Fundamental Understanding of Hydrogen Evolution Reaction on Zinc Anode Surface: A First-Principles Study
Corresponding Author: Jin Yi
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 111
Abstract
Hydrogen evolution reaction (HER) has become a key factor affecting the cycling stability of aqueous Zn-ion batteries, while the corresponding fundamental issues involving HER are still unclear. Herein, the reaction mechanisms of HER on various crystalline surfaces have been investigated by first-principle calculations based on density functional theory. It is found that the Volmer step is the rate-limiting step of HER on the Zn (002) and (100) surfaces, while, the reaction rates of HER on the Zn (101), (102) and (103) surfaces are determined by the Tafel step. Moreover, the correlation between HER activity and the generalized coordination number of Zn at the surfaces has been revealed. The relatively weaker HER activity on Zn (002) surface can be attributed to the higher of surface Zn atom. The atomically uneven Zn (002) surface shows significantly higher HER activity than the flat Zn (002) surface as the of the surface Zn atom is lowered. The of surface Zn atom is proposed as a key descriptor of HER activity. Tuning the of surface Zn atom would be a vital strategy to inhibit HER on the Zn anode surface based on the presented theoretical studies. Furthermore, this work provides a theoretical basis for the in-depth understanding of HER on the Zn surface.
Highlights:
1 The reaction mechanisms of hydrogen evolution reaction (HER) on various crystal surfaces of zinc anode have been systematically investigated by first-principle calculations.
2 Both the thermodynamic and kinetic aspects of HER have been studied to reveal the relative HER activity of several crystal surface of zinc anode.
3 The generalized coordination number of surface Zn atoms are proposed as a key descriptor of HER activity of Zn anode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Li, A.W. Robertson, Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Zn-ion batteries. Battery Energy 2(1), 20220029 (2023). https://doi.org/10.1002/bte2.20220029
- C. Nie, G. Wang, D. Wang, M. Wang, X. Gao et al., Recent progress on Zn anodes for advanced aqueous zinc-ion batteries. Adv. Energy Mater. 13(28), 2300606 (2023). https://doi.org/10.1002/aenm.202300606
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
- Q. Wen, H. Fu, R.-D. Cui, H.-Z. Chen, R.-H. Ji et al., Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries. J. Energy Chem. 83, 287–303 (2023). https://doi.org/10.1016/j.jechem.2023.03.059
- N.S. Alghamdi, M. Rana, X. Peng, Y. Huang, J. Lee et al., Zinc–bromine rechargeable batteries: From device configuration, electrochemistry, material to performance evaluation. Nano-Micro Lett. 15, 209 (2023). https://doi.org/10.1007/s40820-023-01174-7
- J.Y. Kim, G. Liu, R.E.A. Ardhi, J. Park, H. Kim et al., Stable Zn metal anodes with limited Zn-doping in MgF2 interphase for fast and uniformly ionic flux. Nano-Micro Lett. 14, 46 (2022). https://doi.org/10.1007/s40820-021-00788-z
- Y. Liu, Y. Liu, X. Wu, Toward long-life aqueous zinc ion batteries by constructing stable zinc anodes. Chem. Rec. 22, e202200088 (2022). https://doi.org/10.1002/tcr.202200088
- H. Yu, D. Chen, T. Zhang, M. Fu, J. Cai et al., Insight on the double-edged sword role of water molecules in the anode of aqueous zinc-ion batteries. Small Struct. 3(12), 2200143 (2022). https://doi.org/10.1002/sstr.202200143
- D. Yao, D. Yu, S. Yao, Z. Lu, G. Li et al., Interfacial engineering boosts highly reversible zinc metal for aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 15(13), 16584–16592 (2023). https://doi.org/10.1021/acsami.2c20075
- L. Wang, W. Huang, W. Guo, Z.H. Guo, C. Chang et al., Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Adv. Funct. Mater. 32(1), 2108533 (2022). https://doi.org/10.1002/adfm.202108533
- J. Chen, W. Zhao, J. Jiang, X. Zhao, S. Zheng et al., Challenges and perspectives of hydrogen evolution-free aqueous Zn-ion batteries. Energy Storage Mater. 59, 102767 (2023). https://doi.org/10.1016/j.ensm.2023.04.006
- C.-C. Kao, C. Ye, J. Hao, J. Shan, H. Li et al., Suppressing hydrogen evolution via anticatalytic interfaces toward highly efficient aqueous Zn-ion batteries. ACS Nano 17(4), 3948–3957 (2023). https://doi.org/10.1021/acsnano.2c12587
- A. Bayaguud, Y. Fu, C. Zhu, Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies. J. Energy Chem. 64, 246–262 (2022). https://doi.org/10.1016/j.jechem.2021.04.016
- Q. Yang, L. Li, T. Hussain, D. Wang, L. Hui et al., Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 61(6), e202112304 (2022). https://doi.org/10.1002/anie.202112304
- Y. Gong, B. Wang, H. Ren, D. Li, D. Wang et al., Recent advances in structural optimization and surface modification on current collectors for high-performance zinc anode: Principles, strategies, and challenges. Nano-Micro Lett. 15, 208 (2023). https://doi.org/10.1007/s40820-023-01177-4
- J. Hao, L. Yuan, Y. Zhu, M. Jaroniec, S.-Z. Qiao, Triple-function electrolyte regulation toward advanced aqueous Zn-ion batteries. Adv. Mater. 34(44), e2206963 (2022). https://doi.org/10.1002/adma.202206963
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: Challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14, 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
- H. Jin, S. Dai, K. Xie, Y. Luo, K. Liu et al., Regulating interfacial desolvation and deposition kinetics enables durable Zn anodes with ultrahigh utilization of 80%. Small 18(4), e2106441 (2022). https://doi.org/10.1002/smll.202106441
- X. Lu, C. Zhao, A. Chen, Z. Guo, N. Liu et al., Reducing Zn-ion concentration gradient by SO42−-immobilized interface coating for dendrite-free Zn anode. Chem. Eng. J. 451, 138772 (2023). https://doi.org/10.1016/j.cej.2022.138772
- K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
- M. Fayette, H.J. Chang, X. Li, D. Reed, High-performance InZn alloy anodes toward practical aqueous zinc batteries. ACS Energy Lett. 7(6), 1888–1895 (2022). https://doi.org/10.1021/acsenergylett.2c00843
- Y. Zhang, X. Yang, Y. Hu, K. Hu, X. Lin et al., Highly strengthened and toughened Zn-Li-Mn alloys as long-cycling life and dendrite-free Zn anode for aqueous zinc-ion batteries. Small 18(17), e2200787 (2022). https://doi.org/10.1002/smll.202200787
- H. Meng, Q. Ran, T.-Y. Dai, H. Shi, S.-P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14, 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
- C. Han, W. Li, H.K. Liu, S. Dou, J. Wang, Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy 74, 104880 (2020). https://doi.org/10.1016/j.nanoen.2020.104880
- Z. Zhu, H. Jin, K. Xie, S. Dai, Y. Luo et al., Molecular-level Zn-ion transfer pump specifically functioning on (002) facets enables durable Zn anodes. Small 18(49), e2204713 (2022). https://doi.org/10.1002/smll.202204713
- Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15, 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
- X. Song, L. Bai, C. Wang, D. Wang, K. Xu et al., Synergistic cooperation of Zn(002) texture and amorphous zinc phosphate for dendrite-free Zn anodes. ACS Nano 17(15), 15113–15124 (2023). https://doi.org/10.1021/acsnano.3c04343
- Y. Hao, D. Feng, L. Hou, T. Li, Y. Jiao et al., Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode. Adv. Sci. 9(7), e2104832 (2022). https://doi.org/10.1002/advs.202104832
- M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), e2100187 (2021). https://doi.org/10.1002/adma.202100187
- S. Hu, W.-X. Li, Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science 374(6573), 1360–1365 (2021). https://doi.org/10.1126/science.abi9828
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355(6312), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- R. Parsons, The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958). https://doi.org/10.1039/TF9585401053
- J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005). https://doi.org/10.1149/1.1856988
- R. Kronberg, K. Laasonen, Reconciling the experimental and computational hydrogen evolution activities of Pt(111) through DFT-based constrained MD simulations. ACS Catal. 11(13), 8062–8078 (2021). https://doi.org/10.1021/acscatal.1c00538
- L. Kristinsdóttir, E. Skúlason, A systematic DFT study of hydrogen diffusion on transition metal surfaces. Surf. Sci. 606(17–18), 1400–1404 (2012). https://doi.org/10.1016/j.susc.2012.04.028
- J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 29(13), 2044–2078 (2008). https://doi.org/10.1002/jcc.21057
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- X.-G. Xiong, T. Yanai, Projector augmented wave method incorporated into gauss-type atomic orbital based density functional theory. J. Chem. Theory Comput. 13(7), 3236–3249 (2017). https://doi.org/10.1021/acs.jctc.7b00404
- G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.1329672
- G. Henkelman, H. Jónsson, A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111(15), 7010–7022 (1999). https://doi.org/10.1063/1.480097
- F. Calle-Vallejo, J.I. Martínez, J.M. García-Lastra, P. Sautet, D. Loffreda, Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers. Angew. Chem. Int. Ed. 53(32), 8316–8319 (2014). https://doi.org/10.1002/anie.201402958
- R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun et al., Surface energies of elemental crystals. Sci. Data 3, 160080 (2016). https://doi.org/10.1038/sdata.2016.80
- A. Aramata, S. Taguchi, T. Fukuda, M. Nakamura, G. Horányi, Underpotential deposition of zinc ions at single crystal electrodes and the effect of the adsorbed anions. Electrochim. Acta 44, 999–1007 (1998). https://doi.org/10.1016/S0013-4686(98)00204-7
- P. Lindgren, G. Kastlunger, A.A. Peterson, A challenge to the G ~ 0 interpretation of hydrogen evolution. ACS Catal. 10(1), 121–128 (2020). https://doi.org/10.1021/acscatal.9b02799
- G. Feng, F. Ning, J. Song, H. Shang, K. Zhang et al., Sub-2 nm ultrasmall high-entropy alloy nanops for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143(41), 17117–17127 (2021). https://doi.org/10.1021/jacs.1c07643
- E. Skúlason, V. Tripkovic, M.E. Björketun, S. Gudmundsdóttir, G. Karlberg et al., Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114(42), 18182–18197 (2010). https://doi.org/10.1021/jp1048887
- H. Cao, Q. Wang, Z. Zhang, H.M. Yan, H. Zhao et al., Engineering single-atom electrocatalysts for enhancing kinetics of acidic Volmer reaction. J. Am. Chem. Soc. 145(24), 13038–13047 (2023). https://doi.org/10.1021/jacs.2c13418
- R. Kronberg, H. Lappalainen, K. Laasonen, Revisiting the Volmer-Heyrovský mechanism of hydrogen evolution on a nitrogen doped carbon nanotube: constrained molecular dynamics versus the nudged elastic band method. Phys. Chem. Chem. Phys. 22(19), 10536–10549 (2020). https://doi.org/10.1039/C9CP06474E
- Y. Tian, J. Hong, D. Cao, S. You, Y. Song et al., Visualizing Eigen/Zundel cations and their interconversion in monolayer water on metal surfaces. Science 377(6603), 315–319 (2022). https://doi.org/10.1126/science.abo0823
- D. Yuan, J. Zhao, H. Ren, Y. Chen, R. Chua et al., Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. Int. Ed. 60(13), 7213–7219 (2021). https://doi.org/10.1002/anie.202015488
- J. Zhang, W. Huang, L. Li, C. Chang, K. Yang et al., Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries. Adv. Mater. 35(21), e2300073 (2023). https://doi.org/10.1002/adma.202300073
- X. Zhang, J. Li, D. Liu, M. Liu, T. Zhou et al., Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 14(5), 3120–3129 (2021). https://doi.org/10.1039/D0EE03898A
References
Z. Li, A.W. Robertson, Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Zn-ion batteries. Battery Energy 2(1), 20220029 (2023). https://doi.org/10.1002/bte2.20220029
C. Nie, G. Wang, D. Wang, M. Wang, X. Gao et al., Recent progress on Zn anodes for advanced aqueous zinc-ion batteries. Adv. Energy Mater. 13(28), 2300606 (2023). https://doi.org/10.1002/aenm.202300606
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
Q. Wen, H. Fu, R.-D. Cui, H.-Z. Chen, R.-H. Ji et al., Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries. J. Energy Chem. 83, 287–303 (2023). https://doi.org/10.1016/j.jechem.2023.03.059
N.S. Alghamdi, M. Rana, X. Peng, Y. Huang, J. Lee et al., Zinc–bromine rechargeable batteries: From device configuration, electrochemistry, material to performance evaluation. Nano-Micro Lett. 15, 209 (2023). https://doi.org/10.1007/s40820-023-01174-7
J.Y. Kim, G. Liu, R.E.A. Ardhi, J. Park, H. Kim et al., Stable Zn metal anodes with limited Zn-doping in MgF2 interphase for fast and uniformly ionic flux. Nano-Micro Lett. 14, 46 (2022). https://doi.org/10.1007/s40820-021-00788-z
Y. Liu, Y. Liu, X. Wu, Toward long-life aqueous zinc ion batteries by constructing stable zinc anodes. Chem. Rec. 22, e202200088 (2022). https://doi.org/10.1002/tcr.202200088
H. Yu, D. Chen, T. Zhang, M. Fu, J. Cai et al., Insight on the double-edged sword role of water molecules in the anode of aqueous zinc-ion batteries. Small Struct. 3(12), 2200143 (2022). https://doi.org/10.1002/sstr.202200143
D. Yao, D. Yu, S. Yao, Z. Lu, G. Li et al., Interfacial engineering boosts highly reversible zinc metal for aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 15(13), 16584–16592 (2023). https://doi.org/10.1021/acsami.2c20075
L. Wang, W. Huang, W. Guo, Z.H. Guo, C. Chang et al., Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Adv. Funct. Mater. 32(1), 2108533 (2022). https://doi.org/10.1002/adfm.202108533
J. Chen, W. Zhao, J. Jiang, X. Zhao, S. Zheng et al., Challenges and perspectives of hydrogen evolution-free aqueous Zn-ion batteries. Energy Storage Mater. 59, 102767 (2023). https://doi.org/10.1016/j.ensm.2023.04.006
C.-C. Kao, C. Ye, J. Hao, J. Shan, H. Li et al., Suppressing hydrogen evolution via anticatalytic interfaces toward highly efficient aqueous Zn-ion batteries. ACS Nano 17(4), 3948–3957 (2023). https://doi.org/10.1021/acsnano.2c12587
A. Bayaguud, Y. Fu, C. Zhu, Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies. J. Energy Chem. 64, 246–262 (2022). https://doi.org/10.1016/j.jechem.2021.04.016
Q. Yang, L. Li, T. Hussain, D. Wang, L. Hui et al., Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 61(6), e202112304 (2022). https://doi.org/10.1002/anie.202112304
Y. Gong, B. Wang, H. Ren, D. Li, D. Wang et al., Recent advances in structural optimization and surface modification on current collectors for high-performance zinc anode: Principles, strategies, and challenges. Nano-Micro Lett. 15, 208 (2023). https://doi.org/10.1007/s40820-023-01177-4
J. Hao, L. Yuan, Y. Zhu, M. Jaroniec, S.-Z. Qiao, Triple-function electrolyte regulation toward advanced aqueous Zn-ion batteries. Adv. Mater. 34(44), e2206963 (2022). https://doi.org/10.1002/adma.202206963
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: Challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14, 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
H. Jin, S. Dai, K. Xie, Y. Luo, K. Liu et al., Regulating interfacial desolvation and deposition kinetics enables durable Zn anodes with ultrahigh utilization of 80%. Small 18(4), e2106441 (2022). https://doi.org/10.1002/smll.202106441
X. Lu, C. Zhao, A. Chen, Z. Guo, N. Liu et al., Reducing Zn-ion concentration gradient by SO42−-immobilized interface coating for dendrite-free Zn anode. Chem. Eng. J. 451, 138772 (2023). https://doi.org/10.1016/j.cej.2022.138772
K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
M. Fayette, H.J. Chang, X. Li, D. Reed, High-performance InZn alloy anodes toward practical aqueous zinc batteries. ACS Energy Lett. 7(6), 1888–1895 (2022). https://doi.org/10.1021/acsenergylett.2c00843
Y. Zhang, X. Yang, Y. Hu, K. Hu, X. Lin et al., Highly strengthened and toughened Zn-Li-Mn alloys as long-cycling life and dendrite-free Zn anode for aqueous zinc-ion batteries. Small 18(17), e2200787 (2022). https://doi.org/10.1002/smll.202200787
H. Meng, Q. Ran, T.-Y. Dai, H. Shi, S.-P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14, 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
C. Han, W. Li, H.K. Liu, S. Dou, J. Wang, Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy 74, 104880 (2020). https://doi.org/10.1016/j.nanoen.2020.104880
Z. Zhu, H. Jin, K. Xie, S. Dai, Y. Luo et al., Molecular-level Zn-ion transfer pump specifically functioning on (002) facets enables durable Zn anodes. Small 18(49), e2204713 (2022). https://doi.org/10.1002/smll.202204713
Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15, 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
X. Song, L. Bai, C. Wang, D. Wang, K. Xu et al., Synergistic cooperation of Zn(002) texture and amorphous zinc phosphate for dendrite-free Zn anodes. ACS Nano 17(15), 15113–15124 (2023). https://doi.org/10.1021/acsnano.3c04343
Y. Hao, D. Feng, L. Hou, T. Li, Y. Jiao et al., Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode. Adv. Sci. 9(7), e2104832 (2022). https://doi.org/10.1002/advs.202104832
M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), e2100187 (2021). https://doi.org/10.1002/adma.202100187
S. Hu, W.-X. Li, Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science 374(6573), 1360–1365 (2021). https://doi.org/10.1126/science.abi9828
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355(6312), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
R. Parsons, The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958). https://doi.org/10.1039/TF9585401053
J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005). https://doi.org/10.1149/1.1856988
R. Kronberg, K. Laasonen, Reconciling the experimental and computational hydrogen evolution activities of Pt(111) through DFT-based constrained MD simulations. ACS Catal. 11(13), 8062–8078 (2021). https://doi.org/10.1021/acscatal.1c00538
L. Kristinsdóttir, E. Skúlason, A systematic DFT study of hydrogen diffusion on transition metal surfaces. Surf. Sci. 606(17–18), 1400–1404 (2012). https://doi.org/10.1016/j.susc.2012.04.028
J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 29(13), 2044–2078 (2008). https://doi.org/10.1002/jcc.21057
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
X.-G. Xiong, T. Yanai, Projector augmented wave method incorporated into gauss-type atomic orbital based density functional theory. J. Chem. Theory Comput. 13(7), 3236–3249 (2017). https://doi.org/10.1021/acs.jctc.7b00404
G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.1329672
G. Henkelman, H. Jónsson, A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111(15), 7010–7022 (1999). https://doi.org/10.1063/1.480097
F. Calle-Vallejo, J.I. Martínez, J.M. García-Lastra, P. Sautet, D. Loffreda, Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers. Angew. Chem. Int. Ed. 53(32), 8316–8319 (2014). https://doi.org/10.1002/anie.201402958
R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun et al., Surface energies of elemental crystals. Sci. Data 3, 160080 (2016). https://doi.org/10.1038/sdata.2016.80
A. Aramata, S. Taguchi, T. Fukuda, M. Nakamura, G. Horányi, Underpotential deposition of zinc ions at single crystal electrodes and the effect of the adsorbed anions. Electrochim. Acta 44, 999–1007 (1998). https://doi.org/10.1016/S0013-4686(98)00204-7
P. Lindgren, G. Kastlunger, A.A. Peterson, A challenge to the G ~ 0 interpretation of hydrogen evolution. ACS Catal. 10(1), 121–128 (2020). https://doi.org/10.1021/acscatal.9b02799
G. Feng, F. Ning, J. Song, H. Shang, K. Zhang et al., Sub-2 nm ultrasmall high-entropy alloy nanops for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143(41), 17117–17127 (2021). https://doi.org/10.1021/jacs.1c07643
E. Skúlason, V. Tripkovic, M.E. Björketun, S. Gudmundsdóttir, G. Karlberg et al., Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114(42), 18182–18197 (2010). https://doi.org/10.1021/jp1048887
H. Cao, Q. Wang, Z. Zhang, H.M. Yan, H. Zhao et al., Engineering single-atom electrocatalysts for enhancing kinetics of acidic Volmer reaction. J. Am. Chem. Soc. 145(24), 13038–13047 (2023). https://doi.org/10.1021/jacs.2c13418
R. Kronberg, H. Lappalainen, K. Laasonen, Revisiting the Volmer-Heyrovský mechanism of hydrogen evolution on a nitrogen doped carbon nanotube: constrained molecular dynamics versus the nudged elastic band method. Phys. Chem. Chem. Phys. 22(19), 10536–10549 (2020). https://doi.org/10.1039/C9CP06474E
Y. Tian, J. Hong, D. Cao, S. You, Y. Song et al., Visualizing Eigen/Zundel cations and their interconversion in monolayer water on metal surfaces. Science 377(6603), 315–319 (2022). https://doi.org/10.1126/science.abo0823
D. Yuan, J. Zhao, H. Ren, Y. Chen, R. Chua et al., Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. Int. Ed. 60(13), 7213–7219 (2021). https://doi.org/10.1002/anie.202015488
J. Zhang, W. Huang, L. Li, C. Chang, K. Yang et al., Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries. Adv. Mater. 35(21), e2300073 (2023). https://doi.org/10.1002/adma.202300073
X. Zhang, J. Li, D. Liu, M. Liu, T. Zhou et al., Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 14(5), 3120–3129 (2021). https://doi.org/10.1039/D0EE03898A