Regulating Zn Deposition via an Artificial Solid–Electrolyte Interface with Aligned Dipoles for Long Life Zn Anode
Corresponding Author: Jiujun Zhang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 79
Abstract
Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices. However, the practical applications have been limited by the issues derived from Zn anode. As one of serious problems, Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable. Herein, with the aim to regulate Zn deposition, an artificial solid–electrolyte interface is subtly engineered with a perovskite type material, BaTiO3, which can be polarized, and its polarization could be switched under the external electric field. Resulting from the aligned dipole in BaTiO3 layer, zinc ions could move in order during cycling process. Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth. As a result, the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm−2 with capacity of 1 mAh cm−2. Furthermore, this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO2 batteries. The battery can deliver nearly 100% Coulombic efficiency at 2 A g−1 after 300 cycles.
Highlights:
1 An artificial solid–electrolyte interface composed of a perovskite type material, BaTiO3, is introduced to Zn anode surface in aqueous zinc ion batteries.
2 The BaTiO3 layer endowing inherent character of the switched polarization can regulate the interfacial electric field at anode/electrolyte interface.
3 Zn dendrite can be restrained, and Zn metal batteries based on BaTiO3 layer show stable cycling.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- J. Yi, P. Liang, X. Liu, K. Wu, Y. Liu et al., Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries. Energy Environ. Sci. 11, 3075–3095 (2018). https://doi.org/10.1039/c8ee01991f
- P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30, 1908528 (2020). https://doi.org/10.1002/adfm.201908528
- J. Cao, D. Zhang, X. Zhang, M. Sawangphruk, J. Qin et al., A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. J. Mater. Chem. A 8, 9331–9344 (2020). https://doi.org/10.1039/d0ta02486d
- X. Liu, J. Yi, K. Wu, Y. Jiang, Y. Liu et al., Rechargeable Zn–MnO2 batteries: advances, challenges and perspectives. Nanotechnology 31, 122001 (2020). https://doi.org/10.1088/1361-6528/ab5b38
- C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30, 2000599 (2020). https://doi.org/10.1002/adfm.202000599
- J. Cao, D. Zhang, X. Zhang, S. Wang, J. Han et al., Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode. Appl. Surf. Sci. 534, 147630 (2020). https://doi.org/10.1016/j.apsusc.2020.147630
- P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16⋅1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18, 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
- N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3, 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
- H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
- R. Venkatkarthick, N. Rodthongkum, X. Zhang, S. Wang, P. Pattananuwat et al., Vanadium-based oxide on two-dimensional vanadium carbide mxene (V2Ox@V2CTx) as cathode for rechargeable aqueous zinc-ion batteries. ACS Appl. Energy Mater. 3, 4677–4689 (2020). https://doi.org/10.1021/acsaem.0c00309
- L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015). https://doi.org/10.1002/aenm.201400930
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- K. Wu, J. Huang, J. Yi, X. Liu, Y. Liu et al., Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives. Adv. Energy Mater. 10, 1903977 (2020). https://doi.org/10.1002/aenm.201903977
- H. Yu, Y.G. So, Y. Ren, T. Wu, G. Guo et al., Temperature-sensitive structure evolution of lithium-manganese-rich layered oxides for lithium-ion batteries. J. Am. Chem. Soc. 140, 15279–15289 (2018). https://doi.org/10.1021/jacs.8b07858
- X. Zhang, H. Yu, Crystalline domain battery materials. Acc. Chem. Res. 53, 368–379 (2020). https://doi.org/10.1021/acs.accounts.9b00457
- J. Abdulla, J. Cao, P. Wangyao, J. Qin, Review on the suppression of Zn dendrite for high performance of Zn ion battery. J. Met. Mater. Miner. 30, 1–8 (2020). https://doi.org/10.14456/jmmm.2020.31
- L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018). https://doi.org/10.1002/aenm.201801090
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
- R. Zhao, Y. Yang, G. Liu, R. Zhu, J. Huang et al., Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202001867
- K. Lolupiman, P. Wangyao, J. Qin, Electrodeposition of Zn/TiO2 composite coatings for anode materials of zinc ion battery. J. Met. Mater. Miner. 29, 120–126 (2019). https://doi.org/10.14456/jmmm.2019.55
- H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59, 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
- M. Liu, L. Yang, H. Liu, A. Amine, Q. Zhao et al., Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS Appl. Mater. Interfaces 11, 32046–32051 (2019). https://doi.org/10.1021/acsami.9b11243
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503–510 (2020). https://doi.org/10.1039/c9ee03545a
- Q. Yang, Y. Guo, B. Yan, C. Wang, Z. Liu et al., Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv. Mater. 32, 2001755 (2020). https://doi.org/10.1002/adma.202001755
- Z. Peng, S.A. Freunberger, Y. Chen, P.G. Bruce, A reversible and higher-rate Li–O2 battery. Science 337, 563 (2012). https://doi.org/10.1126/science.1223985
- H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018). https://doi.org/10.1002/adfm.201803665
- K. Bi, M. Bi, Y. Hao, W. Luo, Z. Cai et al., Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51, 513–523 (2018). https://doi.org/10.1016/j.nanoen.2018.07.006
- M.H. Braga, J.E. Oliveira, T. Kai, A.J. Murchison, A.J. Bard et al., Extraordinary dielectric properties at heterojunctions of amorphous ferroelectrics. J. Am. Chem. Soc. 140, 17968–17976 (2018). https://doi.org/10.1021/jacs.8b09603
- L.B. Kong, T.S. Zhang, J. Ma, F. Boey, Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique. Prog. Mater. Sci. 53, 207–322 (2008). https://doi.org/10.1016/j.pmatsci.2007.05.001
- T. Yim, S.H. Han, N.H. Park, M.S. Park, J.H. Lee et al., Effective polysulfide rejection by dipole-aligned BaTiO3 coated separator in lithium-sulfur batteries. Adv. Funct. Mater. 26, 7817–7823 (2016). https://doi.org/10.1002/adfm.201602498
- C.H. Ahn, K.M. Rabe, J.M. Triscone, Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004). https://doi.org/10.1126/science.1092508
- W. Ma, L.E. Cross, Flexoelectricity of barium titanate. Appl. Phys. Lett. 88, 232902 (2006). https://doi.org/10.1063/1.2211309
- P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- G. Kresse, J. Furthmüjller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse, J. Furthmüjller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- J.M. Yun, J.H. Shin, J. Ryu, N.M. Shinde, K.H. Kim, Piezoelectric performance of cubic-phase BaTiO3 nanoparticles vertically aligned via electric field. Adv. Sustain. Syst. 2, 1700133 (2018). https://doi.org/10.1002/adsu.201700133
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
- Z. Hou, H. Tan, Y. Gao, M. Li, Z. Lu et al., Tailoring desolvation kinetics enables stable zinc metal anodes. J. Mater. Chem. A 8, 19367–19374 (2020). https://doi.org/10.1039/d0ta06622b
- Y. Cui, Q. Zhao, X. Wu, Z. Wang, R. Qin et al., Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode. Energy Storage Mater. 27, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.01.003
- Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59, 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
- J. Zheng, Y. Hou, Y. Duan, X. Song, Y. Wei et al., Janus solid-liquid interface enabling ultrahigh charging and discharging rate for advanced lithium-ion batteries. Nano Lett. 15, 6102–6109 (2015). https://doi.org/10.1021/acs.nanolett.5b02379
- Q. Zhang, J. Luan, Y. Tang, X. Ji, H.Y. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59, 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
- K.-H. Chen, K.N. Wood, E. Kazyak, W.S. LePage, A.L. Davis et al., Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017). https://doi.org/10.1039/c7ta00371d
- Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional cnt frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, e1903675 (2019). https://doi.org/10.1002/adma.201903675
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- Z.M.H. Alfaruqi, S. Islam, D.Y. Putro, V. Mathew, S. Kim et al., Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim. Acta 276, 1–11 (2018). https://doi.org/10.1016/j.electacta.2018.04.139
References
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
J. Yi, P. Liang, X. Liu, K. Wu, Y. Liu et al., Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries. Energy Environ. Sci. 11, 3075–3095 (2018). https://doi.org/10.1039/c8ee01991f
P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30, 1908528 (2020). https://doi.org/10.1002/adfm.201908528
J. Cao, D. Zhang, X. Zhang, M. Sawangphruk, J. Qin et al., A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. J. Mater. Chem. A 8, 9331–9344 (2020). https://doi.org/10.1039/d0ta02486d
X. Liu, J. Yi, K. Wu, Y. Jiang, Y. Liu et al., Rechargeable Zn–MnO2 batteries: advances, challenges and perspectives. Nanotechnology 31, 122001 (2020). https://doi.org/10.1088/1361-6528/ab5b38
C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30, 2000599 (2020). https://doi.org/10.1002/adfm.202000599
J. Cao, D. Zhang, X. Zhang, S. Wang, J. Han et al., Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode. Appl. Surf. Sci. 534, 147630 (2020). https://doi.org/10.1016/j.apsusc.2020.147630
P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16⋅1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18, 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3, 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
R. Venkatkarthick, N. Rodthongkum, X. Zhang, S. Wang, P. Pattananuwat et al., Vanadium-based oxide on two-dimensional vanadium carbide mxene (V2Ox@V2CTx) as cathode for rechargeable aqueous zinc-ion batteries. ACS Appl. Energy Mater. 3, 4677–4689 (2020). https://doi.org/10.1021/acsaem.0c00309
L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015). https://doi.org/10.1002/aenm.201400930
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
K. Wu, J. Huang, J. Yi, X. Liu, Y. Liu et al., Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives. Adv. Energy Mater. 10, 1903977 (2020). https://doi.org/10.1002/aenm.201903977
H. Yu, Y.G. So, Y. Ren, T. Wu, G. Guo et al., Temperature-sensitive structure evolution of lithium-manganese-rich layered oxides for lithium-ion batteries. J. Am. Chem. Soc. 140, 15279–15289 (2018). https://doi.org/10.1021/jacs.8b07858
X. Zhang, H. Yu, Crystalline domain battery materials. Acc. Chem. Res. 53, 368–379 (2020). https://doi.org/10.1021/acs.accounts.9b00457
J. Abdulla, J. Cao, P. Wangyao, J. Qin, Review on the suppression of Zn dendrite for high performance of Zn ion battery. J. Met. Mater. Miner. 30, 1–8 (2020). https://doi.org/10.14456/jmmm.2020.31
L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018). https://doi.org/10.1002/aenm.201801090
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
R. Zhao, Y. Yang, G. Liu, R. Zhu, J. Huang et al., Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202001867
K. Lolupiman, P. Wangyao, J. Qin, Electrodeposition of Zn/TiO2 composite coatings for anode materials of zinc ion battery. J. Met. Mater. Miner. 29, 120–126 (2019). https://doi.org/10.14456/jmmm.2019.55
H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59, 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
M. Liu, L. Yang, H. Liu, A. Amine, Q. Zhao et al., Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS Appl. Mater. Interfaces 11, 32046–32051 (2019). https://doi.org/10.1021/acsami.9b11243
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503–510 (2020). https://doi.org/10.1039/c9ee03545a
Q. Yang, Y. Guo, B. Yan, C. Wang, Z. Liu et al., Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv. Mater. 32, 2001755 (2020). https://doi.org/10.1002/adma.202001755
Z. Peng, S.A. Freunberger, Y. Chen, P.G. Bruce, A reversible and higher-rate Li–O2 battery. Science 337, 563 (2012). https://doi.org/10.1126/science.1223985
H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018). https://doi.org/10.1002/adfm.201803665
K. Bi, M. Bi, Y. Hao, W. Luo, Z. Cai et al., Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51, 513–523 (2018). https://doi.org/10.1016/j.nanoen.2018.07.006
M.H. Braga, J.E. Oliveira, T. Kai, A.J. Murchison, A.J. Bard et al., Extraordinary dielectric properties at heterojunctions of amorphous ferroelectrics. J. Am. Chem. Soc. 140, 17968–17976 (2018). https://doi.org/10.1021/jacs.8b09603
L.B. Kong, T.S. Zhang, J. Ma, F. Boey, Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique. Prog. Mater. Sci. 53, 207–322 (2008). https://doi.org/10.1016/j.pmatsci.2007.05.001
T. Yim, S.H. Han, N.H. Park, M.S. Park, J.H. Lee et al., Effective polysulfide rejection by dipole-aligned BaTiO3 coated separator in lithium-sulfur batteries. Adv. Funct. Mater. 26, 7817–7823 (2016). https://doi.org/10.1002/adfm.201602498
C.H. Ahn, K.M. Rabe, J.M. Triscone, Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004). https://doi.org/10.1126/science.1092508
W. Ma, L.E. Cross, Flexoelectricity of barium titanate. Appl. Phys. Lett. 88, 232902 (2006). https://doi.org/10.1063/1.2211309
P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
G. Kresse, J. Furthmüjller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
G. Kresse, J. Furthmüjller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
J.M. Yun, J.H. Shin, J. Ryu, N.M. Shinde, K.H. Kim, Piezoelectric performance of cubic-phase BaTiO3 nanoparticles vertically aligned via electric field. Adv. Sustain. Syst. 2, 1700133 (2018). https://doi.org/10.1002/adsu.201700133
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
Z. Hou, H. Tan, Y. Gao, M. Li, Z. Lu et al., Tailoring desolvation kinetics enables stable zinc metal anodes. J. Mater. Chem. A 8, 19367–19374 (2020). https://doi.org/10.1039/d0ta06622b
Y. Cui, Q. Zhao, X. Wu, Z. Wang, R. Qin et al., Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode. Energy Storage Mater. 27, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.01.003
Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59, 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
J. Zheng, Y. Hou, Y. Duan, X. Song, Y. Wei et al., Janus solid-liquid interface enabling ultrahigh charging and discharging rate for advanced lithium-ion batteries. Nano Lett. 15, 6102–6109 (2015). https://doi.org/10.1021/acs.nanolett.5b02379
Q. Zhang, J. Luan, Y. Tang, X. Ji, H.Y. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59, 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
K.-H. Chen, K.N. Wood, E. Kazyak, W.S. LePage, A.L. Davis et al., Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017). https://doi.org/10.1039/c7ta00371d
Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional cnt frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, e1903675 (2019). https://doi.org/10.1002/adma.201903675
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
Z.M.H. Alfaruqi, S. Islam, D.Y. Putro, V. Mathew, S. Kim et al., Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim. Acta 276, 1–11 (2018). https://doi.org/10.1016/j.electacta.2018.04.139