.1002/adfm.202001440
J. Wu, Q. Zhang, S. Liu, J. Long, Z. Wu et al., Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy 77, 105118 (2020). https://doi.org/10.1016/j.nanoen.2020.105118
Y. Ai, Z. Han, X. Jiang, H. Luo, J. Cui et al., General construction of 2D ordered mesoporous iron-based metal-organic nanomeshes. Small (2020). https://doi.org/10.1002/smll.202002701
Z. Han, Y. Ai, X. Jiang, Y. You, F. Wei et al., Pre-polymerization enables controllable synthesis of nanosheet-based porphyrin polymers towards high-performance li-ion batteries. Chem. Eur. J. 26(46), 10433–10438 (2020). https://doi.org/10.1002/chem.202001943
G. Chang, Y. Zhao, L. Dong, D.P. Wilkinson, L. Zhang et al., A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. J. Mater. Chem. A 8(10), 4996–5048 (2020). https://doi.org/10.1039/C9TA12169B
H. Huang, R. Xu, Y. Feng, S. Zeng, Y. Jiang et al., Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 32(8), 1904320 (2020). https://doi.org/10.1002/adma.201904320
Q. Zhang, J. Mao, W.K. Pang, T. Zheng, V. Sencadas et al., Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 8(15), 1703288 (2018). https://doi.org/10.1002/aenm.201703288
H. Li, S. Gan, D. Han, W. Ma, B. Cai et al., High performance Pd nanocrystals supported on SnO2-decorated graphene for aromatic nitro compound reduction. J. Mater. Chem. A 2(10), 3461–3467 (2014). https://doi.org/10.1039/C3TA14506A
J. Cai, R. Cai, Z. Sun, X. Wang, N. Wei et al., Confining TiO2 nanotubes in pecvd-enabled graphene capsules toward ultrafast K-Ion storage: in situ TEM/XRD study and DFT analysis. Nano-Micro Lett. 12(1), 123 (2020). https://doi.org/10.1007/s40820-020-00460-y