Regulating the Electron Localization of Metallic Bismuth for Boosting CO2 Electroreduction
Corresponding Author: Jing‑Li Luo
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 38
Abstract
Electrochemical reduction of CO2 to formate is economically attractive but improving the reaction selectivity and activity remains challenging. Herein, we introduce boron (B) atoms to modify the local electronic structure of bismuth with positive valence sites for boosting conversion of CO2 into formate with high activity and selectivity in a wide potential window. By combining experimental and computational investigations, our study indicates that B dopant differentiates the proton participations of rate-determining steps in CO2 reduction and in the competing hydrogen evolution. By comparing the experimental observations with the density functional theory, the dominant mechanistic pathway of B promoted formate generation and the B concentration modulated effects on the catalytic property of Bi are unravelled. This comprehensive study offers deep mechanistic insights into the reaction pathway at an atomic and molecular level and provides an effective strategy for the rational design of highly active and selective electrocatalysts for efficient CO2 conversion.
Highlights:
1 B atoms modify the local electronic structure of Bi with positive valence sites. B doped Bi boosts highly efficient electroreduction of CO2 to formate.
2 B dopant differentiates the proton participations in CO2 RR and HER processes.
3 The dominant mechanistic pathway of B promoted formate generation is unraveled.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.H. Ren, C. Zhao, Paths towards enhanced electrochemical CO2 reduction. Natl. Sci. Rev. 7(1), 7–9 (2020). https://doi.org/10.1093/nsr/nwz121
- H.L. Liu, Y.T. Zhu, J.M. Ma, Z.C. Zhang, W.P. Hu, Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv. Funct. Mater. 30(17), 1910534 (2020). https://doi.org/10.1002/adfm.201910534
- F. Franco, C. Rettenmaier, H.S. Jeon, B. Roldan Cuenya, Transition metal-based catalysts for the electrochemical CO2 reduction: From atoms and molecules to nanostructured materials. Chem. Soc. Rev. 49(19), 6884–6946 (2020). Doi: https://doi.org/10.1039/d0cs00835d
- S. Lu, Y. Shi, N. Meng, S. Lu, Y. Yu et al., Electrosynthesis of syngas via the co-reduction of CO2 and H2O. Cell Rep. Phys. Sci. 1(11), 100237 (2020). https://doi.org/10.1016/j.xcrp.2020.100237
- Z.X. Tao, Z.S. Wu, Y.S. Wu, H.L. Wang, Activating copper for electrocatalytic CO2 reduction to formate via molecular interactions. ACS Catal. 10(16), 9271–9275 (2020). https://doi.org/10.1021/acscatal.0c02237
- Y. Xiong, J. Dong, Z.Q. Huang, P. Xin, W. Chen et al., Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15(5), 390–397 (2020). https://doi.org/10.1038/s41565-020-0665-x
- S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang et al., Advances in Sn-based catalysts for electrochemical CO2 reduction. Nano Micro Lett. 11(1), 62 (2019). https://doi.org/10.1007/s40820-019-0293-x
- O.S. Bushuyev, P. De Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2(5), 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
- J.M. Spurgeon, B. Kumar, A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11(6), 1536–1551 (2018). https://doi.org/10.1039/c8ee00097b
- N. Han, P. Ding, L. He, Y.Y. Li, Y.G. Li, Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 10(11), (2020). Doi: https://doi.org/10.1002/aenm.201902338
- P. Ding, H.T. Zhao, T.S. Li, Y.S. Luo, G.Y. Fan et al., Metal-based electrocatalytic conversion of CO2 to formic acid/formate. J. Mater. Chem. A 8(42), 21947–21960 (2020). https://doi.org/10.1039/D0TA08393C
- D. Wu, X.W. Wang, X.Z. Fu, J.L. Luo, Ultrasmall bi nanoparticles confined in carbon nanosheets as highly active and durable catalysts for CO2 electroreduction. Appl. Catal. B Environ. 284, 119723 (2021). https://doi.org/10.1016/j.apcatb.2020.119723
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355(6321), eaad4998 (2017). Doi: https://doi.org/10.1126/science.aad4998
- C.L. Xie, Z.Q. Niu, D. Kim, M.F. Li, P.D. Yang, Surface and interface control in nanoparticle catalysis. Chem. Rev. 120(2), 1184–1249 (2020). https://doi.org/10.1021/acs.chemrev.9b00220
- K. Chen, K. Qi, T. Zhou, T. Yang, Y. Zhang et al., Water-dispersible CsPbBr3 perovskite nanocrystals with ultra-stability and its application in electrochemical CO2 reduction. Nano-Micro Lett. 13(1), 172 (2021). https://doi.org/10.1007/s40820-021-00690-8
- Z. Pan, E. Han, J. Zheng, J. Lu, X. Wang et al., Highly efficient photoelectrocatalytic reduction of CO2 to methanol by a P-N heterojunction CeO2/CuO/Cu catalyst. Nano-Micro Lett. 12(1), 18 (2020). https://doi.org/10.1007/s40820-019-0354-1
- Y. Wu, P. Zhai, S. Cao, Z. Li, B. Zhang et al., Beyond d orbits: Steering the selectivity of electrochemical CO2 reduction via hybridized sp band of sulfur-incorporated porous cd architectures with dual collaborative sites. Adv. Energy Mater. 10(45), 2002499 (2020). https://doi.org/10.1002/aenm.202002499
- B. Jiang, X.G. Zhang, K. Jiang, D.Y. Wu, W.B. Cai, Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J. Am. Chem. Soc. 140(8), 2880–2889 (2018). https://doi.org/10.1021/jacs.7b12506
- H. Cheng, S. Liu, J. Zhang, T. Zhou, N. Zhang et al., Surface nitrogen-injection engineering for high formation rate of CO2 reduction to formate. Nano Lett. 20(8), 6097–6103 (2020). https://doi.org/10.1021/acs.nanolett.0c02144
- X.L. Zheng, P. De Luna, F.P.G. de Arquer, B. Zhang, N. Becknell et al., Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1(4), 794–805 (2017). https://doi.org/10.1016/j.joule.2017.09.014
- Z.Z. Wu, F.Y. Gao, M.R. Gao, Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction. Energy Environ. Sci. 14(3), 1121–1139 (2021). https://doi.org/10.1039/d0ee02747b
- D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett 13(1), 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
- Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang et al., Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10(9), 974–980 (2018). https://doi.org/10.1038/s41557-018-0092-x
- S. Carenco, D. Portehault, C. Boissiere, N. Mezailles, C. Sanchez, Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem. Rev. 113(10), 7981–8065 (2013). https://doi.org/10.1021/cr400020d
- G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- K.X. Lei, C.C. Wang, L.J. Liu, Y.W. Luo, C.N. Mu et al., A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57(17), 4687–4691 (2018). https://doi.org/10.1002/ange.201801389
- W. Hao, D. Yao, Q. Xu, R. Wang, C. Zhang et al., Highly efficient overall-water splitting enabled via grafting boron-inserted Fe-Ni solid solution nanosheets onto unconventional skeleton. Appl. Catal. B Environ. 292, 120188 (2021). https://doi.org/10.1016/j.apcatb.2021.120188
- Y. Li, H. Yu, Z. Wang, S. Liu, Y. Xu et al., Boron-doped silver nanosponges with enhanced performance towards electrocatalytic nitrogen reduction to ammonia. Chem. Commun. 55(98), 14745–14748 (2019). https://doi.org/10.1039/c9cc07232b
- K. Khan, A.K. Tareen, M. Aslam, R.U.R. Sagar, B. Zhang et al., Recent progress, challenges, and prospects in two-dimensional photo-catalyst materials and environmental remediation. Nano-Micro Lett. 12(1), 167 (2020). https://doi.org/10.1007/s40820-020-00504-3
- G.R. Chen, J. An, Y.M. Meng, C.Z. Yuan, B. Matthews et al., Cation and anion co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries. Nano Energy 57, 157–165 (2019). https://doi.org/10.1016/j.nanoen.2018.12.049
- K. Jiang, J. Chang, H. Wang, S. Brimaud, W. Xing et al., Small addition of boron in palladium catalyst, big improvement in fuel cell’s performance: What may interfacial spectroelectrochemistry tell? ACS Appl. Mater. Interfaces 8(11), 7133–7138 (2016). https://doi.org/10.1021/acsami.6b00416
- L. Zhang, J. Lu, S. Yin, L. Luo, S. Jing et al., One-pot synthesized boron-doped RhFe alloy with enhanced catalytic performance for hydrogen evolution reaction. Appl. Catal. B: Environ. 230, 58–64 (2018). https://doi.org/10.1016/j.apcatb.2018.02.034
- H. Lv, D. Xu, L. Sun, J. Henzie, S.L. Suib et al., Ternary palladium-boron-phosphorus alloy mesoporous nanospheres for highly efficient electrocatalysis. ACS Nano 13(10), 12052–12061 (2019). https://doi.org/10.1021/acsnano.9b06339
- G. Zhang, Y. Xu, C. He, P. Zhang, H. Mi, Oxygen-doped crystalline carbon nitride with greatly extended visible-light-responsive range for photocatalytic H2 generation. Appl. Catal. B: Environ. 283, 119636 (2021). https://doi.org/10.1016/j.apcatb.2020.119636
- Y. Yang, L. Zhuang, R. Lin, M. Li, X. Xu et al., A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation. J. Power Sources 349, 68–74 (2017). Doi: https://doi.org/10.1016/j.jpowsour.2017.03.028
- F. Wei, T. Wang, X. Jiang, Y. Ai, J. Cui et al., Controllably engineering mesoporous surface and dimensionality of SnO2 toward high-performance CO2 electroreduction. Adv. Funct. Mater. 30, 2002092 (2020). https://doi.org/10.1002/adfm.202002092
- D. Wu, J.W. Liu, Y. Liang, K. Xiang, X.Z. Fu et al., Electrochemical transformation of facet-controlled bioi into mesoporous bismuth nanosheets for selective electrocatalytic reduction of CO2 to formic acid. ChemSusChem 12(20), 4700–4707 (2019). https://doi.org/10.1002/cssc.201901724
- M. Zhou, Y. Lin, H. Xia, X. Wei, Y. Yao et al., A molecular foaming and activation strategy to porous N-doped carbon foams for supercapacitors and CO2 capture. Nano-Micro Lett. 12(1), 58 (2020). https://doi.org/10.1007/s40820-020-0389-3
- X. Zhang, D. Kim, X. Guo, Y. Zhu, L.Y.S. Lee, Impacts of boron doping on the atomic structure, stability, and photocatalytic activity of Cu3P nanocrystals. Appl. Catal. B Environ. 298, 120515 (2021). https://doi.org/10.1016/j.apcatb.2021.120515
- Y. Shi, Y. Ji, J. Long, Y. Liang, Y. Liu et al., Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat. Commun. 11(1), 3415 (2020). https://doi.org/10.1038/s41467-020-17120-9
- W. Zheng, F. Chen, Q. Zeng, Z. Li, B. Yang et al., A universal principle to accurately synthesize atomically dispersed metal-N4 sites for CO2 electroreduction. Nano-Micro Lett. 12(1), 108 (2020). https://doi.org/10.1007/s40820-020-00443-z
- Y. Liang, W. Zhou, Y. Shi, C. Liu, B. Zhang, Unveiling in situ evolved In/In2O3 heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2 to formate. Sci. Bullet. 65(18), 1547–1554 (2020). https://doi.org/10.1016/j.scib.2020.04.022
- N. Meng, W. Zhou, Y. Yu, Y. Liu, B. Zhang, Superficial hydroxyl and amino groups synergistically active polymeric carbon nitride for CO2 electroreduction. ACS Catal. 9(12), 10983–10989 (2019). https://doi.org/10.1021/acscatal.9b03895
- M. Dunwell, W. Luc, Y.S. Yan, F. Jiao, B.J. Xu, Understanding surface-mediated electrochemical reactions: CO2 reduction and beyond. ACS Catal. 8(9), 8121–8129 (2018). https://doi.org/10.1021/acscatal.8b02181
- X.L. Zhang, X.H. Sun, S.X. Guo, A.M. Bond, J. Zhang, Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 12(4), 1334–1340 (2019). https://doi.org/10.1039/C9EE00018F
- D. Wu, G. Huo, W.Y. Chen, X.Z. Fu, J.L. Luo, Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets. Appl. Catal. B: Environ. 271, 118957 (2020). https://doi.org/10.1016/j.apcatb.2020.118957
- P. Deng, H. Wang, R. Qi, J. Zhu, S. Chen et al., Bismuth oxides with enhanced bismuth–oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 10(1), 743–750 (2020). https://doi.org/10.1021/acscatal.9b04043
- A.M. Ismail, G.F. Samu, A. Balog, E. Csapo, C. Janaky, Composition-dependent electrocatalytic behavior of Au-Sn bimetallic nanoparticles in carbon dioxide reduction. ACS Energy Lett. 4(1), 48–53 (2019). https://doi.org/10.1021/acsenergylett.8b01996
- A. Vasileff, X. Zhi, C.C. Xu, L. Ge, Y. Jiao et al., Selectivity control for electrochemical CO2 reduction by charge redistribution on the surface of copper alloys. ACS Catal. 9(10), 9411–9417 (2019). https://doi.org/10.1021/acscatal.9b02312
- W.T. Ichinohe Y, Hatta A, Electrochemical reduction of CO2 on silver as probed by surface-enhanced raman scattering. J. Raman Spectrosc. 26(5), 335–340 (1995). Doi: https://doi.org/10.1002/jrs.1250260503
- L. Jiao, W.J. Yang, G. Wan, R. Zhang, X.S. Zheng et al., Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem. Int. Ed. 59(46), 20589–20595 (2020). https://doi.org/10.1002/ange.202008787
- E.H. Zhang, T. Wang, K. Yu, J. Liu, W.X. Chen et al., Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141(42), 16569–16573 (2019). https://doi.org/10.1021/jacs.9b08259
- Z.P. Chen, K.W. Mou, X.H. Wang, L.C. Liu, Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew. Chem. Int. Ed. 57(39), 12790–12794 (2018). https://doi.org/10.1002/ange.201807643
- W.C. Ma, S.J. Xie, X.G. Zhang, F.F. Sun, J.C. Kang et al., Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 10, 892 (2019). https://doi.org/10.1038/s41467-019-08805-x
- N.T. Nesbitt, T. Burdyny, H. Simonson, D. Salvatore, D. Bohra et al., Liquid−solid boundaries dominate activity of CO2 reduction on gas-diffusion electrodes. ACS Catal. 10, 14093–114106 (2020). https://doi.org/10.1021/acscatal.0c03319
- H. Ooka, M.C. Figueiredo, M.T.M. Koper, Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33(37), 9307–9313 (2017). https://doi.org/10.1021/acs.langmuir.7b00696
- T.Y. Liu, P. Diao, Z. Lin, H.L. Wang, Sulfur and selenium doped nickel chalcogenides as efficient and stable electrocatalysts for hydrogen evolution reaction: The importance of the dopant atoms in and beneath the surface. Nano Energy 74, 104787 (2020). https://doi.org/10.1016/j.nanoen.2020.104787
- Z.P. Chen, X.X. Zhang, M.Y. Jiao, K.W. Mou, X.P. Zhang et al., Engineering electronic structure of stannous sulfide by amino-functionalized carbon: Toward efficient electrocatalytic reduction of CO2 to formate. Adv. Energy Mater. 10(8), 1903664 (2020). https://doi.org/10.1002/aenm.201903664
References
W.H. Ren, C. Zhao, Paths towards enhanced electrochemical CO2 reduction. Natl. Sci. Rev. 7(1), 7–9 (2020). https://doi.org/10.1093/nsr/nwz121
H.L. Liu, Y.T. Zhu, J.M. Ma, Z.C. Zhang, W.P. Hu, Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv. Funct. Mater. 30(17), 1910534 (2020). https://doi.org/10.1002/adfm.201910534
F. Franco, C. Rettenmaier, H.S. Jeon, B. Roldan Cuenya, Transition metal-based catalysts for the electrochemical CO2 reduction: From atoms and molecules to nanostructured materials. Chem. Soc. Rev. 49(19), 6884–6946 (2020). Doi: https://doi.org/10.1039/d0cs00835d
S. Lu, Y. Shi, N. Meng, S. Lu, Y. Yu et al., Electrosynthesis of syngas via the co-reduction of CO2 and H2O. Cell Rep. Phys. Sci. 1(11), 100237 (2020). https://doi.org/10.1016/j.xcrp.2020.100237
Z.X. Tao, Z.S. Wu, Y.S. Wu, H.L. Wang, Activating copper for electrocatalytic CO2 reduction to formate via molecular interactions. ACS Catal. 10(16), 9271–9275 (2020). https://doi.org/10.1021/acscatal.0c02237
Y. Xiong, J. Dong, Z.Q. Huang, P. Xin, W. Chen et al., Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15(5), 390–397 (2020). https://doi.org/10.1038/s41565-020-0665-x
S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang et al., Advances in Sn-based catalysts for electrochemical CO2 reduction. Nano Micro Lett. 11(1), 62 (2019). https://doi.org/10.1007/s40820-019-0293-x
O.S. Bushuyev, P. De Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2(5), 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
J.M. Spurgeon, B. Kumar, A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11(6), 1536–1551 (2018). https://doi.org/10.1039/c8ee00097b
N. Han, P. Ding, L. He, Y.Y. Li, Y.G. Li, Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 10(11), (2020). Doi: https://doi.org/10.1002/aenm.201902338
P. Ding, H.T. Zhao, T.S. Li, Y.S. Luo, G.Y. Fan et al., Metal-based electrocatalytic conversion of CO2 to formic acid/formate. J. Mater. Chem. A 8(42), 21947–21960 (2020). https://doi.org/10.1039/D0TA08393C
D. Wu, X.W. Wang, X.Z. Fu, J.L. Luo, Ultrasmall bi nanoparticles confined in carbon nanosheets as highly active and durable catalysts for CO2 electroreduction. Appl. Catal. B Environ. 284, 119723 (2021). https://doi.org/10.1016/j.apcatb.2020.119723
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355(6321), eaad4998 (2017). Doi: https://doi.org/10.1126/science.aad4998
C.L. Xie, Z.Q. Niu, D. Kim, M.F. Li, P.D. Yang, Surface and interface control in nanoparticle catalysis. Chem. Rev. 120(2), 1184–1249 (2020). https://doi.org/10.1021/acs.chemrev.9b00220
K. Chen, K. Qi, T. Zhou, T. Yang, Y. Zhang et al., Water-dispersible CsPbBr3 perovskite nanocrystals with ultra-stability and its application in electrochemical CO2 reduction. Nano-Micro Lett. 13(1), 172 (2021). https://doi.org/10.1007/s40820-021-00690-8
Z. Pan, E. Han, J. Zheng, J. Lu, X. Wang et al., Highly efficient photoelectrocatalytic reduction of CO2 to methanol by a P-N heterojunction CeO2/CuO/Cu catalyst. Nano-Micro Lett. 12(1), 18 (2020). https://doi.org/10.1007/s40820-019-0354-1
Y. Wu, P. Zhai, S. Cao, Z. Li, B. Zhang et al., Beyond d orbits: Steering the selectivity of electrochemical CO2 reduction via hybridized sp band of sulfur-incorporated porous cd architectures with dual collaborative sites. Adv. Energy Mater. 10(45), 2002499 (2020). https://doi.org/10.1002/aenm.202002499
B. Jiang, X.G. Zhang, K. Jiang, D.Y. Wu, W.B. Cai, Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J. Am. Chem. Soc. 140(8), 2880–2889 (2018). https://doi.org/10.1021/jacs.7b12506
H. Cheng, S. Liu, J. Zhang, T. Zhou, N. Zhang et al., Surface nitrogen-injection engineering for high formation rate of CO2 reduction to formate. Nano Lett. 20(8), 6097–6103 (2020). https://doi.org/10.1021/acs.nanolett.0c02144
X.L. Zheng, P. De Luna, F.P.G. de Arquer, B. Zhang, N. Becknell et al., Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1(4), 794–805 (2017). https://doi.org/10.1016/j.joule.2017.09.014
Z.Z. Wu, F.Y. Gao, M.R. Gao, Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction. Energy Environ. Sci. 14(3), 1121–1139 (2021). https://doi.org/10.1039/d0ee02747b
D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett 13(1), 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang et al., Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10(9), 974–980 (2018). https://doi.org/10.1038/s41557-018-0092-x
S. Carenco, D. Portehault, C. Boissiere, N. Mezailles, C. Sanchez, Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem. Rev. 113(10), 7981–8065 (2013). https://doi.org/10.1021/cr400020d
G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
K.X. Lei, C.C. Wang, L.J. Liu, Y.W. Luo, C.N. Mu et al., A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57(17), 4687–4691 (2018). https://doi.org/10.1002/ange.201801389
W. Hao, D. Yao, Q. Xu, R. Wang, C. Zhang et al., Highly efficient overall-water splitting enabled via grafting boron-inserted Fe-Ni solid solution nanosheets onto unconventional skeleton. Appl. Catal. B Environ. 292, 120188 (2021). https://doi.org/10.1016/j.apcatb.2021.120188
Y. Li, H. Yu, Z. Wang, S. Liu, Y. Xu et al., Boron-doped silver nanosponges with enhanced performance towards electrocatalytic nitrogen reduction to ammonia. Chem. Commun. 55(98), 14745–14748 (2019). https://doi.org/10.1039/c9cc07232b
K. Khan, A.K. Tareen, M. Aslam, R.U.R. Sagar, B. Zhang et al., Recent progress, challenges, and prospects in two-dimensional photo-catalyst materials and environmental remediation. Nano-Micro Lett. 12(1), 167 (2020). https://doi.org/10.1007/s40820-020-00504-3
G.R. Chen, J. An, Y.M. Meng, C.Z. Yuan, B. Matthews et al., Cation and anion co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries. Nano Energy 57, 157–165 (2019). https://doi.org/10.1016/j.nanoen.2018.12.049
K. Jiang, J. Chang, H. Wang, S. Brimaud, W. Xing et al., Small addition of boron in palladium catalyst, big improvement in fuel cell’s performance: What may interfacial spectroelectrochemistry tell? ACS Appl. Mater. Interfaces 8(11), 7133–7138 (2016). https://doi.org/10.1021/acsami.6b00416
L. Zhang, J. Lu, S. Yin, L. Luo, S. Jing et al., One-pot synthesized boron-doped RhFe alloy with enhanced catalytic performance for hydrogen evolution reaction. Appl. Catal. B: Environ. 230, 58–64 (2018). https://doi.org/10.1016/j.apcatb.2018.02.034
H. Lv, D. Xu, L. Sun, J. Henzie, S.L. Suib et al., Ternary palladium-boron-phosphorus alloy mesoporous nanospheres for highly efficient electrocatalysis. ACS Nano 13(10), 12052–12061 (2019). https://doi.org/10.1021/acsnano.9b06339
G. Zhang, Y. Xu, C. He, P. Zhang, H. Mi, Oxygen-doped crystalline carbon nitride with greatly extended visible-light-responsive range for photocatalytic H2 generation. Appl. Catal. B: Environ. 283, 119636 (2021). https://doi.org/10.1016/j.apcatb.2020.119636
Y. Yang, L. Zhuang, R. Lin, M. Li, X. Xu et al., A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation. J. Power Sources 349, 68–74 (2017). Doi: https://doi.org/10.1016/j.jpowsour.2017.03.028
F. Wei, T. Wang, X. Jiang, Y. Ai, J. Cui et al., Controllably engineering mesoporous surface and dimensionality of SnO2 toward high-performance CO2 electroreduction. Adv. Funct. Mater. 30, 2002092 (2020). https://doi.org/10.1002/adfm.202002092
D. Wu, J.W. Liu, Y. Liang, K. Xiang, X.Z. Fu et al., Electrochemical transformation of facet-controlled bioi into mesoporous bismuth nanosheets for selective electrocatalytic reduction of CO2 to formic acid. ChemSusChem 12(20), 4700–4707 (2019). https://doi.org/10.1002/cssc.201901724
M. Zhou, Y. Lin, H. Xia, X. Wei, Y. Yao et al., A molecular foaming and activation strategy to porous N-doped carbon foams for supercapacitors and CO2 capture. Nano-Micro Lett. 12(1), 58 (2020). https://doi.org/10.1007/s40820-020-0389-3
X. Zhang, D. Kim, X. Guo, Y. Zhu, L.Y.S. Lee, Impacts of boron doping on the atomic structure, stability, and photocatalytic activity of Cu3P nanocrystals. Appl. Catal. B Environ. 298, 120515 (2021). https://doi.org/10.1016/j.apcatb.2021.120515
Y. Shi, Y. Ji, J. Long, Y. Liang, Y. Liu et al., Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat. Commun. 11(1), 3415 (2020). https://doi.org/10.1038/s41467-020-17120-9
W. Zheng, F. Chen, Q. Zeng, Z. Li, B. Yang et al., A universal principle to accurately synthesize atomically dispersed metal-N4 sites for CO2 electroreduction. Nano-Micro Lett. 12(1), 108 (2020). https://doi.org/10.1007/s40820-020-00443-z
Y. Liang, W. Zhou, Y. Shi, C. Liu, B. Zhang, Unveiling in situ evolved In/In2O3 heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2 to formate. Sci. Bullet. 65(18), 1547–1554 (2020). https://doi.org/10.1016/j.scib.2020.04.022
N. Meng, W. Zhou, Y. Yu, Y. Liu, B. Zhang, Superficial hydroxyl and amino groups synergistically active polymeric carbon nitride for CO2 electroreduction. ACS Catal. 9(12), 10983–10989 (2019). https://doi.org/10.1021/acscatal.9b03895
M. Dunwell, W. Luc, Y.S. Yan, F. Jiao, B.J. Xu, Understanding surface-mediated electrochemical reactions: CO2 reduction and beyond. ACS Catal. 8(9), 8121–8129 (2018). https://doi.org/10.1021/acscatal.8b02181
X.L. Zhang, X.H. Sun, S.X. Guo, A.M. Bond, J. Zhang, Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 12(4), 1334–1340 (2019). https://doi.org/10.1039/C9EE00018F
D. Wu, G. Huo, W.Y. Chen, X.Z. Fu, J.L. Luo, Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets. Appl. Catal. B: Environ. 271, 118957 (2020). https://doi.org/10.1016/j.apcatb.2020.118957
P. Deng, H. Wang, R. Qi, J. Zhu, S. Chen et al., Bismuth oxides with enhanced bismuth–oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 10(1), 743–750 (2020). https://doi.org/10.1021/acscatal.9b04043
A.M. Ismail, G.F. Samu, A. Balog, E. Csapo, C. Janaky, Composition-dependent electrocatalytic behavior of Au-Sn bimetallic nanoparticles in carbon dioxide reduction. ACS Energy Lett. 4(1), 48–53 (2019). https://doi.org/10.1021/acsenergylett.8b01996
A. Vasileff, X. Zhi, C.C. Xu, L. Ge, Y. Jiao et al., Selectivity control for electrochemical CO2 reduction by charge redistribution on the surface of copper alloys. ACS Catal. 9(10), 9411–9417 (2019). https://doi.org/10.1021/acscatal.9b02312
W.T. Ichinohe Y, Hatta A, Electrochemical reduction of CO2 on silver as probed by surface-enhanced raman scattering. J. Raman Spectrosc. 26(5), 335–340 (1995). Doi: https://doi.org/10.1002/jrs.1250260503
L. Jiao, W.J. Yang, G. Wan, R. Zhang, X.S. Zheng et al., Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem. Int. Ed. 59(46), 20589–20595 (2020). https://doi.org/10.1002/ange.202008787
E.H. Zhang, T. Wang, K. Yu, J. Liu, W.X. Chen et al., Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141(42), 16569–16573 (2019). https://doi.org/10.1021/jacs.9b08259
Z.P. Chen, K.W. Mou, X.H. Wang, L.C. Liu, Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew. Chem. Int. Ed. 57(39), 12790–12794 (2018). https://doi.org/10.1002/ange.201807643
W.C. Ma, S.J. Xie, X.G. Zhang, F.F. Sun, J.C. Kang et al., Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 10, 892 (2019). https://doi.org/10.1038/s41467-019-08805-x
N.T. Nesbitt, T. Burdyny, H. Simonson, D. Salvatore, D. Bohra et al., Liquid−solid boundaries dominate activity of CO2 reduction on gas-diffusion electrodes. ACS Catal. 10, 14093–114106 (2020). https://doi.org/10.1021/acscatal.0c03319
H. Ooka, M.C. Figueiredo, M.T.M. Koper, Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33(37), 9307–9313 (2017). https://doi.org/10.1021/acs.langmuir.7b00696
T.Y. Liu, P. Diao, Z. Lin, H.L. Wang, Sulfur and selenium doped nickel chalcogenides as efficient and stable electrocatalysts for hydrogen evolution reaction: The importance of the dopant atoms in and beneath the surface. Nano Energy 74, 104787 (2020). https://doi.org/10.1016/j.nanoen.2020.104787
Z.P. Chen, X.X. Zhang, M.Y. Jiao, K.W. Mou, X.P. Zhang et al., Engineering electronic structure of stannous sulfide by amino-functionalized carbon: Toward efficient electrocatalytic reduction of CO2 to formate. Adv. Energy Mater. 10(8), 1903664 (2020). https://doi.org/10.1002/aenm.201903664