Advanced Bismuth-Based Anode Materials for Efficient Potassium Storage: Structural Features, Storage Mechanisms and Modification Strategies
Corresponding Author: Hongyan Li
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 126
Abstract
Potassium-ion batteries (PIBs) are considered as a promising energy storage system owing to its abundant potassium resources. As an important part of the battery composition, anode materials play a vital role in the future development of PIBs. Bismuth-based anode materials demonstrate great potential for storing potassium ions (K+) due to their layered structure, high theoretical capacity based on the alloying reaction mechanism, and safe operating voltage. However, the large radius of K+ inevitably induces severe volume expansion in depotassiation/potassiation, and the sluggish kinetics of K+ insertion/extraction limits its further development. Herein, we summarize the strategies used to improve the potassium storage properties of various types of materials and introduce recent advances in the design and fabrication of favorable structural features of bismuth-based materials. Firstly, this review analyzes the structure, working mechanism and advantages and disadvantages of various types of materials for potassium storage. Then, based on this, the manuscript focuses on summarizing modification strategies including structural and morphological design, compositing with other materials, and electrolyte optimization, and elucidating the advantages of various modifications in enhancing the potassium storage performance. Finally, we outline the current challenges of bismuth-based materials in PIBs and put forward some prospects to be verified.
Highlights:
1 Various bismuth-based materials used in potassium-ion batteries (PIBs) anode are classified and overviewed, and the structure and potassium storage mechanism of various materials are discussed.
2 The advantages and challenges of different PIBs anode materials are pointed out, and the existing modification strategies to improve potassium storage are summarized.
3 The promising research directions of bismuth-based anode materials are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wu, Y. Sun, Y. Tong, H. Li, FeSb2 nanops embedded in 3D porous carbon framework: an robust anode material for potassium storage with long activation process. Small 18, e2201934 (2022). https://doi.org/10.1002/smll.202201934
- L. Wang, S. Zhang, N. Li, J. Chen, Y. Chen et al., Prospects and challenges of practical nonaqueous potassium-ion batteries. Adv. Funct. Mater. 34, 2408965 (2024). https://doi.org/10.1002/adfm.202408965
- Y. Wu, H. Lin, H. Li, Amorphous nanoscale antimony-vanadium oxide: a high capacity anode material for potassium ion batteries. Chem. Eng. J. 488, 150964 (2024). https://doi.org/10.1016/j.cej.2024.150964
- Y. Xu, Y. Du, H. Chen, J. Chen, T. Ding et al., Recent advances in rational design for high-performance potassium-ion batteries. Chem. Soc. Rev. 53, 7202–7298 (2024). https://doi.org/10.1039/D3CS00601H
- Y. Sun, J. Zheng, Y. Tong, Y. Wu, X. Liu et al., Construction of three-dimensional nitrogen doped porous carbon flake electrodes for advanced potassium-ion hybrid capacitors. J. Colloid Interface Sci. 606, 1940–1949 (2022). https://doi.org/10.1016/j.jcis.2021.09.143
- A. Celadon, H. Sun, S. Sun, G. Zhang, Batteries for electric vehicles: technical advancements, environmental challenges, and market perspectives. SusMat 4, e234 (2024). https://doi.org/10.1002/sus2.234
- J. Zheng, Y. Wu, Y. Tong, Y. Sun, H. Li, Dual-carbon confinement strategy of antimony anode material enabling advanced potassium ion storage. J. Colloid Interface Sci. 622, 738–747 (2022). https://doi.org/10.1016/j.jcis.2022.04.154
- J. Liao, Y. Han, Z. Zhang, J. Xu, J. Li et al., Recent progress and prospects of layered cathode materials for potassium-ion batteries. Energy Environ. Mater. 4, 178–200 (2021). https://doi.org/10.1002/eem2.12166
- J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13, 12 (2020). https://doi.org/10.1007/s40820-020-00541-y
- J. Sun, F. Kang, D. Yan, T. Ding, Y. Wang et al., Recent progress in using covalent organic frameworks to stabilize metal anodes for highly-efficient rechargeable batteries. Angew. Chem. Int. Ed. 63, e202406511 (2024). https://doi.org/10.1002/anie.202406511
- H. Lin, Y. Wu, H. Li, Stable cathode material enabled by Mg2+ intercalation layered potassium vanadate for high rate and long life potassium ion batteries. Appl. Surf. Sci. 633, 157603 (2023). https://doi.org/10.1016/j.apsusc.2023.157603
- Y. Gu, Y.R. Pei, M. Zhao, C. Cheng Yang, Q. Jiang, Sn-, Sb- and Bi-based anodes for potassium ion battery. Chem. Rec. 22, e202200098 (2022). https://doi.org/10.1002/tcr.202200098
- A. Wang, W. Hong, L. Yang, Y. Tian, X. Qiu et al., Bi-based electrode materials for alkali metal-ion batteries. Small 16, e2004022 (2020). https://doi.org/10.1002/smll.202004022
- H. Qian, Y. Liu, H. Chen, K. Feng, K. Jia et al., Emerging bismuth-based materials: from fundamentals to electrochemical energy storage applications. Energy Storage Mater. 58, 232–270 (2023). https://doi.org/10.1016/j.ensm.2023.03.023
- J. Zheng, Y. Wu, Y. Tong, X. Liu, Y. Sun et al., High capacity and fast kinetics of potassium-ion batteries boosted by nitrogen-doped mesoporous carbon spheres. Nano-Micro Lett. 13, 174 (2021). https://doi.org/10.1007/s40820-021-00706-3
- J. Shen, Z. Zeng, W. Tang, Emerging high-entropy material electrodes for metal-ion batteries. SusMat 4, e215 (2024). https://doi.org/10.1002/sus2.215
- Y. Du, Z. Zhang, Y. Xu, J. Bao, X. Zhou, Metal sulfide-based potassium-ion battery anodes: storage mechanisms and synthesis strategies. Acta Phys. Chim. Sin. 38, 2205017 (2022). https://doi.org/10.3866/pku.whxb202205017
- M. Pan, M.-C. Zhao, Q. Zang, J. Liu, A. Atrens, F. Zhang, Insight into nanotransition metal disulfides as anode for potassium-ion batteries: applications, challenges, and prospects. Energy Mater. Adv. 5, 0120 (2024). https://doi.org/10.34133/energymatadv.0120
- X. Liu, X. Yu, Y. Tong, Y. Sun, W. Mai et al., Potassium storage in bismuth nanops embedded in N-doped porous carbon facilitated by ether-based electrolyte. Chem. Eng. J. 446, 137329 (2022). https://doi.org/10.1016/j.cej.2022.137329
- X. Liu, X. Wang, Y. Zhou, B. Wang, L. Zhao et al., Novel ultra-stable 2D SbBi alloy structure with precise regulation ratio enables long-stable potassium/lithium-ion storage. Adv. Mater. 36, e2308447 (2024). https://doi.org/10.1002/adma.202308447
- X. Liu, Y. Tong, Y. Wu, J. Zheng, Y. Sun et al., In-depth mechanism understanding for potassium-ion batteries by electroanalytical methods and advanced in situ characterization techniques. Small Methods 5, e2101130 (2021). https://doi.org/10.1002/smtd.202101130
- K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu et al., A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57, 4687–4691 (2018). https://doi.org/10.1002/anie.201801389
- Z. Sun, Y. Liu, W. Ye, J. Zhang, Y. Wang et al., Unveiling intrinsic potassium storage behaviors of hierarchical nano Bi@N-doped carbon nanocages framework via in situ characterizations. Angew. Chem. Int. Ed. 60, 7180–7187 (2021). https://doi.org/10.1002/anie.202016082
- J.K. Ko, A. Halajko, M.F. Parkinson, G.G. Amatucci, Electronic transport in lithiated iron and bismuth fluoride. J. Electrochem. Soc. 162(1), A149–A154 (2014). https://doi.org/10.1149/2.0621501jes
- X. Liu, Z. Sun, Y. Sun, H. Lin, Z. Chen et al., Fast and long-lasting potassium-ion storage enabled by rationally engineering strain-relaxation Bi/Bi2O3 nanodots embedded in carbon sheets. Adv. Funct. Mater. 33, 2307205 (2023). https://doi.org/10.1002/adfm.202307205
- D. Zhang, H. Fu, X. Ma, X. Yu, F. Li et al., Nonflammable phosphate-based electrolyte for safe and stable potassium batteries enabled by optimized solvation effect. Angew. Chem. Int. Ed. 63, e202405153 (2024). https://doi.org/10.1002/anie.202405153
- Y. Tong, Y. Wu, X. Liu, Z. Chen, H. Li, Nitrogen-coordinated antimony atom anchored on carbon matrix as efficient active sites to enhance sodium/potassium ion storage. J. Colloid Interface Sci. 648, 575–584 (2023). https://doi.org/10.1016/j.jcis.2023.05.208
- J. Zhang, G. Kim, M. Park, J. Zhang, S. Lee et al., Nanostructuring-promoted non-equilibrium phase transformation of Bi anodes toward diffusion-controlled reaction for K-ion batteries. Adv. Energy Mater. 12, 2202446 (2022). https://doi.org/10.1002/aenm.202202446
- X. Cheng, Y. Sun, D. Li, H. Yang, F. Chen et al., From 0D to 3D: dimensional control of bismuth for potassium storage with superb kinetics and cycling stability. Adv. Energy Mater. 11, 2102263 (2021). https://doi.org/10.1002/aenm.202102263
- Y. Wu, J. Zheng, Y. Tong, X. Liu, Y. Sun et al., Carbon hollow tube-confined Sb/Sb2S3 nanorod fragments as highly stable anodes for potassium-ion batteries. ACS Appl. Mater. Interfaces 13, 51066–51077 (2021). https://doi.org/10.1021/acsami.1c16267
- H. Long, X. Yin, X. Wang, Y. Zhao, L. Yan, Bismuth nanorods confined in hollow carbon structures for high performance sodium- and potassium-ion batteries. J. Energy Chem. 67, 787–796 (2022). https://doi.org/10.1016/j.jechem.2021.11.011
- X. Shi, J. Zhang, Q. Yao, R. Wang, H. Wu et al., A self-template approach to synthesize multicore–shell Bi@N-doped carbon nanosheets with interior void space for high-rate and ultrastable potassium storage. J. Mater. Chem. A 8, 8002–8009 (2020). https://doi.org/10.1039/C9TA13975C
- J. Zheng, Y. Sun, Y. Wu, J. Rong, Z. Wang et al., Ultralong cycle life and high rate potassium ion batteries enabled by multi-level porous carbon. J. Power Sources 492, 229614 (2021). https://doi.org/10.1016/j.jpowsour.2021.229614
- R.C. Cui, H.Y. Zhou, J.C. Li, C.C. Yang, Q. Jiang, Ball-cactus-like Bi embedded in N-riched carbon nanonetworks enables the best potassium storage performance. Adv. Funct. Mater. 31, 2103067 (2021). https://doi.org/10.1002/adfm.202103067
- F. Zhang, X. Liu, B. Wang, G. Wang, H. Wang, Bi@C nanospheres with the unique petaloid core-shell structure anchored on porous graphene nanosheets as an anode for stable sodium- and potassium-ion batteries. ACS Appl. Mater. Interfaces 13, 59867–59881 (2021). https://doi.org/10.1021/acsami.1c16946
- C.-H. Jo, S.-T. Myung, Role of ether-based electrolytes in enhancing potential of potassium-ion batteries. Adv. Energy Mater. 14, 2400217 (2024). https://doi.org/10.1002/aenm.202400217
- Y. Zhao, X. Ren, Z. Xing, D. Zhu, W. Tian et al., In situ formation of hierarchical bismuth nanodots/graphene nanoarchitectures for ultrahigh-rate and durable potassium-ion storage. Small 16, e1905789 (2020). https://doi.org/10.1002/smll.201905789
- H. Jiang, X. Lin, C. Wei, J. Feng, X. Tian, Scalable synthesis of nano‐sized Bi for separator modifying in 5V‐class lithium metal batteries and potassium ion batteries anodes. Small (2022). https://doi.org/10.1002/smll.202104264
- F. Xie, L. Zhang, B. Chen, D. Chao, Q. Gu et al., Revealing the origin of improved reversible capacity of dual-shell bismuth boxes anode for potassium-ion batteries. Matter 1, 1681–1693 (2019). https://doi.org/10.1016/j.matt.2019.07.006
- H. Li, C. Zhao, Y. Yin, Y. Zou, Y. Xia et al., N-Doped carbon coated bismuth nanorods with a hollow structure as an anode for superior-performance potassium-ion batteries. Nanoscale 12, 4309–4313 (2020). https://doi.org/10.1039/c9nr09867d
- H. Yang, R. Xu, Y. Yao, S. Ye, X. Zhou et al., Multicore–shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv. Funct. Mater. 29, 1809195 (2019). https://doi.org/10.1002/adfm.201809195
- S. Su, Q. Liu, J. Wang, L. Fan, R. Ma et al., Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl. Mater. Interfaces 11, 22474–22480 (2019). https://doi.org/10.1021/acsami.9b06379
- W. Zhang, X. Chen, H. Xu, Y. Liu, X. Zhao et al., Three-dimensional hierarchical ternary nanostructures bismuth/polypyrrole/CNTs for high performance potassium-ion battery anodes. Chin. J. Chem. 40, 1585–1591 (2022). https://doi.org/10.1002/cjoc.202200042
- C. Shen, T. Cheng, C. Liu, L. Huang, M. Cao et al., Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries. J. Mater. Chem. A 8, 453–460 (2020). https://doi.org/10.1039/c9ta11000c
- X. Liu, Y. Sun, Y. Tong, H. Li, Unique spindle-like bismuth-based composite toward ultrafast potassium storage. Small 18, 2204045 (2022). https://doi.org/10.1002/smll.202204045
- A. Xu, Q. Zhu, G. Li, C. Gong, X. Li et al., 2D Bismuth@N-doped carbon sheets for ultrahigh rate and stable potassium storage. Small 18, e2203976 (2022). https://doi.org/10.1002/smll.202203976
- B. Wang, L. Shi, Y. Zhou, X. Wang, X. Liu et al., 3D dense encapsulated architecture of 2D Bi nanosheets enabling potassium-ion storage with superior volumetric and areal capacities. Small 20, e2310736 (2024). https://doi.org/10.1002/smll.202310736
- Z. Sang, D. Su, J. Wang, Y. Liu, H. Ji, Bi-continuous nanoporous carbon sphere derived from SiOC as high-performance anodes for PIBs. Chem. Eng. J. 381, 122677 (2020). https://doi.org/10.1016/j.cej.2019.122677
- Z. Gao, L. Han, H. Gao, J. Chen, Z. Sun et al., Coupling core–shell Bi@Void@TiO2 heterostructures into carbon nanofibers for achieving fast potassium storage and long cycling stability. J. Mater. Chem. A 10, 12908–12920 (2022). https://doi.org/10.1039/D2TA01833K
- J. Mei, T. Liao, G.A. Ayoko, Z. Sun, Two-dimensional bismuth oxide heterostructured nanosheets for lithium- and sodium-ion storages. ACS Appl. Mater. Interfaces 11, 28205–28212 (2019). https://doi.org/10.1021/acsami.9b09882
- H. Tong, S. Chen, J. Tu, X. Zeng, C. Wang et al., Bi2O3 ps embedded in carbon matrix as high-performance anode materials for potassium ion batteries. J. Power Sources 549, 232140 (2022). https://doi.org/10.1016/j.jpowsour.2022.232140
- Y. Tang, L. Cheng, J. Zheng, Y. Sun, H. Li, Construction of Bi/Bi2O3 ps embedded in carbon sheets for boosting the storage capacity of potassium-ion batteries. J Colloid Interface Sci. 674, 634–642 (2024). https://doi.org/10.1016/j.jcis.2024.06.207
- Y. Tong, Y. Wu, Z. Liu, Y. Yin, Y. Sun et al., Fabricating multi-porous carbon anode with remarkable initial coulombic efficiency and enhanced rate capability for sodium-ion batteries. Chin. Chem. Lett. 34, 107443 (2023). https://doi.org/10.1016/j.cclet.2022.04.041
- P. Zhang, Y. Wei, S. Zhou, R. Soomro, M. Jiang et al., A metal-organic framework derived approach to fabricate in-situ carbon encapsulated Bi/Bi2O3 heterostructures as high-performance anodes for potassium ion batteries. J Colloid Interface Sci. 630, 365–374 (2023). https://doi.org/10.1016/j.jcis.2022.09.151
- Y. Xu, H. Zhang, T. Ding, R. Tian, D. Sun et al., Synthesis of yolk-shell Bi2O3@TiO2 submicrospheres with enhanced potassium storage. Sci. China Chem. 65, 1807–1816 (2022). https://doi.org/10.1007/s11426-022-1365-4
- W. Li, N. Gao, H. Li, R. Sun, Q. Liu et al., Bi@Bi2O3 anchored on porous graphene prepared by solvothermal method as a high-performance anode material for potassium-ion batteries. J. Alloys Compd. 939, 168766 (2023). https://doi.org/10.1016/j.jallcom.2023.168766
- Z. Chen, Y. Wu, X. Liu, Y. Zhang, L. Yang et al., Bi/Bi3Se4 nanops embedded in hollow porous carbon nanorod: high rate capability material for potassium-ion batteries. J. Energy Chem. 81, 462–471 (2023). https://doi.org/10.1016/j.jechem.2023.02.050
- Y. Wu, Y. Sun, Y. Tong, X. Liu, J. Zheng et al., Recent advances in potassium-ion hybrid capacitors: electrode materials, storage mechanisms and performance evaluation. Energy Storage Mater. 41, 108–132 (2021). https://doi.org/10.1016/j.ensm.2021.05.045
- J.Y. Hwang, R. Kumar, H.M. Kim, M.H. Alfaruqi, J. Kim et al., Investigation of K-ion storage performances in a bismuth sulfide-carbon nanotube composite anode. RSC Adv. 10, 6536–6539 (2020). https://doi.org/10.1039/d0ra00374c
- Y. Liu, M. Li, Y. Zheng, H. Lin, Z. Wang et al., Boosting potassium-storage performance via the functional design of a heterostructured Bi2S3@RGO composite. Nanoscale 12, 24394–24402 (2020). https://doi.org/10.1039/d0nr06457b
- C. Wang, J. Lu, H. Tong, S. Wu, D. Wang et al., Structural engineering of sulfur-doped carbon encapsulated bismuth sulfide core-shell structure for enhanced potassium storage performance. Nano Res. 14, 3545–3551 (2021). https://doi.org/10.1007/s12274-021-3560-3
- D. Sha, Y. You, R. Hu, J. Ding, X. Cao et al., Enhancing potassium-ion storage of Bi2S3 through external–internal dual synergism: Ti3C2Tx compositing and Cu2+ doping. Carbon Energy 6, e563 (2024). https://doi.org/10.1002/cey2.563
- K.-T. Chen, S. Chong, L. Yuan, Y.-C. Yang, H.-Y. Tuan, Conversion-alloying dual mechanism anode: nitrogen-doped carbon-coated Bi2Se3 wrapped with graphene for superior potassium-ion storage. Energy Storage Mater. 39, 239–249 (2021). https://doi.org/10.1016/j.ensm.2021.04.019
- Z. Li, J. Yang, Z. Zhou, C. Mao, Z. Li et al., Growth confinement and ion transportation acceleration via an in situ formed Bi4Se3 layer for potassium ion battery anodes. Appl. Surf. Sci. 621, 156785 (2023). https://doi.org/10.1016/j.apsusc.2023.156785
- X. Sun, B. Zhang, M. Chen, L. Wang, D. Wang et al., Space-confined growth of Bi2Se3 nanosheets encapsulated in N-doped carbon shell lollipop-like composite for full/half potassium-ion and lithium-ion batteries. Nano Today 43, 101408 (2022). https://doi.org/10.1016/j.nantod.2022.101408
- Q. Li, D. Yu, J. Peng, W. Zhang, J. Huang et al., Efficient polytelluride anchoring for ultralong-life potassium storage: combined physical barrier and chemisorption in nanogrid-in-nanofiber. Nano-Micro Lett. 16, 77 (2024). https://doi.org/10.1007/s40820-023-01318-9
- S. Chong, L. Yuan, Q. Zhou, Y. Wang, S. Qiao et al., Bismuth telluride nanoplates hierarchically confined by graphene and N-doped C as conversion-alloying anode materials for potassium-ion batteries. Small 19, e2303985 (2023). https://doi.org/10.1002/smll.202303985
- G. Wang, Q. Li, W. Zhang, J. Wu, W. Fan et al., Unveiling the synergy of architecture and anion vacancy on Bi2Te3- x@NPCNFs for fast and stable potassium ion storage. ACS Appl. Mater. Interfaces 16, 13858–13868 (2024). https://doi.org/10.1021/acsami.4c00248
- Y.-Y. Hsieh, H.-Y. Tuan, Architectural van der Waals Bi2S3/Bi2Se3 topological heterostructure as a superior potassium-ion storage material. Energy Storage Mater. 51, 789–805 (2022). https://doi.org/10.1016/j.ensm.2022.07.020
- X. Sun, L. Wang, C. Li, D. Wang, I. Sikandar et al., Dandelion-Like Bi2S3/rGO hierarchical microspheres as high-performance anodes for potassium-ion and half/full sodium-ion batteries. Nano Res. 14, 4696–4703 (2021). https://doi.org/10.1007/s12274-021-3407-y
- Y. Qin, Y. Zhang, J. Wang, J. Zhang, Y. Zhai et al., Heterogeneous structured Bi2S3/MoS2@NC nanoclusters: exploring the superior rate performance in sodium/potassium ion batteries. ACS Appl. Mater. Interfaces 12, 42902–42910 (2020). https://doi.org/10.1021/acsami.0c13070
- C. Nithya, J.K.R. Modigunta, I. In, S. Kim, S. Gopukumar, Bi2S3 nanorods deposited on reduced graphene oxide for potassium-ion batteries. ACS Appl. Nano Mater. 6, 6121–6132 (2023). https://doi.org/10.1021/acsanm.3c00437
- T. Yang, J. Liu, D. Yang, Q. Mao, J. Zhong et al., Bi2Se3@C rod-like architecture with outstanding electrochemical properties in lithium/potassium-ion batteries. ACS Appl. Energy Mater. 3, 11073–11081 (2020). https://doi.org/10.1021/acsaem.0c02056
- X. Zhao, C. Zhang, G. Yang, Y. Wu, Q. Fu et al., Bismuth selenide nanosheets confined in thin carbon layers as anode materials for advanced potassium-ion batteries. Inorg. Chem. Front. 8, 4267–4275 (2021). https://doi.org/10.1039/D1QI00672J
- X. Li, X. Sun, X. Hu, F. Fan, S. Cai et al., Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy 77, 105143 (2020). https://doi.org/10.1016/j.nanoen.2020.105143
- S. Xiao, X. Li, T. Li, Y. Xiang, J.S. Chen, Practical strategies for enhanced performance of anode materials in Na+/K+-ion batteries. J. Mater. Chem. A 9, 7317–7335 (2021). https://doi.org/10.1039/d0ta12417f
- H. Gao, K. Yin, Z. Guo, Y. Zhang, W. Ma et al., Dealloying-constructed hierarchical nanoporous bismuth-antimony anode for potassium ion batteries. Fundam. Res. 1, 408–417 (2021). https://doi.org/10.1016/j.fmre.2021.06.001
- K. Song, C. Liu, L. Mi, S. Chou, W. Chen et al., Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 17, e1903194 (2021). https://doi.org/10.1002/smll.201903194
- K.-T. Chen, Y.-C. Yang, L.-M. Lyu, M.-Y. Lu, H.-Y. Tuan, In situ formed robust submicron-sized nanocrystalline aggregates enable highly-reversible potassium ion storage. Nano Energy 88, 106233 (2021). https://doi.org/10.1016/j.nanoen.2021.106233
- S. Dou, J. Xu, D. Zhang, W. Liu, C. Zeng et al., Ultrarapid nanomanufacturing of high-quality bimetallic anode library toward stable potassium-ion storage. Angew. Chem. Int. Ed. 62, e202303600 (2023). https://doi.org/10.1002/anie.202303600
- K.-T. Chen, H.-Y. Tuan, Bi–Sb nanocrystals embedded in phosphorus as high-performance potassium ion battery electrodes. ACS Nano 14, 11648–11661 (2020). https://doi.org/10.1021/acsnano.0c04203
- X. Wu, W. Zhang, N. Wu, S.-S. Pang, G. He et al., Exploration of nanoporous CuBi binary alloy for potassium storage. Adv. Funct. Mater. 30, 2003838 (2020). https://doi.org/10.1002/adfm.202003838
- Y. Feng, Y. Lv, F. Hongwei, M. Parekh, A.M. Rao, H. Wang, X. Tai, X. Yi, Y. Lin, J. Zhou, L. Bingan, Co-activation for enhanced K-ion storage in battery anodes. Natl. Sci. Rev. 10, nwad118 (2023).. https://doi.org/10.1093/nsr/nwad118
- Z. Tong, T. Kang, Y. Wu, F. Zhang, Y. Tang et al., Novel metastable Bi: Co and Bi: Fe alloys nanodots@carbon as anodes for high rate K-ion batteries. Nano Res. 15, 7220–7226 (2022). https://doi.org/10.1007/s12274-022-4398-z
- Z. Wang, C. Duan, D. Wang, K. Dong, S. Luo et al., BiSb@Bi2O3/SbOx encapsulated in porous carbon as anode materials for sodium/potassium-ion batteries with a high pseudocapacitive contribution. J. Colloid Interface Sci. 580, 429–438 (2020). https://doi.org/10.1016/j.jcis.2020.07.061
- X.-D. He, J.-Y. Liao, S. Wang, J.-R. Wang, Z.-H. Liu et al., From nanomelting to nanobeads: nanostructured SbxBi1−x alloys anchored in three-dimensional carbon frameworks as a high-performance anode for potassium-ion batteries. J. Mater. Chem. A 7, 27041–27047 (2019). https://doi.org/10.1039/C9TA10755J
- P. Xiong, J. Wu, M. Zhou, Y. Xu, Bismuth-antimony alloy nanop@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 14, 1018–1026 (2020). https://doi.org/10.1021/acsnano.9b08526
- C. Huang, A. Xu, G. Li, H. Sun, S. Wu et al., Alloyed BiSb nanops confined in Tremella-like carbon microspheres for ultralong-life potassium ion batteries. Small 17, e2100685 (2021). https://doi.org/10.1002/smll.202100685
- Z. Guo, J. Qin, B. Yu, W. Ma, W. Yang et al., Unveiling the sodium/potassium storage mechanisms of nanoporous indium-bismuth anode using operando X-ray diffraction. ECS Adv. 1, 040501 (2022). https://doi.org/10.1149/2754-2734/ac98d6
- H. Ling, X. Chen, C. Feng, Synthesis and electrochemical performances of BiVO4/CNTs composite as anode material for lithium-ion battery. Ionics 28(3), 1483–1493 (2022). https://doi.org/10.1007/s11581-022-04456-z
- Q. Zou, Y. Akada, A. Kuzume, M. Yoshida, T. Imaoka et al., Alloying at a subnanoscale maximizes the synergistic effect on the electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 61, e202209675 (2022). https://doi.org/10.1002/anie.202209675
- H. Zhu, T. Liu, L. Peng, W. Yao, F. Kang et al., A compact Bi2WO6 microflowers anode for potassium-ion storage: taming a sequential phase evolution toward stable electrochemical cycling. Nano Energy 82, 105784 (2021). https://doi.org/10.1016/j.nanoen.2021.105784
- C.-H. Chang, K.-T. Chen, Y.-Y. Hsieh, C.-B. Chang, H.-Y. Tuan, Crystal facet and architecture engineering of metal oxide nanonetwork anodes for high-performance potassium ion batteries and hybrid capacitors. ACS Nano 16, 1486–1501 (2022). https://doi.org/10.1021/acsnano.1c09863
- J. Guo, L. Wang, A. Hu, J. Zhang, Z. Xiao, 3D micro-flower structured BiFeO3 constructing high energy efficiency/stability potassium ion batteries over wide temperature range. Adv. Funct. Mater. 34, 2313300 (2024). https://doi.org/10.1002/adfm.202313300
- A. Brennhagen, C. Cavallo, D.S. Wragg, P. Vajeeston, A.O. Sjåstad, A.Y. Koposov, H. Fjellvåg, Operando XRD studies on Bi2MoO6 as anode material for Na-ion batteries. Nanotechnology 33(18), 185402 (2022). https://doi.org/10.1088/1361-6528/ac4eb5
- P. Du, L. Cao, B. Zhang, C. Wang, Z. Xiao et al., Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries. Renew. Sustain. Energy Rev. 151, 111640 (2021). https://doi.org/10.1016/j.rser.2021.111640
- M. Liu, Y. Wang, F. Wu, Y. Bai, Y. Li et al., Advances in carbon materials for sodium and potassium storage. Adv. Funct. Mater. 32, 2203117 (2022). https://doi.org/10.1002/adfm.202203117
- J. Hu, Y. Xie, J. Zheng, Y. Lai, Z. Zhang, Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries. Nano Res. 13, 2650–2657 (2020). https://doi.org/10.1007/s12274-020-2906-6
- S.A. Monny, Z. Wang, M. Konarova, L. Wang, Bismuth based photoelectrodes for solar water splitting. J. Energy Chem. 61, 517–530 (2021). https://doi.org/10.1016/j.jechem.2021.01.047
- M.-A. Shahbazi, L. Faghfouri, M.P.A. Ferreira, P. Figueiredo, H. Maleki et al., The versatile biomedical applications of bismuth-based nanops and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem. Soc. Rev. 49, 1253–1321 (2020). https://doi.org/10.1039/c9cs00283a
- J. Wang, B. Wang, B. Lu, Nature of novel 2D van der waals heterostructures for superior potassium ion batteries. Adv. Energy Mater. 10, 2000884 (2020). https://doi.org/10.1002/aenm.202000884
- C. Zhang, H. Pan, L. Sun, F. Xu, Y. Ouyang et al., Progress and perspectives of 2D materials as anodes for potassium-ion batteries. Energy Storage Mater. 38, 354–378 (2021). https://doi.org/10.1016/j.ensm.2021.03.007
- S.-L. Wei, Y.-L. Yang, X.-L. Shi, Y. Sun, J.-G. Chen et al., High capacity and long service in sodium-ion batteries achieved by the refinement of BiOCl from lamellar to flower-like in ether electrolyte. Chem. Eng. J. 489, 151346 (2024). https://doi.org/10.1016/j.cej.2024.151346
- G. Hao, C. Zhang, Z. Chen, Y. Xu, Nanoconfinement synthesis of ultrasmall bismuth oxyhalide nanocrystals with size-induced fully reversible potassium-ion storage and ultrahigh volumetric capacity. Adv. Funct. Mater. 32, 2201352 (2022). https://doi.org/10.1002/adfm.202201352
- J. Wu, B. Yuan, Y. Gu, Y. Zhang, Z. Yan et al., Multifunctional layered bismuth oxychloride/amorphous antimony oxide hetero-hybrids as superior photocatalyst and potassium ion storage materials. Appl. Catal. B Environ. 321, 122032 (2023). https://doi.org/10.1016/j.apcatb.2022.122032
- L. Zhisong Chen, H.L. Cheng, H. Li, Self-hybridization structures of BiOBr0.5Cl0.5: an ultra-high capacity anode material for half/full potassium-ion batteries. J. Colloid Interface Sci. 677, 769–779 (2025). https://doi.org/10.1016/j.jcis.2024.08.109
- X. Zhou, J. Qi, D. Zhou, T. Li, T. Wu et al., In-built polaronic states self-regulation for boosting potassium-ion diffusion kinetics. Adv. Funct. Mater. 34, 2308029 (2024). https://doi.org/10.1002/adfm.202308029
- H. Du, X. Zhou, T. Li, W. Zhao, D. Zhou et al., Regulating built-in polar states via atomic self-hybridization for fast ion diffusion kinetics in potassium ion batteries. Chin. J. Chem. 42, 2589–2598 (2024). https://doi.org/10.1002/cjoc.202400335
- Q. Yang, H. Li, C. Feng, Q. Ma, L. Zhang et al., Encapsulation of BiOCl nanops in N-doped carbon nanotubes as a highly efficient anode for potassium ion batteries. Nanoscale 14, 5814–5823 (2022). https://doi.org/10.1039/d2nr00227b
- Z. Liu, S. Zhao, G. Li, C. Chen, X. Xie et al., Stabilizing BiOCl/Ti3C2Tx hybrids for potassium-ion batteries via solid electrolyte interphase reconstruction. Inorg. Chem. Front. 9, 3165–3175 (2022). https://doi.org/10.1039/D2QI00640E
- L. Ma, X. Li, Z. Li, Y. Zhang, Z. Ji et al., Bismuth oxychloride anchoring on graphene nanosheets as anode with a high relative energy density for potassium ion battery. J. Colloid Interface Sci. 599, 857–862 (2021). https://doi.org/10.1016/j.jcis.2021.04.140
- W. Li, Y. Xu, Y. Dong, Y. Wu, C. Zhang et al., Bismuth oxychloride nanoflake assemblies as a new anode for potassium ion batteries. Chem. Commun. 55, 6507–6510 (2019). https://doi.org/10.1039/c9cc01937e
- J. Wu, L. Zhang, Z. Yan, J. Wen, J. Chang et al., Bismuth oxychloride clusters prepared by ball-milling technique and their multifunctional application in potassium ion storage and photodegradation. Scr. Mater. 219, 114860 (2022). https://doi.org/10.1016/j.scriptamat.2022.114860
- J. Zhu, J. Fan, T. Cheng, M. Cao, Z. Sun et al., Bilayer nanosheets of unusual stoichiometric bismuth oxychloride for potassium ion storage and CO2 reduction. Nano Energy 75, 104939 (2020). https://doi.org/10.1016/j.nanoen.2020.104939
- Y. You, X. Cao, X. Zhai, L. Wu, W. He et al., Ultrathin bismuth oxychloride nanosheet for enhanced potassium storage. Mater. Lett. 318, 132226 (2022). https://doi.org/10.1016/j.matlet.2022.132226
- C. Zhao, C. Han, X. Yang, J. Xu, Synthesis of two-dimensional ultrathin photocatalytic materials towards a more sustainable environment. Green Chem. 24, 4728–4741 (2022). https://doi.org/10.1039/d2gc00608a
- Y. Wang, J. He, Y. Zhu, H. Zhang, C. Yang et al., Hierarchical Bi-doped BiOBr microspheres assembled from nanosheets with (0 0 1) facet exposed via crystal facet engineering toward highly efficient visible light photocatalysis. Appl. Surf. Sci. 514, 145927 (2020). https://doi.org/10.1016/j.apsusc.2020.145927
- S. Vinoth, W.-J. Ong, A. Pandikumar, Defect engineering of BiOX (X = Cl, Br, I) based photocatalysts for energy and environmental applications: current progress and future perspectives. Coord. Chem. Rev. 464, 214541 (2022). https://doi.org/10.1016/j.ccr.2022.214541
- J.-E. Zhou, J. Chen, Y. Peng, Y. Zheng, A. Zeb et al., Metal-organic framework-derived transition metal sulfides and their composites for alkali-ion batteries: a review. Coord. Chem. Rev. 472, 214781 (2022). https://doi.org/10.1016/j.ccr.2022.214781
- Y. Wang, D. Liu, J. Lei, H. Tang, R. Zhang et al., Enhanced potassium storage property of copper phosphide anode by simultaneous carbon hybridization and porosity construction. J. Power Sources 544, 231820 (2022). https://doi.org/10.1016/j.jpowsour.2022.231820
- S. Haghighat-Shishavan, M. Nazarian-Samani, M. Nazarian-Samani, K.-B. Kim, Electrolyte modulation of BiPS4 concurrently suppressing the Bi coarsening and polysulfide shuttle effect in K-ion batteries. Energy Storage Mater. 39, 96–107 (2021). https://doi.org/10.1016/j.ensm.2021.03.037
- L. Wang, B. Zhang, B. Wang, S. Zeng, M. Zhao et al., In-situ nano-crystallization and solvation modulation to promote highly stable anode involving alloy/de-alloy for potassium ion batteries. Angew. Chem. Int. Ed. 133, 15509–15517 (2021). https://doi.org/10.1002/ange.202100654
- Z. Chen, H. Lin, Y. Tan, L. Niu, H. Li, Anchoring multi-coordinated bismuth metal atom sites on honeycomb-like carbon rods achieving advanced potassium storage. Adv. Funct. Mater. 34, 2407653 (2024). https://doi.org/10.1002/adfm.202407653
- Y. Tan, H. Lin, Z. Chen, L. Niu, H. Li, Regulating the coordination microenvironment of atomic bismuth sites in nitrogen-rich carbon nanosheets as anode for superior potassium-ion batteries. J. Energy Chem. 99, 365–374 (2024). https://doi.org/10.1016/j.jechem.2024.07.054
- Y. Yang, J. Wang, S. Liu, W. Zhu, G. Ye et al., Nature of bismuth and antimony based phosphate nanobundles/graphene for superior potassium ion batteries. Chem. Eng. J. 435, 134746 (2022). https://doi.org/10.1016/j.cej.2022.134746
- X. Ren, D. Yu, L. Yuan, Y. Bai, K. Huang et al., In situ exsolution of Ag from AgBiS2 nanocrystal anode boosting high-performance potassium-ion batteries. J. Mater. Chem. A 8, 15058–15065 (2020). https://doi.org/10.1039/D0TA03964K
- N. Kapuria, S. Imtiaz, A. Sankaran, H. Geaney, T. Kennedy et al., Multipod Bi(Cu2-xS)n nanocrystals formed by dynamic cation–ligand complexation and their use as anodes for potassium-ion batteries. Nano Lett. 22, 10120–10127 (2022). https://doi.org/10.1021/acs.nanolett.2c03933
- J. Hu, H. Li, J. Zheng, Y. Lai, Z. Zhang, An advanced BiPO4/super P anode material for high-performance potassium-ion batteries. Chem. Commun. 57, 13178–13181 (2021). https://doi.org/10.1039/d1cc04913e
- W.C. Lin, Y.C. Yang, H.Y. Tuan, Electrochemical self-healing nanocrystal electrodes for ultrastable potassium-ion storage. Small 19, 2300046 (2023). https://doi.org/10.1002/smll.202300046
- Z. Li, J. Wen, Y. Cai, F. Lv, X. Zeng et al., Hydrated Bi–Ti-bimetal ethylene glycol: a new high-capacity and stable anode material for potassium-ion batteries. Adv. Funct. Mater. 33, 2300582 (2023). https://doi.org/10.1002/adfm.202300582
- C.-B. Chang, H.-Y. Tuan, Recent progress on Sb- and Bi-based chalcogenide anodes for potassium-ion batteries. Chem. Asian J. 17, e202200170 (2022). https://doi.org/10.1002/asia.202200170
- H. Huang, J. Wang, X. Yang, R. Hu, J. Liu et al., Unveiling the advances of nanostructure design for alloy-type potassium-ion battery anodes via in situ TEM. Angew. Chem. Int. Ed. 59, 14504–14510 (2020). https://doi.org/10.1002/anie.202004193
- X. Liu, Y. Tong, Y. Wu, J. Zheng, Y. Sun et al., Synergistically enhanced electrochemical performance using nitrogen, phosphorus and sulfur tri-doped hollow carbon for advanced potassium ion storage device. Chem. Eng. J. 431, 133986 (2022). https://doi.org/10.1016/j.cej.2021.133986
- J. Wang, Z. Liu, J. Zhou, K. Han, B. Lu, Insights into metal/metalloid-based alloying anodes for potassium ion batteries. ACS Mater. Lett. 3, 1572–1598 (2021). https://doi.org/10.1021/acsmaterialslett.1c00477
- M.A. Ud Din, C. Li, L. Zhang, C. Han, B. Li, Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and potassium-ion batteries. Mater. Today Phys. 21, 100486 (2021). https://doi.org/10.1016/j.mtphys.2021.100486
- Q. Zhang, J. Mao, W.K. Pang, T. Zheng, V. Sencadas et al., Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 8, 1703288 (2018). https://doi.org/10.1002/aenm.201703288
- W. Shu, J. Li, G. Zhang, J. Meng, X. Wang et al., Progress on transition metal ions dissolution suppression strategies in Prussian blue analogs for aqueous sodium-/potassium-ion batteries. Nano-Micro Lett. 16, 128 (2024). https://doi.org/10.1007/s40820-024-01355-y
References
Y. Wu, Y. Sun, Y. Tong, H. Li, FeSb2 nanops embedded in 3D porous carbon framework: an robust anode material for potassium storage with long activation process. Small 18, e2201934 (2022). https://doi.org/10.1002/smll.202201934
L. Wang, S. Zhang, N. Li, J. Chen, Y. Chen et al., Prospects and challenges of practical nonaqueous potassium-ion batteries. Adv. Funct. Mater. 34, 2408965 (2024). https://doi.org/10.1002/adfm.202408965
Y. Wu, H. Lin, H. Li, Amorphous nanoscale antimony-vanadium oxide: a high capacity anode material for potassium ion batteries. Chem. Eng. J. 488, 150964 (2024). https://doi.org/10.1016/j.cej.2024.150964
Y. Xu, Y. Du, H. Chen, J. Chen, T. Ding et al., Recent advances in rational design for high-performance potassium-ion batteries. Chem. Soc. Rev. 53, 7202–7298 (2024). https://doi.org/10.1039/D3CS00601H
Y. Sun, J. Zheng, Y. Tong, Y. Wu, X. Liu et al., Construction of three-dimensional nitrogen doped porous carbon flake electrodes for advanced potassium-ion hybrid capacitors. J. Colloid Interface Sci. 606, 1940–1949 (2022). https://doi.org/10.1016/j.jcis.2021.09.143
A. Celadon, H. Sun, S. Sun, G. Zhang, Batteries for electric vehicles: technical advancements, environmental challenges, and market perspectives. SusMat 4, e234 (2024). https://doi.org/10.1002/sus2.234
J. Zheng, Y. Wu, Y. Tong, Y. Sun, H. Li, Dual-carbon confinement strategy of antimony anode material enabling advanced potassium ion storage. J. Colloid Interface Sci. 622, 738–747 (2022). https://doi.org/10.1016/j.jcis.2022.04.154
J. Liao, Y. Han, Z. Zhang, J. Xu, J. Li et al., Recent progress and prospects of layered cathode materials for potassium-ion batteries. Energy Environ. Mater. 4, 178–200 (2021). https://doi.org/10.1002/eem2.12166
J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13, 12 (2020). https://doi.org/10.1007/s40820-020-00541-y
J. Sun, F. Kang, D. Yan, T. Ding, Y. Wang et al., Recent progress in using covalent organic frameworks to stabilize metal anodes for highly-efficient rechargeable batteries. Angew. Chem. Int. Ed. 63, e202406511 (2024). https://doi.org/10.1002/anie.202406511
H. Lin, Y. Wu, H. Li, Stable cathode material enabled by Mg2+ intercalation layered potassium vanadate for high rate and long life potassium ion batteries. Appl. Surf. Sci. 633, 157603 (2023). https://doi.org/10.1016/j.apsusc.2023.157603
Y. Gu, Y.R. Pei, M. Zhao, C. Cheng Yang, Q. Jiang, Sn-, Sb- and Bi-based anodes for potassium ion battery. Chem. Rec. 22, e202200098 (2022). https://doi.org/10.1002/tcr.202200098
A. Wang, W. Hong, L. Yang, Y. Tian, X. Qiu et al., Bi-based electrode materials for alkali metal-ion batteries. Small 16, e2004022 (2020). https://doi.org/10.1002/smll.202004022
H. Qian, Y. Liu, H. Chen, K. Feng, K. Jia et al., Emerging bismuth-based materials: from fundamentals to electrochemical energy storage applications. Energy Storage Mater. 58, 232–270 (2023). https://doi.org/10.1016/j.ensm.2023.03.023
J. Zheng, Y. Wu, Y. Tong, X. Liu, Y. Sun et al., High capacity and fast kinetics of potassium-ion batteries boosted by nitrogen-doped mesoporous carbon spheres. Nano-Micro Lett. 13, 174 (2021). https://doi.org/10.1007/s40820-021-00706-3
J. Shen, Z. Zeng, W. Tang, Emerging high-entropy material electrodes for metal-ion batteries. SusMat 4, e215 (2024). https://doi.org/10.1002/sus2.215
Y. Du, Z. Zhang, Y. Xu, J. Bao, X. Zhou, Metal sulfide-based potassium-ion battery anodes: storage mechanisms and synthesis strategies. Acta Phys. Chim. Sin. 38, 2205017 (2022). https://doi.org/10.3866/pku.whxb202205017
M. Pan, M.-C. Zhao, Q. Zang, J. Liu, A. Atrens, F. Zhang, Insight into nanotransition metal disulfides as anode for potassium-ion batteries: applications, challenges, and prospects. Energy Mater. Adv. 5, 0120 (2024). https://doi.org/10.34133/energymatadv.0120
X. Liu, X. Yu, Y. Tong, Y. Sun, W. Mai et al., Potassium storage in bismuth nanops embedded in N-doped porous carbon facilitated by ether-based electrolyte. Chem. Eng. J. 446, 137329 (2022). https://doi.org/10.1016/j.cej.2022.137329
X. Liu, X. Wang, Y. Zhou, B. Wang, L. Zhao et al., Novel ultra-stable 2D SbBi alloy structure with precise regulation ratio enables long-stable potassium/lithium-ion storage. Adv. Mater. 36, e2308447 (2024). https://doi.org/10.1002/adma.202308447
X. Liu, Y. Tong, Y. Wu, J. Zheng, Y. Sun et al., In-depth mechanism understanding for potassium-ion batteries by electroanalytical methods and advanced in situ characterization techniques. Small Methods 5, e2101130 (2021). https://doi.org/10.1002/smtd.202101130
K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu et al., A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57, 4687–4691 (2018). https://doi.org/10.1002/anie.201801389
Z. Sun, Y. Liu, W. Ye, J. Zhang, Y. Wang et al., Unveiling intrinsic potassium storage behaviors of hierarchical nano Bi@N-doped carbon nanocages framework via in situ characterizations. Angew. Chem. Int. Ed. 60, 7180–7187 (2021). https://doi.org/10.1002/anie.202016082
J.K. Ko, A. Halajko, M.F. Parkinson, G.G. Amatucci, Electronic transport in lithiated iron and bismuth fluoride. J. Electrochem. Soc. 162(1), A149–A154 (2014). https://doi.org/10.1149/2.0621501jes
X. Liu, Z. Sun, Y. Sun, H. Lin, Z. Chen et al., Fast and long-lasting potassium-ion storage enabled by rationally engineering strain-relaxation Bi/Bi2O3 nanodots embedded in carbon sheets. Adv. Funct. Mater. 33, 2307205 (2023). https://doi.org/10.1002/adfm.202307205
D. Zhang, H. Fu, X. Ma, X. Yu, F. Li et al., Nonflammable phosphate-based electrolyte for safe and stable potassium batteries enabled by optimized solvation effect. Angew. Chem. Int. Ed. 63, e202405153 (2024). https://doi.org/10.1002/anie.202405153
Y. Tong, Y. Wu, X. Liu, Z. Chen, H. Li, Nitrogen-coordinated antimony atom anchored on carbon matrix as efficient active sites to enhance sodium/potassium ion storage. J. Colloid Interface Sci. 648, 575–584 (2023). https://doi.org/10.1016/j.jcis.2023.05.208
J. Zhang, G. Kim, M. Park, J. Zhang, S. Lee et al., Nanostructuring-promoted non-equilibrium phase transformation of Bi anodes toward diffusion-controlled reaction for K-ion batteries. Adv. Energy Mater. 12, 2202446 (2022). https://doi.org/10.1002/aenm.202202446
X. Cheng, Y. Sun, D. Li, H. Yang, F. Chen et al., From 0D to 3D: dimensional control of bismuth for potassium storage with superb kinetics and cycling stability. Adv. Energy Mater. 11, 2102263 (2021). https://doi.org/10.1002/aenm.202102263
Y. Wu, J. Zheng, Y. Tong, X. Liu, Y. Sun et al., Carbon hollow tube-confined Sb/Sb2S3 nanorod fragments as highly stable anodes for potassium-ion batteries. ACS Appl. Mater. Interfaces 13, 51066–51077 (2021). https://doi.org/10.1021/acsami.1c16267
H. Long, X. Yin, X. Wang, Y. Zhao, L. Yan, Bismuth nanorods confined in hollow carbon structures for high performance sodium- and potassium-ion batteries. J. Energy Chem. 67, 787–796 (2022). https://doi.org/10.1016/j.jechem.2021.11.011
X. Shi, J. Zhang, Q. Yao, R. Wang, H. Wu et al., A self-template approach to synthesize multicore–shell Bi@N-doped carbon nanosheets with interior void space for high-rate and ultrastable potassium storage. J. Mater. Chem. A 8, 8002–8009 (2020). https://doi.org/10.1039/C9TA13975C
J. Zheng, Y. Sun, Y. Wu, J. Rong, Z. Wang et al., Ultralong cycle life and high rate potassium ion batteries enabled by multi-level porous carbon. J. Power Sources 492, 229614 (2021). https://doi.org/10.1016/j.jpowsour.2021.229614
R.C. Cui, H.Y. Zhou, J.C. Li, C.C. Yang, Q. Jiang, Ball-cactus-like Bi embedded in N-riched carbon nanonetworks enables the best potassium storage performance. Adv. Funct. Mater. 31, 2103067 (2021). https://doi.org/10.1002/adfm.202103067
F. Zhang, X. Liu, B. Wang, G. Wang, H. Wang, Bi@C nanospheres with the unique petaloid core-shell structure anchored on porous graphene nanosheets as an anode for stable sodium- and potassium-ion batteries. ACS Appl. Mater. Interfaces 13, 59867–59881 (2021). https://doi.org/10.1021/acsami.1c16946
C.-H. Jo, S.-T. Myung, Role of ether-based electrolytes in enhancing potential of potassium-ion batteries. Adv. Energy Mater. 14, 2400217 (2024). https://doi.org/10.1002/aenm.202400217
Y. Zhao, X. Ren, Z. Xing, D. Zhu, W. Tian et al., In situ formation of hierarchical bismuth nanodots/graphene nanoarchitectures for ultrahigh-rate and durable potassium-ion storage. Small 16, e1905789 (2020). https://doi.org/10.1002/smll.201905789
H. Jiang, X. Lin, C. Wei, J. Feng, X. Tian, Scalable synthesis of nano‐sized Bi for separator modifying in 5V‐class lithium metal batteries and potassium ion batteries anodes. Small (2022). https://doi.org/10.1002/smll.202104264
F. Xie, L. Zhang, B. Chen, D. Chao, Q. Gu et al., Revealing the origin of improved reversible capacity of dual-shell bismuth boxes anode for potassium-ion batteries. Matter 1, 1681–1693 (2019). https://doi.org/10.1016/j.matt.2019.07.006
H. Li, C. Zhao, Y. Yin, Y. Zou, Y. Xia et al., N-Doped carbon coated bismuth nanorods with a hollow structure as an anode for superior-performance potassium-ion batteries. Nanoscale 12, 4309–4313 (2020). https://doi.org/10.1039/c9nr09867d
H. Yang, R. Xu, Y. Yao, S. Ye, X. Zhou et al., Multicore–shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv. Funct. Mater. 29, 1809195 (2019). https://doi.org/10.1002/adfm.201809195
S. Su, Q. Liu, J. Wang, L. Fan, R. Ma et al., Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl. Mater. Interfaces 11, 22474–22480 (2019). https://doi.org/10.1021/acsami.9b06379
W. Zhang, X. Chen, H. Xu, Y. Liu, X. Zhao et al., Three-dimensional hierarchical ternary nanostructures bismuth/polypyrrole/CNTs for high performance potassium-ion battery anodes. Chin. J. Chem. 40, 1585–1591 (2022). https://doi.org/10.1002/cjoc.202200042
C. Shen, T. Cheng, C. Liu, L. Huang, M. Cao et al., Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries. J. Mater. Chem. A 8, 453–460 (2020). https://doi.org/10.1039/c9ta11000c
X. Liu, Y. Sun, Y. Tong, H. Li, Unique spindle-like bismuth-based composite toward ultrafast potassium storage. Small 18, 2204045 (2022). https://doi.org/10.1002/smll.202204045
A. Xu, Q. Zhu, G. Li, C. Gong, X. Li et al., 2D Bismuth@N-doped carbon sheets for ultrahigh rate and stable potassium storage. Small 18, e2203976 (2022). https://doi.org/10.1002/smll.202203976
B. Wang, L. Shi, Y. Zhou, X. Wang, X. Liu et al., 3D dense encapsulated architecture of 2D Bi nanosheets enabling potassium-ion storage with superior volumetric and areal capacities. Small 20, e2310736 (2024). https://doi.org/10.1002/smll.202310736
Z. Sang, D. Su, J. Wang, Y. Liu, H. Ji, Bi-continuous nanoporous carbon sphere derived from SiOC as high-performance anodes for PIBs. Chem. Eng. J. 381, 122677 (2020). https://doi.org/10.1016/j.cej.2019.122677
Z. Gao, L. Han, H. Gao, J. Chen, Z. Sun et al., Coupling core–shell Bi@Void@TiO2 heterostructures into carbon nanofibers for achieving fast potassium storage and long cycling stability. J. Mater. Chem. A 10, 12908–12920 (2022). https://doi.org/10.1039/D2TA01833K
J. Mei, T. Liao, G.A. Ayoko, Z. Sun, Two-dimensional bismuth oxide heterostructured nanosheets for lithium- and sodium-ion storages. ACS Appl. Mater. Interfaces 11, 28205–28212 (2019). https://doi.org/10.1021/acsami.9b09882
H. Tong, S. Chen, J. Tu, X. Zeng, C. Wang et al., Bi2O3 ps embedded in carbon matrix as high-performance anode materials for potassium ion batteries. J. Power Sources 549, 232140 (2022). https://doi.org/10.1016/j.jpowsour.2022.232140
Y. Tang, L. Cheng, J. Zheng, Y. Sun, H. Li, Construction of Bi/Bi2O3 ps embedded in carbon sheets for boosting the storage capacity of potassium-ion batteries. J Colloid Interface Sci. 674, 634–642 (2024). https://doi.org/10.1016/j.jcis.2024.06.207
Y. Tong, Y. Wu, Z. Liu, Y. Yin, Y. Sun et al., Fabricating multi-porous carbon anode with remarkable initial coulombic efficiency and enhanced rate capability for sodium-ion batteries. Chin. Chem. Lett. 34, 107443 (2023). https://doi.org/10.1016/j.cclet.2022.04.041
P. Zhang, Y. Wei, S. Zhou, R. Soomro, M. Jiang et al., A metal-organic framework derived approach to fabricate in-situ carbon encapsulated Bi/Bi2O3 heterostructures as high-performance anodes for potassium ion batteries. J Colloid Interface Sci. 630, 365–374 (2023). https://doi.org/10.1016/j.jcis.2022.09.151
Y. Xu, H. Zhang, T. Ding, R. Tian, D. Sun et al., Synthesis of yolk-shell Bi2O3@TiO2 submicrospheres with enhanced potassium storage. Sci. China Chem. 65, 1807–1816 (2022). https://doi.org/10.1007/s11426-022-1365-4
W. Li, N. Gao, H. Li, R. Sun, Q. Liu et al., Bi@Bi2O3 anchored on porous graphene prepared by solvothermal method as a high-performance anode material for potassium-ion batteries. J. Alloys Compd. 939, 168766 (2023). https://doi.org/10.1016/j.jallcom.2023.168766
Z. Chen, Y. Wu, X. Liu, Y. Zhang, L. Yang et al., Bi/Bi3Se4 nanops embedded in hollow porous carbon nanorod: high rate capability material for potassium-ion batteries. J. Energy Chem. 81, 462–471 (2023). https://doi.org/10.1016/j.jechem.2023.02.050
Y. Wu, Y. Sun, Y. Tong, X. Liu, J. Zheng et al., Recent advances in potassium-ion hybrid capacitors: electrode materials, storage mechanisms and performance evaluation. Energy Storage Mater. 41, 108–132 (2021). https://doi.org/10.1016/j.ensm.2021.05.045
J.Y. Hwang, R. Kumar, H.M. Kim, M.H. Alfaruqi, J. Kim et al., Investigation of K-ion storage performances in a bismuth sulfide-carbon nanotube composite anode. RSC Adv. 10, 6536–6539 (2020). https://doi.org/10.1039/d0ra00374c
Y. Liu, M. Li, Y. Zheng, H. Lin, Z. Wang et al., Boosting potassium-storage performance via the functional design of a heterostructured Bi2S3@RGO composite. Nanoscale 12, 24394–24402 (2020). https://doi.org/10.1039/d0nr06457b
C. Wang, J. Lu, H. Tong, S. Wu, D. Wang et al., Structural engineering of sulfur-doped carbon encapsulated bismuth sulfide core-shell structure for enhanced potassium storage performance. Nano Res. 14, 3545–3551 (2021). https://doi.org/10.1007/s12274-021-3560-3
D. Sha, Y. You, R. Hu, J. Ding, X. Cao et al., Enhancing potassium-ion storage of Bi2S3 through external–internal dual synergism: Ti3C2Tx compositing and Cu2+ doping. Carbon Energy 6, e563 (2024). https://doi.org/10.1002/cey2.563
K.-T. Chen, S. Chong, L. Yuan, Y.-C. Yang, H.-Y. Tuan, Conversion-alloying dual mechanism anode: nitrogen-doped carbon-coated Bi2Se3 wrapped with graphene for superior potassium-ion storage. Energy Storage Mater. 39, 239–249 (2021). https://doi.org/10.1016/j.ensm.2021.04.019
Z. Li, J. Yang, Z. Zhou, C. Mao, Z. Li et al., Growth confinement and ion transportation acceleration via an in situ formed Bi4Se3 layer for potassium ion battery anodes. Appl. Surf. Sci. 621, 156785 (2023). https://doi.org/10.1016/j.apsusc.2023.156785
X. Sun, B. Zhang, M. Chen, L. Wang, D. Wang et al., Space-confined growth of Bi2Se3 nanosheets encapsulated in N-doped carbon shell lollipop-like composite for full/half potassium-ion and lithium-ion batteries. Nano Today 43, 101408 (2022). https://doi.org/10.1016/j.nantod.2022.101408
Q. Li, D. Yu, J. Peng, W. Zhang, J. Huang et al., Efficient polytelluride anchoring for ultralong-life potassium storage: combined physical barrier and chemisorption in nanogrid-in-nanofiber. Nano-Micro Lett. 16, 77 (2024). https://doi.org/10.1007/s40820-023-01318-9
S. Chong, L. Yuan, Q. Zhou, Y. Wang, S. Qiao et al., Bismuth telluride nanoplates hierarchically confined by graphene and N-doped C as conversion-alloying anode materials for potassium-ion batteries. Small 19, e2303985 (2023). https://doi.org/10.1002/smll.202303985
G. Wang, Q. Li, W. Zhang, J. Wu, W. Fan et al., Unveiling the synergy of architecture and anion vacancy on Bi2Te3- x@NPCNFs for fast and stable potassium ion storage. ACS Appl. Mater. Interfaces 16, 13858–13868 (2024). https://doi.org/10.1021/acsami.4c00248
Y.-Y. Hsieh, H.-Y. Tuan, Architectural van der Waals Bi2S3/Bi2Se3 topological heterostructure as a superior potassium-ion storage material. Energy Storage Mater. 51, 789–805 (2022). https://doi.org/10.1016/j.ensm.2022.07.020
X. Sun, L. Wang, C. Li, D. Wang, I. Sikandar et al., Dandelion-Like Bi2S3/rGO hierarchical microspheres as high-performance anodes for potassium-ion and half/full sodium-ion batteries. Nano Res. 14, 4696–4703 (2021). https://doi.org/10.1007/s12274-021-3407-y
Y. Qin, Y. Zhang, J. Wang, J. Zhang, Y. Zhai et al., Heterogeneous structured Bi2S3/MoS2@NC nanoclusters: exploring the superior rate performance in sodium/potassium ion batteries. ACS Appl. Mater. Interfaces 12, 42902–42910 (2020). https://doi.org/10.1021/acsami.0c13070
C. Nithya, J.K.R. Modigunta, I. In, S. Kim, S. Gopukumar, Bi2S3 nanorods deposited on reduced graphene oxide for potassium-ion batteries. ACS Appl. Nano Mater. 6, 6121–6132 (2023). https://doi.org/10.1021/acsanm.3c00437
T. Yang, J. Liu, D. Yang, Q. Mao, J. Zhong et al., Bi2Se3@C rod-like architecture with outstanding electrochemical properties in lithium/potassium-ion batteries. ACS Appl. Energy Mater. 3, 11073–11081 (2020). https://doi.org/10.1021/acsaem.0c02056
X. Zhao, C. Zhang, G. Yang, Y. Wu, Q. Fu et al., Bismuth selenide nanosheets confined in thin carbon layers as anode materials for advanced potassium-ion batteries. Inorg. Chem. Front. 8, 4267–4275 (2021). https://doi.org/10.1039/D1QI00672J
X. Li, X. Sun, X. Hu, F. Fan, S. Cai et al., Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy 77, 105143 (2020). https://doi.org/10.1016/j.nanoen.2020.105143
S. Xiao, X. Li, T. Li, Y. Xiang, J.S. Chen, Practical strategies for enhanced performance of anode materials in Na+/K+-ion batteries. J. Mater. Chem. A 9, 7317–7335 (2021). https://doi.org/10.1039/d0ta12417f
H. Gao, K. Yin, Z. Guo, Y. Zhang, W. Ma et al., Dealloying-constructed hierarchical nanoporous bismuth-antimony anode for potassium ion batteries. Fundam. Res. 1, 408–417 (2021). https://doi.org/10.1016/j.fmre.2021.06.001
K. Song, C. Liu, L. Mi, S. Chou, W. Chen et al., Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 17, e1903194 (2021). https://doi.org/10.1002/smll.201903194
K.-T. Chen, Y.-C. Yang, L.-M. Lyu, M.-Y. Lu, H.-Y. Tuan, In situ formed robust submicron-sized nanocrystalline aggregates enable highly-reversible potassium ion storage. Nano Energy 88, 106233 (2021). https://doi.org/10.1016/j.nanoen.2021.106233
S. Dou, J. Xu, D. Zhang, W. Liu, C. Zeng et al., Ultrarapid nanomanufacturing of high-quality bimetallic anode library toward stable potassium-ion storage. Angew. Chem. Int. Ed. 62, e202303600 (2023). https://doi.org/10.1002/anie.202303600
K.-T. Chen, H.-Y. Tuan, Bi–Sb nanocrystals embedded in phosphorus as high-performance potassium ion battery electrodes. ACS Nano 14, 11648–11661 (2020). https://doi.org/10.1021/acsnano.0c04203
X. Wu, W. Zhang, N. Wu, S.-S. Pang, G. He et al., Exploration of nanoporous CuBi binary alloy for potassium storage. Adv. Funct. Mater. 30, 2003838 (2020). https://doi.org/10.1002/adfm.202003838
Y. Feng, Y. Lv, F. Hongwei, M. Parekh, A.M. Rao, H. Wang, X. Tai, X. Yi, Y. Lin, J. Zhou, L. Bingan, Co-activation for enhanced K-ion storage in battery anodes. Natl. Sci. Rev. 10, nwad118 (2023).. https://doi.org/10.1093/nsr/nwad118
Z. Tong, T. Kang, Y. Wu, F. Zhang, Y. Tang et al., Novel metastable Bi: Co and Bi: Fe alloys nanodots@carbon as anodes for high rate K-ion batteries. Nano Res. 15, 7220–7226 (2022). https://doi.org/10.1007/s12274-022-4398-z
Z. Wang, C. Duan, D. Wang, K. Dong, S. Luo et al., BiSb@Bi2O3/SbOx encapsulated in porous carbon as anode materials for sodium/potassium-ion batteries with a high pseudocapacitive contribution. J. Colloid Interface Sci. 580, 429–438 (2020). https://doi.org/10.1016/j.jcis.2020.07.061
X.-D. He, J.-Y. Liao, S. Wang, J.-R. Wang, Z.-H. Liu et al., From nanomelting to nanobeads: nanostructured SbxBi1−x alloys anchored in three-dimensional carbon frameworks as a high-performance anode for potassium-ion batteries. J. Mater. Chem. A 7, 27041–27047 (2019). https://doi.org/10.1039/C9TA10755J
P. Xiong, J. Wu, M. Zhou, Y. Xu, Bismuth-antimony alloy nanop@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 14, 1018–1026 (2020). https://doi.org/10.1021/acsnano.9b08526
C. Huang, A. Xu, G. Li, H. Sun, S. Wu et al., Alloyed BiSb nanops confined in Tremella-like carbon microspheres for ultralong-life potassium ion batteries. Small 17, e2100685 (2021). https://doi.org/10.1002/smll.202100685
Z. Guo, J. Qin, B. Yu, W. Ma, W. Yang et al., Unveiling the sodium/potassium storage mechanisms of nanoporous indium-bismuth anode using operando X-ray diffraction. ECS Adv. 1, 040501 (2022). https://doi.org/10.1149/2754-2734/ac98d6
H. Ling, X. Chen, C. Feng, Synthesis and electrochemical performances of BiVO4/CNTs composite as anode material for lithium-ion battery. Ionics 28(3), 1483–1493 (2022). https://doi.org/10.1007/s11581-022-04456-z
Q. Zou, Y. Akada, A. Kuzume, M. Yoshida, T. Imaoka et al., Alloying at a subnanoscale maximizes the synergistic effect on the electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 61, e202209675 (2022). https://doi.org/10.1002/anie.202209675
H. Zhu, T. Liu, L. Peng, W. Yao, F. Kang et al., A compact Bi2WO6 microflowers anode for potassium-ion storage: taming a sequential phase evolution toward stable electrochemical cycling. Nano Energy 82, 105784 (2021). https://doi.org/10.1016/j.nanoen.2021.105784
C.-H. Chang, K.-T. Chen, Y.-Y. Hsieh, C.-B. Chang, H.-Y. Tuan, Crystal facet and architecture engineering of metal oxide nanonetwork anodes for high-performance potassium ion batteries and hybrid capacitors. ACS Nano 16, 1486–1501 (2022). https://doi.org/10.1021/acsnano.1c09863
J. Guo, L. Wang, A. Hu, J. Zhang, Z. Xiao, 3D micro-flower structured BiFeO3 constructing high energy efficiency/stability potassium ion batteries over wide temperature range. Adv. Funct. Mater. 34, 2313300 (2024). https://doi.org/10.1002/adfm.202313300
A. Brennhagen, C. Cavallo, D.S. Wragg, P. Vajeeston, A.O. Sjåstad, A.Y. Koposov, H. Fjellvåg, Operando XRD studies on Bi2MoO6 as anode material for Na-ion batteries. Nanotechnology 33(18), 185402 (2022). https://doi.org/10.1088/1361-6528/ac4eb5
P. Du, L. Cao, B. Zhang, C. Wang, Z. Xiao et al., Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries. Renew. Sustain. Energy Rev. 151, 111640 (2021). https://doi.org/10.1016/j.rser.2021.111640
M. Liu, Y. Wang, F. Wu, Y. Bai, Y. Li et al., Advances in carbon materials for sodium and potassium storage. Adv. Funct. Mater. 32, 2203117 (2022). https://doi.org/10.1002/adfm.202203117
J. Hu, Y. Xie, J. Zheng, Y. Lai, Z. Zhang, Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries. Nano Res. 13, 2650–2657 (2020). https://doi.org/10.1007/s12274-020-2906-6
S.A. Monny, Z. Wang, M. Konarova, L. Wang, Bismuth based photoelectrodes for solar water splitting. J. Energy Chem. 61, 517–530 (2021). https://doi.org/10.1016/j.jechem.2021.01.047
M.-A. Shahbazi, L. Faghfouri, M.P.A. Ferreira, P. Figueiredo, H. Maleki et al., The versatile biomedical applications of bismuth-based nanops and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem. Soc. Rev. 49, 1253–1321 (2020). https://doi.org/10.1039/c9cs00283a
J. Wang, B. Wang, B. Lu, Nature of novel 2D van der waals heterostructures for superior potassium ion batteries. Adv. Energy Mater. 10, 2000884 (2020). https://doi.org/10.1002/aenm.202000884
C. Zhang, H. Pan, L. Sun, F. Xu, Y. Ouyang et al., Progress and perspectives of 2D materials as anodes for potassium-ion batteries. Energy Storage Mater. 38, 354–378 (2021). https://doi.org/10.1016/j.ensm.2021.03.007
S.-L. Wei, Y.-L. Yang, X.-L. Shi, Y. Sun, J.-G. Chen et al., High capacity and long service in sodium-ion batteries achieved by the refinement of BiOCl from lamellar to flower-like in ether electrolyte. Chem. Eng. J. 489, 151346 (2024). https://doi.org/10.1016/j.cej.2024.151346
G. Hao, C. Zhang, Z. Chen, Y. Xu, Nanoconfinement synthesis of ultrasmall bismuth oxyhalide nanocrystals with size-induced fully reversible potassium-ion storage and ultrahigh volumetric capacity. Adv. Funct. Mater. 32, 2201352 (2022). https://doi.org/10.1002/adfm.202201352
J. Wu, B. Yuan, Y. Gu, Y. Zhang, Z. Yan et al., Multifunctional layered bismuth oxychloride/amorphous antimony oxide hetero-hybrids as superior photocatalyst and potassium ion storage materials. Appl. Catal. B Environ. 321, 122032 (2023). https://doi.org/10.1016/j.apcatb.2022.122032
L. Zhisong Chen, H.L. Cheng, H. Li, Self-hybridization structures of BiOBr0.5Cl0.5: an ultra-high capacity anode material for half/full potassium-ion batteries. J. Colloid Interface Sci. 677, 769–779 (2025). https://doi.org/10.1016/j.jcis.2024.08.109
X. Zhou, J. Qi, D. Zhou, T. Li, T. Wu et al., In-built polaronic states self-regulation for boosting potassium-ion diffusion kinetics. Adv. Funct. Mater. 34, 2308029 (2024). https://doi.org/10.1002/adfm.202308029
H. Du, X. Zhou, T. Li, W. Zhao, D. Zhou et al., Regulating built-in polar states via atomic self-hybridization for fast ion diffusion kinetics in potassium ion batteries. Chin. J. Chem. 42, 2589–2598 (2024). https://doi.org/10.1002/cjoc.202400335
Q. Yang, H. Li, C. Feng, Q. Ma, L. Zhang et al., Encapsulation of BiOCl nanops in N-doped carbon nanotubes as a highly efficient anode for potassium ion batteries. Nanoscale 14, 5814–5823 (2022). https://doi.org/10.1039/d2nr00227b
Z. Liu, S. Zhao, G. Li, C. Chen, X. Xie et al., Stabilizing BiOCl/Ti3C2Tx hybrids for potassium-ion batteries via solid electrolyte interphase reconstruction. Inorg. Chem. Front. 9, 3165–3175 (2022). https://doi.org/10.1039/D2QI00640E
L. Ma, X. Li, Z. Li, Y. Zhang, Z. Ji et al., Bismuth oxychloride anchoring on graphene nanosheets as anode with a high relative energy density for potassium ion battery. J. Colloid Interface Sci. 599, 857–862 (2021). https://doi.org/10.1016/j.jcis.2021.04.140
W. Li, Y. Xu, Y. Dong, Y. Wu, C. Zhang et al., Bismuth oxychloride nanoflake assemblies as a new anode for potassium ion batteries. Chem. Commun. 55, 6507–6510 (2019). https://doi.org/10.1039/c9cc01937e
J. Wu, L. Zhang, Z. Yan, J. Wen, J. Chang et al., Bismuth oxychloride clusters prepared by ball-milling technique and their multifunctional application in potassium ion storage and photodegradation. Scr. Mater. 219, 114860 (2022). https://doi.org/10.1016/j.scriptamat.2022.114860
J. Zhu, J. Fan, T. Cheng, M. Cao, Z. Sun et al., Bilayer nanosheets of unusual stoichiometric bismuth oxychloride for potassium ion storage and CO2 reduction. Nano Energy 75, 104939 (2020). https://doi.org/10.1016/j.nanoen.2020.104939
Y. You, X. Cao, X. Zhai, L. Wu, W. He et al., Ultrathin bismuth oxychloride nanosheet for enhanced potassium storage. Mater. Lett. 318, 132226 (2022). https://doi.org/10.1016/j.matlet.2022.132226
C. Zhao, C. Han, X. Yang, J. Xu, Synthesis of two-dimensional ultrathin photocatalytic materials towards a more sustainable environment. Green Chem. 24, 4728–4741 (2022). https://doi.org/10.1039/d2gc00608a
Y. Wang, J. He, Y. Zhu, H. Zhang, C. Yang et al., Hierarchical Bi-doped BiOBr microspheres assembled from nanosheets with (0 0 1) facet exposed via crystal facet engineering toward highly efficient visible light photocatalysis. Appl. Surf. Sci. 514, 145927 (2020). https://doi.org/10.1016/j.apsusc.2020.145927
S. Vinoth, W.-J. Ong, A. Pandikumar, Defect engineering of BiOX (X = Cl, Br, I) based photocatalysts for energy and environmental applications: current progress and future perspectives. Coord. Chem. Rev. 464, 214541 (2022). https://doi.org/10.1016/j.ccr.2022.214541
J.-E. Zhou, J. Chen, Y. Peng, Y. Zheng, A. Zeb et al., Metal-organic framework-derived transition metal sulfides and their composites for alkali-ion batteries: a review. Coord. Chem. Rev. 472, 214781 (2022). https://doi.org/10.1016/j.ccr.2022.214781
Y. Wang, D. Liu, J. Lei, H. Tang, R. Zhang et al., Enhanced potassium storage property of copper phosphide anode by simultaneous carbon hybridization and porosity construction. J. Power Sources 544, 231820 (2022). https://doi.org/10.1016/j.jpowsour.2022.231820
S. Haghighat-Shishavan, M. Nazarian-Samani, M. Nazarian-Samani, K.-B. Kim, Electrolyte modulation of BiPS4 concurrently suppressing the Bi coarsening and polysulfide shuttle effect in K-ion batteries. Energy Storage Mater. 39, 96–107 (2021). https://doi.org/10.1016/j.ensm.2021.03.037
L. Wang, B. Zhang, B. Wang, S. Zeng, M. Zhao et al., In-situ nano-crystallization and solvation modulation to promote highly stable anode involving alloy/de-alloy for potassium ion batteries. Angew. Chem. Int. Ed. 133, 15509–15517 (2021). https://doi.org/10.1002/ange.202100654
Z. Chen, H. Lin, Y. Tan, L. Niu, H. Li, Anchoring multi-coordinated bismuth metal atom sites on honeycomb-like carbon rods achieving advanced potassium storage. Adv. Funct. Mater. 34, 2407653 (2024). https://doi.org/10.1002/adfm.202407653
Y. Tan, H. Lin, Z. Chen, L. Niu, H. Li, Regulating the coordination microenvironment of atomic bismuth sites in nitrogen-rich carbon nanosheets as anode for superior potassium-ion batteries. J. Energy Chem. 99, 365–374 (2024). https://doi.org/10.1016/j.jechem.2024.07.054
Y. Yang, J. Wang, S. Liu, W. Zhu, G. Ye et al., Nature of bismuth and antimony based phosphate nanobundles/graphene for superior potassium ion batteries. Chem. Eng. J. 435, 134746 (2022). https://doi.org/10.1016/j.cej.2022.134746
X. Ren, D. Yu, L. Yuan, Y. Bai, K. Huang et al., In situ exsolution of Ag from AgBiS2 nanocrystal anode boosting high-performance potassium-ion batteries. J. Mater. Chem. A 8, 15058–15065 (2020). https://doi.org/10.1039/D0TA03964K
N. Kapuria, S. Imtiaz, A. Sankaran, H. Geaney, T. Kennedy et al., Multipod Bi(Cu2-xS)n nanocrystals formed by dynamic cation–ligand complexation and their use as anodes for potassium-ion batteries. Nano Lett. 22, 10120–10127 (2022). https://doi.org/10.1021/acs.nanolett.2c03933
J. Hu, H. Li, J. Zheng, Y. Lai, Z. Zhang, An advanced BiPO4/super P anode material for high-performance potassium-ion batteries. Chem. Commun. 57, 13178–13181 (2021). https://doi.org/10.1039/d1cc04913e
W.C. Lin, Y.C. Yang, H.Y. Tuan, Electrochemical self-healing nanocrystal electrodes for ultrastable potassium-ion storage. Small 19, 2300046 (2023). https://doi.org/10.1002/smll.202300046
Z. Li, J. Wen, Y. Cai, F. Lv, X. Zeng et al., Hydrated Bi–Ti-bimetal ethylene glycol: a new high-capacity and stable anode material for potassium-ion batteries. Adv. Funct. Mater. 33, 2300582 (2023). https://doi.org/10.1002/adfm.202300582
C.-B. Chang, H.-Y. Tuan, Recent progress on Sb- and Bi-based chalcogenide anodes for potassium-ion batteries. Chem. Asian J. 17, e202200170 (2022). https://doi.org/10.1002/asia.202200170
H. Huang, J. Wang, X. Yang, R. Hu, J. Liu et al., Unveiling the advances of nanostructure design for alloy-type potassium-ion battery anodes via in situ TEM. Angew. Chem. Int. Ed. 59, 14504–14510 (2020). https://doi.org/10.1002/anie.202004193
X. Liu, Y. Tong, Y. Wu, J. Zheng, Y. Sun et al., Synergistically enhanced electrochemical performance using nitrogen, phosphorus and sulfur tri-doped hollow carbon for advanced potassium ion storage device. Chem. Eng. J. 431, 133986 (2022). https://doi.org/10.1016/j.cej.2021.133986
J. Wang, Z. Liu, J. Zhou, K. Han, B. Lu, Insights into metal/metalloid-based alloying anodes for potassium ion batteries. ACS Mater. Lett. 3, 1572–1598 (2021). https://doi.org/10.1021/acsmaterialslett.1c00477
M.A. Ud Din, C. Li, L. Zhang, C. Han, B. Li, Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and potassium-ion batteries. Mater. Today Phys. 21, 100486 (2021). https://doi.org/10.1016/j.mtphys.2021.100486
Q. Zhang, J. Mao, W.K. Pang, T. Zheng, V. Sencadas et al., Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 8, 1703288 (2018). https://doi.org/10.1002/aenm.201703288
W. Shu, J. Li, G. Zhang, J. Meng, X. Wang et al., Progress on transition metal ions dissolution suppression strategies in Prussian blue analogs for aqueous sodium-/potassium-ion batteries. Nano-Micro Lett. 16, 128 (2024). https://doi.org/10.1007/s40820-024-01355-y