Indocyanine Green-Conjugated Magnetic Prussian Blue Nanoparticles for Synchronous Photothermal/Photodynamic Tumor Therapy
Corresponding Author: Yuejun Kang
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 74
Abstract
Indocyanine green (ICG) is capable of inducing a photothermal effect and the production of cytotoxic reactive oxygen species for cancer therapy. However, the major challenge in applying ICG molecules for antitumor therapy is associated with their instability in aqueous conditions and rapid clearance from blood circulation, which causes insufficient bioavailability at the tumor site. Herein, we conjugated ICG molecules with Prussian blue nanoparticles enclosing a Fe3O4 nanocore, which was facilitated by cationic polyethyleneimine via electrostatic adsorption. The nanocarrier-loaded ICG formed stable aggregates that enhanced cellular uptake and prevented fluorescence quenching. Moreover, the strong superparamagnetism of the Fe3O4 core in the obtained nanocomposites further improved cellular internalization of the drugs guided by a localized magnetic field. The therapeutic efficacy of this nanoplatform was evaluated using tumor models established in nude mice, which demonstrated remarkable tumor ablation in vivo due to strong photothermal/photodynamic effects. This study provides promising evidence that this multifunctional nanoagent might function as an efficient mediator for combining photothermal and photodynamic cancer therapy.
Highlights:
1 An efficient photosensitizer, indocyanine green (ICG), was grafted on a nanocarrier via electrostatic adsorption, which effectively resolved poor circulation stability and tumoral bioavailability of free ICG molecules.
2 This composite nanoplatform comprised a magnetic core and a photothermal shell, which produced remarkable tumor suppression in vivo under combined photothermal and photodynamic therapy aided by magnetic guidance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, Global cancer statistics. Cancer J. Clin. 61(2), 69–90 (2011). https://doi.org/10.3322/caac.20107
- A. Sudhakar, History of cancer, ancient, modern treatment methods. J. Cancer Sci. Ther. 1(2), 1–4 (2009). https://doi.org/10.4172/1948-5956.100000e2
- A. Urruticoechea, R. Alemany, J. Balart, A. Villanueva, F. Vinals, G. Capella, Recent advances in cancer therapy: an overview. Curr. Pharm. Des. 16(1), 3–10 (2010). https://doi.org/10.2174/138161210789941847
- D.N. Khalil, E.L. Smith, R.J. Brentjens, J.D. Wolchok, The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 13(5), 273–290 (2016). https://doi.org/10.1038/nrclinonc.2016.25
- E.S. Shibu, M. Hamada, N. Murase, V. Biju, Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J. Photochem. Photobiol. C 15, 53–72 (2013). https://doi.org/10.1016/j.jphotochemrev.2012.09.004
- J.J. Liu, K. Liu, L.Z. Feng, Z. Liu, L.G. Xu, Comparison of nanomedicine-based chemotherapy, photodynamic therapy and photothermal therapy using reduced graphene oxide for the model system. Biomater. Sci. 5(2), 331–340 (2017). https://doi.org/10.1039/C6BM00526H
- L. Cheng, C. Wang, L.Z. Feng, K. Yang, Z. Liu, Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114(21), 10869–10939 (2014). https://doi.org/10.1021/cr400532z
- A. Bucharskaya, G. Maslyakova, G. Terentyuk, A. Yakunin, Y. Avetisyan et al., Towards effective photothermal/photodynamic treatment using plasmonic gold nanoparticles. Int. J. Mol. Sci. 17(8), E1295 (2016). https://doi.org/10.3390/ijms17081295
- L.L. Zou, H. Wang, B. He, L.J. Zeng, T. Tan et al., Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 6(6), 762–772 (2016). https://doi.org/10.7150/thno.14988
- N.S. Abadeer, C.J. Murphy, Recent progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C 120(9), 4691–4716 (2016). https://doi.org/10.1021/acs.jpcc.5b11232
- N.N. Huang, H.Q. Wang, J.H. Zhao, H. Lui, M. Korbelik, H.S. Zeng, Single-wall carbon nanotubes assisted photothermal cancer therapy: animal study with a murine model of squamous cell carcinoma. Lasers Surg. Med. 42(9), 638–648 (2010). https://doi.org/10.1002/lsm.20968
- C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Copper selenide nanocrystals for photothermal therapy. Nano Lett. 11(6), 2560–2566 (2011). https://doi.org/10.1021/nl201400z
- W.Y. Yin, L. Yan, J. Yu, G. Tian, L.J. Zhou et al., High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 8(7), 6922–6933 (2014). https://doi.org/10.1021/nn501647j
- M. Chen, X.L. Fang, S.H. Tang, N.F. Zheng, Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy. Chem. Commun. 48(71), 8934–8936 (2012). https://doi.org/10.1039/c2cc34463g
- E.I. Yslas, L.E. Ibarra, M.A. Molina, C. Rivarola, C.A. Barbero, M.L. Bertuzzi, V.A. Rivarola, Polyaniline nanoparticles for near-infrared photothermal destruction of cancer cells. J. Nanopart. Res. 17(10), 389 (2015). https://doi.org/10.1007/s11051-015-3187-y
- T.D. MacDonald, T.W. Liu, G. Zheng, An MRI-sensitive, non-photobleachable porphysome photothermal agent. Angew. Chem. Int. Ed. 53(27), 6956–6959 (2014). https://doi.org/10.1002/anie.201400133
- E.J. Hong, D.G. Choi, M.S. Shim, Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm. Sin. B 6(4), 297–307 (2016). https://doi.org/10.1016/j.apsb.2016.01.007
- M. Ethirajan, Y.H. Chen, P. Joshi, R.K. Pandey, The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 40(1), 340–362 (2011). https://doi.org/10.1039/B915149B
- J.D. Meyers, Y. Cheng, A.M. Broome, R.S. Agnes, M.D. Schluchter et al., Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part. Part. Syst. Charact. 32(4), 448–457 (2015). https://doi.org/10.1002/ppsc.201400119
- P. Juzenas, W. Chen, Y.P. Sun, M.A.N. Coelho, R. Generalov, N. Generalova, I.L. Christensen, Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 60(15), 1600–1614 (2008). https://doi.org/10.1016/j.addr.2008.08.004
- S.L. Luo, E.L. Zhang, Y.P. Su, T.M. Cheng, C.M. Shi, A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29), 7127–7138 (2011). https://doi.org/10.1016/j.biomaterials.2011.06.024
- G.L. Fu, W. Liu, S.S. Feng, X.L. Yue, Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 48(94), 11567–11569 (2012). https://doi.org/10.1039/c2cc36456e
- G.L. Fu, W. Liu, Y.Y. Li, Y.S. Jin, L.D. Jiang, X.L. Liang, S.S. Feng, Z.F. Dai, Magnetic prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance. Bioconjugate Chem. 25(9), 1655–1663 (2014). https://doi.org/10.1021/bc500279w
- P. Xue, J.N. Bao, L. Zhang, Z.G. Xu, C.J. Xu, Y.L. Zhang, Y.J. Kang, Functional magnetic Prussian blue nanoparticles for enhanced gene transfection and photothermal ablation of tumor cells. J. Mater. Chem. B 4(27), 4717–4725 (2016). https://doi.org/10.1039/C6TB00982D
- P. Xue, K.K.Y. Cheong, Y.F. Wu, Y.J. Kang, An in vitro study of enzyme-responsive Prussian blue nanoparticles for combined tumor chemotherapy and photothermal therapy. Colloids Surf. B 125, 277–283 (2015). https://doi.org/10.1016/j.colsurfb.2014.10.059
- J.S. Treger, M.F. Priest, R. Iezzi, F. Bezanilla, Real-time imaging of electrical signals with an infrared FDA-approved dye. Biophys. J. 107(6), L9–L12 (2014). https://doi.org/10.1016/j.bpj.2014.07.054
- Z. Sheng, D. Hu, M. Xue, M. He, P. Gong, L. Cai, Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett. 5(3), 145–150 (2013). https://doi.org/10.1007/BF03353743
- Y.L. Liu, X. Zhi, M. Yang, J.P. Zhang, L.N. Lin et al., Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy. Theranostics 7(6), 1650–1662 (2017). https://doi.org/10.7150/thno.17602
- J.T. Alander, I. Kaartinen, A. Laakso, T. Patila, T. Spillmann, V.V. Tuchin, M. Venermo, P. Valisuo, A review of indocyanine green fluorescent imaging in surgery. Int. J. Biomed. Imaging 2012, 940585 (2012). https://doi.org/10.1155/2012/940585
- E.I. Altinoglu, T.J. Russin, J.M. Kaiser, B.M. Barth, P.C. Eklund, M. Kester, J.H. Adair, Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2(10), 2075–2084 (2008). https://doi.org/10.1021/nn800448r
- C.H. Lee, S.H. Cheng, Y.J. Wang, Y.C. Chen, N.T. Chen et al., Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution. Adv. Funct. Mater. 19(2), 215–222 (2009). https://doi.org/10.1002/adfm.200800753
- R.H. Patel, A.S. Wadajkar, N.L. Patel, V.C. Kavuri, K.T. Nguyen, H.L. Liu, Multifunctionality of indocyanine green-loaded biodegradable nanoparticles for enhanced optical imaging and hyperthermia intervention of cancer. J. Biomed. Opt. 17(4), 046003 (2012). https://doi.org/10.1117/1.JBO.17.4.046003
- G.P. Sheng, Y. Chen, L.J. Han, Y. Huang, X.L. Liu, L.J. Li, Z.W. Mao, Encapsulation of indocyanine green into cell membrane capsules for photothermal cancer therapy. Acta Biomater. 43, 251–261 (2016). https://doi.org/10.1016/j.actbio.2016.07.012
- T. Ito, N. Iida-Tanaka, Y. Koyama, Efficient in vivo gene transfection by stable DNA/PEI complexes coated by hyaluronic acid. J. Drug Target. 16(4), 276–281 (2008). https://doi.org/10.1080/10611860801900728
- B. Quan, K. Choi, Y.H. Kim, K.W. Kang, D.S. Chung, Near infrared dye indocyanine green doped silica nanoparticles for biological imaging. Talanta 99, 387–393 (2012). https://doi.org/10.1016/j.talanta.2012.05.069
- M.C. Mascolo, Y. Pei, T.A. Ring, Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6(12), 5549–5567 (2013). https://doi.org/10.3390/ma6125549
- Y.J. Liu, G.M. Shu, X. Li, H.B. Chen, B. Zhang et al., Human HSP70 promoter-based prussian blue nanotheranostics for thermo-controlled gene therapy and synergistic photothermal ablation. Adv. Funct. Mater. 28(32), 1802026 (2018). https://doi.org/10.1002/adfm.201802026
- X.M. Guo, Z. Wu, W. Li, Z.H. Wang, Q.P. Li et al., Appropriate size of magnetic nanoparticles for various bioapplications in cancer diagnostics and therapy. ACS Appl. Mater. Interfaces 8(5), 3092–3106 (2016). https://doi.org/10.1021/acsami.5b10352
- S.M. Park, A. Aalipour, O. Vermesh, J.H. Yu, S.S. Gambhir, Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2, 17014 (2017). https://doi.org/10.1038/natrevmats.2017.14
- W. Holzer, M. Mauerer, A. Penzkofer, R.M. Szeimies, C. Abels, M. Landthaler, W. Baumler, Photostability and thermal stability of indocyanine green. J. Photochem. Photobiol. B 47(2–3), 155–164 (1998). https://doi.org/10.1016/S1011-1344(98)00216-4
- E.Y. Jomma, S.N. Ding, One-pot hydrothermal synthesis of magnetite prussian blue nano-composites and their application to fabricate glucose biosensor. Sensors 16(2), 243 (2016). https://doi.org/10.3390/s16020243
- S.J. Wang, C.S. Chen, L.C. Chen, Prussian blue nanoparticles as nanocargoes for delivering DNA drugs to cancer cells. Sci. Technol. Adv. Mater. 14(4), 044405 (2013). https://doi.org/10.1088/1468-6996/14/4/044405
- MathSciNet
- H.S. Park, J. Kim, M.Y. Cho, H. Lee, S.H. Nam, Y.D. Suh, K.S. Hong, Convenient and effective ICGylation of magnetic nanoparticles for biomedical applications. Sci. Rep. 7, 8831 (2017). https://doi.org/10.1038/s41598-017-09627-x
- R. Macianskiene, M. Almanaityte, R. Treinys, A. Navalinskas, R. Benetis, J. Jurevicius, Spectral characteristics of voltage-sensitive indocyanine green fluorescence in the heart. Sci. Rep. 7, 7983 (2017). https://doi.org/10.1038/s41598-017-08168-7
- T.C. Chou, P. Talalay, Analysis of combined drug effects—a new look at a very old problem. Trends Pharmacol. Sci. 4, 450–454 (1983). https://doi.org/10.1016/0165-6147(83)90490-X
- T.C. Chou, Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 70(2), 440–446 (2010). https://doi.org/10.1158/0008-5472.CAN-09-1947
- L. Xia, X.G. Kong, X.M. Liu, L.P. Tu, Y.L. Zhang et al., An upconversion nanoparticle-Zinc phthalocyanine based nanophotosensitizer for photodynamic therapy. Biomaterials 35(13), 4146–4156 (2014). https://doi.org/10.1016/j.biomaterials.2014.01.068
- N. Oh, J.H. Park, Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 9, 51–63 (2014). https://doi.org/10.2147/IJN.S26592
- M. Guo, H.J. Mao, Y.L. Li, A.J. Zhu, H. He et al., Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 35(16), 4656–4666 (2014). https://doi.org/10.1016/j.biomaterials.2014.02.018
- F. Yan, H. Wu, H.M. Liu, Z.T. Deng, H. Liu, W.L. Duan, X. Liu, H.R. Zheng, Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. J. Controlled Release 224, 217–228 (2016). https://doi.org/10.1016/j.jconrel.2015.12.050
- M. Zhang, W.T. Wang, Y.J. Cui, N.L. Zhou, J. Shen, Near-infrared light-mediated photodynamic/photothermal therapy nanoplatform by the assembly of Fe3O4 carbon dots with graphitic black phosphorus quantum dots. Int. J. Nanomed. 13, 2803–2819 (2018). https://doi.org/10.2147/IJN.S156434
References
A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, Global cancer statistics. Cancer J. Clin. 61(2), 69–90 (2011). https://doi.org/10.3322/caac.20107
A. Sudhakar, History of cancer, ancient, modern treatment methods. J. Cancer Sci. Ther. 1(2), 1–4 (2009). https://doi.org/10.4172/1948-5956.100000e2
A. Urruticoechea, R. Alemany, J. Balart, A. Villanueva, F. Vinals, G. Capella, Recent advances in cancer therapy: an overview. Curr. Pharm. Des. 16(1), 3–10 (2010). https://doi.org/10.2174/138161210789941847
D.N. Khalil, E.L. Smith, R.J. Brentjens, J.D. Wolchok, The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 13(5), 273–290 (2016). https://doi.org/10.1038/nrclinonc.2016.25
E.S. Shibu, M. Hamada, N. Murase, V. Biju, Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J. Photochem. Photobiol. C 15, 53–72 (2013). https://doi.org/10.1016/j.jphotochemrev.2012.09.004
J.J. Liu, K. Liu, L.Z. Feng, Z. Liu, L.G. Xu, Comparison of nanomedicine-based chemotherapy, photodynamic therapy and photothermal therapy using reduced graphene oxide for the model system. Biomater. Sci. 5(2), 331–340 (2017). https://doi.org/10.1039/C6BM00526H
L. Cheng, C. Wang, L.Z. Feng, K. Yang, Z. Liu, Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114(21), 10869–10939 (2014). https://doi.org/10.1021/cr400532z
A. Bucharskaya, G. Maslyakova, G. Terentyuk, A. Yakunin, Y. Avetisyan et al., Towards effective photothermal/photodynamic treatment using plasmonic gold nanoparticles. Int. J. Mol. Sci. 17(8), E1295 (2016). https://doi.org/10.3390/ijms17081295
L.L. Zou, H. Wang, B. He, L.J. Zeng, T. Tan et al., Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 6(6), 762–772 (2016). https://doi.org/10.7150/thno.14988
N.S. Abadeer, C.J. Murphy, Recent progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C 120(9), 4691–4716 (2016). https://doi.org/10.1021/acs.jpcc.5b11232
N.N. Huang, H.Q. Wang, J.H. Zhao, H. Lui, M. Korbelik, H.S. Zeng, Single-wall carbon nanotubes assisted photothermal cancer therapy: animal study with a murine model of squamous cell carcinoma. Lasers Surg. Med. 42(9), 638–648 (2010). https://doi.org/10.1002/lsm.20968
C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Copper selenide nanocrystals for photothermal therapy. Nano Lett. 11(6), 2560–2566 (2011). https://doi.org/10.1021/nl201400z
W.Y. Yin, L. Yan, J. Yu, G. Tian, L.J. Zhou et al., High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 8(7), 6922–6933 (2014). https://doi.org/10.1021/nn501647j
M. Chen, X.L. Fang, S.H. Tang, N.F. Zheng, Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy. Chem. Commun. 48(71), 8934–8936 (2012). https://doi.org/10.1039/c2cc34463g
E.I. Yslas, L.E. Ibarra, M.A. Molina, C. Rivarola, C.A. Barbero, M.L. Bertuzzi, V.A. Rivarola, Polyaniline nanoparticles for near-infrared photothermal destruction of cancer cells. J. Nanopart. Res. 17(10), 389 (2015). https://doi.org/10.1007/s11051-015-3187-y
T.D. MacDonald, T.W. Liu, G. Zheng, An MRI-sensitive, non-photobleachable porphysome photothermal agent. Angew. Chem. Int. Ed. 53(27), 6956–6959 (2014). https://doi.org/10.1002/anie.201400133
E.J. Hong, D.G. Choi, M.S. Shim, Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm. Sin. B 6(4), 297–307 (2016). https://doi.org/10.1016/j.apsb.2016.01.007
M. Ethirajan, Y.H. Chen, P. Joshi, R.K. Pandey, The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 40(1), 340–362 (2011). https://doi.org/10.1039/B915149B
J.D. Meyers, Y. Cheng, A.M. Broome, R.S. Agnes, M.D. Schluchter et al., Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part. Part. Syst. Charact. 32(4), 448–457 (2015). https://doi.org/10.1002/ppsc.201400119
P. Juzenas, W. Chen, Y.P. Sun, M.A.N. Coelho, R. Generalov, N. Generalova, I.L. Christensen, Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 60(15), 1600–1614 (2008). https://doi.org/10.1016/j.addr.2008.08.004
S.L. Luo, E.L. Zhang, Y.P. Su, T.M. Cheng, C.M. Shi, A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29), 7127–7138 (2011). https://doi.org/10.1016/j.biomaterials.2011.06.024
G.L. Fu, W. Liu, S.S. Feng, X.L. Yue, Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 48(94), 11567–11569 (2012). https://doi.org/10.1039/c2cc36456e
G.L. Fu, W. Liu, Y.Y. Li, Y.S. Jin, L.D. Jiang, X.L. Liang, S.S. Feng, Z.F. Dai, Magnetic prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance. Bioconjugate Chem. 25(9), 1655–1663 (2014). https://doi.org/10.1021/bc500279w
P. Xue, J.N. Bao, L. Zhang, Z.G. Xu, C.J. Xu, Y.L. Zhang, Y.J. Kang, Functional magnetic Prussian blue nanoparticles for enhanced gene transfection and photothermal ablation of tumor cells. J. Mater. Chem. B 4(27), 4717–4725 (2016). https://doi.org/10.1039/C6TB00982D
P. Xue, K.K.Y. Cheong, Y.F. Wu, Y.J. Kang, An in vitro study of enzyme-responsive Prussian blue nanoparticles for combined tumor chemotherapy and photothermal therapy. Colloids Surf. B 125, 277–283 (2015). https://doi.org/10.1016/j.colsurfb.2014.10.059
J.S. Treger, M.F. Priest, R. Iezzi, F. Bezanilla, Real-time imaging of electrical signals with an infrared FDA-approved dye. Biophys. J. 107(6), L9–L12 (2014). https://doi.org/10.1016/j.bpj.2014.07.054
Z. Sheng, D. Hu, M. Xue, M. He, P. Gong, L. Cai, Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett. 5(3), 145–150 (2013). https://doi.org/10.1007/BF03353743
Y.L. Liu, X. Zhi, M. Yang, J.P. Zhang, L.N. Lin et al., Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy. Theranostics 7(6), 1650–1662 (2017). https://doi.org/10.7150/thno.17602
J.T. Alander, I. Kaartinen, A. Laakso, T. Patila, T. Spillmann, V.V. Tuchin, M. Venermo, P. Valisuo, A review of indocyanine green fluorescent imaging in surgery. Int. J. Biomed. Imaging 2012, 940585 (2012). https://doi.org/10.1155/2012/940585
E.I. Altinoglu, T.J. Russin, J.M. Kaiser, B.M. Barth, P.C. Eklund, M. Kester, J.H. Adair, Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2(10), 2075–2084 (2008). https://doi.org/10.1021/nn800448r
C.H. Lee, S.H. Cheng, Y.J. Wang, Y.C. Chen, N.T. Chen et al., Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution. Adv. Funct. Mater. 19(2), 215–222 (2009). https://doi.org/10.1002/adfm.200800753
R.H. Patel, A.S. Wadajkar, N.L. Patel, V.C. Kavuri, K.T. Nguyen, H.L. Liu, Multifunctionality of indocyanine green-loaded biodegradable nanoparticles for enhanced optical imaging and hyperthermia intervention of cancer. J. Biomed. Opt. 17(4), 046003 (2012). https://doi.org/10.1117/1.JBO.17.4.046003
G.P. Sheng, Y. Chen, L.J. Han, Y. Huang, X.L. Liu, L.J. Li, Z.W. Mao, Encapsulation of indocyanine green into cell membrane capsules for photothermal cancer therapy. Acta Biomater. 43, 251–261 (2016). https://doi.org/10.1016/j.actbio.2016.07.012
T. Ito, N. Iida-Tanaka, Y. Koyama, Efficient in vivo gene transfection by stable DNA/PEI complexes coated by hyaluronic acid. J. Drug Target. 16(4), 276–281 (2008). https://doi.org/10.1080/10611860801900728
B. Quan, K. Choi, Y.H. Kim, K.W. Kang, D.S. Chung, Near infrared dye indocyanine green doped silica nanoparticles for biological imaging. Talanta 99, 387–393 (2012). https://doi.org/10.1016/j.talanta.2012.05.069
M.C. Mascolo, Y. Pei, T.A. Ring, Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6(12), 5549–5567 (2013). https://doi.org/10.3390/ma6125549
Y.J. Liu, G.M. Shu, X. Li, H.B. Chen, B. Zhang et al., Human HSP70 promoter-based prussian blue nanotheranostics for thermo-controlled gene therapy and synergistic photothermal ablation. Adv. Funct. Mater. 28(32), 1802026 (2018). https://doi.org/10.1002/adfm.201802026
X.M. Guo, Z. Wu, W. Li, Z.H. Wang, Q.P. Li et al., Appropriate size of magnetic nanoparticles for various bioapplications in cancer diagnostics and therapy. ACS Appl. Mater. Interfaces 8(5), 3092–3106 (2016). https://doi.org/10.1021/acsami.5b10352
S.M. Park, A. Aalipour, O. Vermesh, J.H. Yu, S.S. Gambhir, Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2, 17014 (2017). https://doi.org/10.1038/natrevmats.2017.14
W. Holzer, M. Mauerer, A. Penzkofer, R.M. Szeimies, C. Abels, M. Landthaler, W. Baumler, Photostability and thermal stability of indocyanine green. J. Photochem. Photobiol. B 47(2–3), 155–164 (1998). https://doi.org/10.1016/S1011-1344(98)00216-4
E.Y. Jomma, S.N. Ding, One-pot hydrothermal synthesis of magnetite prussian blue nano-composites and their application to fabricate glucose biosensor. Sensors 16(2), 243 (2016). https://doi.org/10.3390/s16020243
S.J. Wang, C.S. Chen, L.C. Chen, Prussian blue nanoparticles as nanocargoes for delivering DNA drugs to cancer cells. Sci. Technol. Adv. Mater. 14(4), 044405 (2013). https://doi.org/10.1088/1468-6996/14/4/044405
MathSciNet
H.S. Park, J. Kim, M.Y. Cho, H. Lee, S.H. Nam, Y.D. Suh, K.S. Hong, Convenient and effective ICGylation of magnetic nanoparticles for biomedical applications. Sci. Rep. 7, 8831 (2017). https://doi.org/10.1038/s41598-017-09627-x
R. Macianskiene, M. Almanaityte, R. Treinys, A. Navalinskas, R. Benetis, J. Jurevicius, Spectral characteristics of voltage-sensitive indocyanine green fluorescence in the heart. Sci. Rep. 7, 7983 (2017). https://doi.org/10.1038/s41598-017-08168-7
T.C. Chou, P. Talalay, Analysis of combined drug effects—a new look at a very old problem. Trends Pharmacol. Sci. 4, 450–454 (1983). https://doi.org/10.1016/0165-6147(83)90490-X
T.C. Chou, Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 70(2), 440–446 (2010). https://doi.org/10.1158/0008-5472.CAN-09-1947
L. Xia, X.G. Kong, X.M. Liu, L.P. Tu, Y.L. Zhang et al., An upconversion nanoparticle-Zinc phthalocyanine based nanophotosensitizer for photodynamic therapy. Biomaterials 35(13), 4146–4156 (2014). https://doi.org/10.1016/j.biomaterials.2014.01.068
N. Oh, J.H. Park, Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 9, 51–63 (2014). https://doi.org/10.2147/IJN.S26592
M. Guo, H.J. Mao, Y.L. Li, A.J. Zhu, H. He et al., Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 35(16), 4656–4666 (2014). https://doi.org/10.1016/j.biomaterials.2014.02.018
F. Yan, H. Wu, H.M. Liu, Z.T. Deng, H. Liu, W.L. Duan, X. Liu, H.R. Zheng, Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. J. Controlled Release 224, 217–228 (2016). https://doi.org/10.1016/j.jconrel.2015.12.050
M. Zhang, W.T. Wang, Y.J. Cui, N.L. Zhou, J. Shen, Near-infrared light-mediated photodynamic/photothermal therapy nanoplatform by the assembly of Fe3O4 carbon dots with graphitic black phosphorus quantum dots. Int. J. Nanomed. 13, 2803–2819 (2018). https://doi.org/10.2147/IJN.S156434